搜档网
当前位置:搜档网 › 用ANSYS WORKBENCH中的DESIGNMODELER轻松建模

用ANSYS WORKBENCH中的DESIGNMODELER轻松建模

用ANSYS WORKBENCH中的DESIGNMODELER轻松建模
用ANSYS WORKBENCH中的DESIGNMODELER轻松建模

ANSYS传统建模的方法有图形界面建模和命令流参数化建模两种方法。前者不便于图形修改,后者便于修改,但不直观,首次编写命令流较花时间,若要图形窗口参数化建模,那要对ANSYS的命令更熟悉。

但今天试了一下ANSYS WORKBENCH中的DESIGNMODELER之后,发现它本身就具有自动化图形参数建模的功能,有了它,你不必再面对命令流即可轻松实现图形化参数建,且它对传统的一些操作,如选择,进行了改进,使ANSYS 的几何建模和修改不再痛苦,而变得轻松甚至快乐。

下面通过一简单例子说明ANSYS WORKBENCH中的DESIGNMODELER的建模过程。

一、拟建的几何模型

二、画平面草图

三、草图标注及修改

四、平面草图挤压成三维模型

五、选择三维实体表面,准备混合操作

六、执行混合操作后的效果

(完整版)手把手教你用ANSYSworkbench

手把手教你用ANSYS workbench 本文的目的主要是帮助那些没有接触过ansys workbench的人快速上手使用这个软件。在本文里将展示ansys workbe nch如何从一片空白起步,建立几何模型、划分网格、设置约束和边界条件、进行求解计算,以及在后处理中运行疲劳分析模块,得到估计寿命的全过程。 一、建立算例 打开ansys workbench这时还是一片空白。 ■A Un■$曲虑日Project - Wor^L-bemdi FI E Vievi Took Units EKlhenMrs Hep 口百]牙.匾1丿狂存*■::_____________ 4J Import-■■ ?b RBConn^dt | 半]Project Lbd盘B Project g pp^iijT 咗nifint 世Eiqen/alue Ekxkfing Q Elqenwlue Bucktig [samcef) 醪Flwtnc 闵E^pict Cynannics ? Fluid F I M -M UN Mud凶『山山理] ◎Hud Ftaw - Estrusoi (PdyflEMiJ ? Fluid Flow (CFX) 也rlud Flow :FkirflL) Q Hud How (Pdvftouf) I朗Hermoinic IResporiSB 営H>d,qdyr>amic DiFFractlon I岂?H^drcclj/riarw Resrwnw 讐 JCEnjina = 逝MocW 爲Moda (阳AQU5) fjy Muds 口■ ii』) 肚| H^ndorn wbracior 迦| Spedtium Riyid D/ruriL^ 国StStIC ^truchjral 冒Static Structural 卜对Static■Strucbj-cl (5aTiccF) 1 5Zac\-5taZ Wrnml D Ihemnal 0 5tcady-5Uts Ihcmal (Sancd7) 密Thnrra^-FlPirrrir 电j Tlroughlkw ◎Il i oughfki^ ^DiaJcGcrO innsflnr strudturAi 回7rans?n: Structural (ABiQUS) 褪Tr slismL 5trudtural (Stfncsf) A 怕Ment rhenr^l 首先我们要清楚自己要计算的算例的分析类型,一般对于结构力学领域,有 静态分析(Static Structural)、动态分析(Rigid Dynamics)、模态分析(Modal)。

ANSYSWorkbench菜单中英文

1、 ANSYS12.1 Workbench界面相关分析系统和组件说明 【Analysis Systems】分析系统【Component Systems】组件系统【CustomSystems】自定义系统【Design Exploration】设计优化 分析类型说明 Electric (ANSYS) ANSYS电场分析 Explicit Dynamics (ANSYS) ANSYS显式动力学分析 Fluid Flow (CFX) CFX流体分析 Fluid Flow (Fluent) FLUENT流体分析 Hamonic Response (ANSYS) ANSYS谐响应分析 Linear Buckling (ANSYS) ANSYS线性屈曲Magnetostatic (ANSYS) ANSYS静磁场分析 Modal (ANSYS) ANSYS模态分析 Random Vibration (ANSYS) ANSYS随机振动分析Response Spectrum (ANSYS) ANSYS响应谱分析 Shape Optimization (ANSYS) ANSYS形状优化分析 Static Structural (ANSYS) ANSYS结构静力分析 Steady-State Thermal (ANSYS) ANSYS稳态热分析 Thermal-Electric (ANSYS) ANSYS热电耦合分析Transient Structural(ANSYS) ANSYS结构瞬态分析Transient Structural(MBD) MBD 多体结构动力分析Transient Thermal(ANSYS) ANSYS瞬态热分析 组件类型说明 AUTODYN AUTODYN非线性显式动力分析BladeGen 涡轮机械叶片设计工具 CFX CFX高端流体分析工具

ANSYS WORKBENCH 连杆建模

ANSYS WORKBENCH 11.0建模实例——连杆建模 一、打开ANSYS WORKBENCH 11.0的方法。 步骤:开始→所有程序→ANSYS11.0→Ansys Workbench(如图一所示) 图一启动Ansys Workbench 二、启始页的设置。 图二启动Ansys Workbench的界面 第一排的按钮是分别新建一个Ansys Workbench的工程、建模(DM)、模拟(DS)、网格划分(Mesh)、AUTODYN。 下部分就是打开已有的文件,通过下拉表单可以打开不同类型的文件 图三OPEN的下拉表单 今天我们是讲Ansys Workbench11.0的建模实例,点图二中的①”geometry”,进入建模界面。 三、设置单位。

图四设置单位 这个实例都是以毫米单位,所以在单选按钮中选中“Millimeter”。 四、进入草图界面,绘制模型草图。 步骤一:选中XYPlane。 步骤二:切换到XYPlane正视面。 步骤三:进入绘图环境,选择绘制长方形的工具。 步骤四:绘制草图。 图五绘制的草图

步骤五:修改尺寸,进入“demensions”。 修改后的尺寸数据如图所示: 五、生成实体。 步骤一:返回到Modeling界面。 步骤二:选中XYPlane下的sketch1,选中后图形视窗的草图线变成黄色。 步骤三:选中“extrude”拉伸按钮。 步骤四:设置拉伸的参数,其他的不变,只修改”Depth”这一项,修改为“10”,也是就是说 杆拉伸的厚度为“10”。 步骤五:生成实体,点击“generate”按钮。

步骤六:观查连杆。 在特征树上可以看到多了一个extrude2和solid。 图六连杆实体 六、创建连杆中间的孔。 步骤一:创建一个新的平面。 ①、选中连杆的一个面作为新建平面的基准,面选中后,被选中的面就会变为深绿色。

ANSYSWORKBENCH疲劳分析指南

ANSYS WORKBENCH 疲劳分析指南 第一章简介 1.1 疲劳概述 结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算。 在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。接下来,我们将对基于应力疲 劳理论的处理方法进行讨论。 1.2 恒定振幅载荷 在前面曾提到,疲劳是由于重复加载引起: 当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简 单的形式,首先进行讨论。 否则,则称为变化振幅或非恒定振幅载荷。 1.3 成比例载荷 载荷可以是比例载荷,也可以非比例载荷: 比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化, 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。 相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括: σ1/σ2=constant 在两个不同载荷工况间的交替变化; 交变载荷叠加在静载荷上; 非线性边界条件。 1.4 应力定义 考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况: 应力范围Δσ定义为(σmax-σmin) 平均应力σm定义为(σmax+σmin)/2 应力幅或交变应力σa是Δσ/2 应力比R是σmin/σmax 当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是 σm=0,R=-1的情况。 当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。 1.5 应力-寿命曲线 载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示: (1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效; (2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少; (3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

AnsysWorkbench详细介绍及入门基础

AnsysWorkbench详细介绍及入门基础 1、什么是Ansys Workbench? –ANSYS Workbench中提供了与ANSYS系统求解器的强大交互功能的方法 这个环境提供了一个独特的CAD及设计过程的集成系统。 2、Ansys Workbench主要组成模块: –Mechanical:利用ANSYS的求解器进行结构和热分析。 –Mechanical APDL:采用传统的ANSYS用户界面对高级机械和多物理场进行分析。 –Fluid Flow (CFX):利用CFX进行CFD分析。 –Fluid Flow (FLUENT):使用FLUENT进行CFD分析。 –Geometry (DesignModeler):创建几何模型(DesignModeler)和CAD几何模型的修改。–Engineering Data:定义材料性能。 –Meshing Application:用于生成CFD和显示动态网格。 –Design Exploration:优化分析。 –Finite Element Modeler (FE Modeler):对NASTRAN 和ABAQUS的网格进行转化以进行ansys 分析。 –Explicit Dynamics:具有非线性动力学特色的模型用于显式动力学模拟。

3、Workbench 环境支持两种类型的应用程序: –本地应用(workspaces):目前的本地应用包括工项目管理,工程数据和优化设计 本机应用程序的启动,完全在Workbench窗口运行。 –数据综合应用: 目前的应用包括Mechanical, Mechanical APDL, Fluent, CFX, AUTODYN 和其他。 4、Workbench界面主要分为2部分: ---Analysis systems :可以直接在项目中使用预先定义好的模板。 ---Component systems :建立、扩展分析系统的各种应用程序。 ---Custom Systems : 应用于耦合(FSI,热应力,等)分析的预先定义好的模板。用户也可以创建自己的预定义系统。 ---Design Exploration : 参数管理和优化工具

ANSYS_Workbench_建模培训教程

n t r o d u c t i o n T r a i n i n g M a n u a l ??? ? ?? D e s i g n M o d e l e r ?? ????: – ????? ?? – ?? ? ??? ???偸?? –3D ?? ? ?? – C A D ?? ????3D ? ? – ? 1-2

n t r o d u c t i o n T r a i n i n g M a n u a l B . A N S Y S W o r k b e n c h ?? ??М A N S Y S W o r k b e n c h ? –A N S Y S W o r k b e n c h ???A N S Y S ? ?? ???? ????? ?C A D ?? ????? ???? ??? ? ?A N S Y S W o r k b e n c h ? ? ?? (??? ): –M e c h a n i c a l ?A N S Y S ?? ??? ? ???? г M e c h a n i c a l ?Ё–F l u i d F l o w (C F X ) ?C F X ??C F D –F l u i d F l o w (F L U E N T ) ?F L U E N T ??C F D –G e o m e t r y (D e s i g n M o d e l e r ) C A D ???? M e c h a n i c a l Ё ?? ?? ?–E n g i n e e r i n g D a t a Н ?–M e s h i n A p p l i c a t i o n C F D ??g –D e s i g n E x p l o r a t i o n ??? –F i n i t e E l e m e n t M o d e l e r (F E M o d e l e r )? N A S T R A N A B A Q U S Ё???? A N S Y S Ё??l d –B a e G e n (B l a d e G e o m e t r y )?? ? ?–E x p l i c i t D y n a m i c s ???? ? ? ? ? 1-3

Workshop_DM2_概念建模 ANSYS workbench分析技术培训

Training Manual Workshop 6-1 线和面体

Training Manual ANSYS Workbench - DesignModeler Workshop 6-1, 线和面体 ?目标: –创建一个草图代表用于加固面板的梁. –从草图创建一个线体. –选择一个梁截面并将它赋给线体.–创建一个表面模型代表面板. ?>File>New, 或起始页: –选择创建新几何体 –设定长度单位为 millimeter

Training Manual ANSYS Workbench - DesignModeler 创建一个矩形 [Sketch] > Rectangle 1.将光标放在原点附近直到“P ” 出现, 点击后拖动鼠标定义矩形 点击 “>Look At ” 然后 “>Zoom to Fit ”工具按钮, 拖动三维坐标到想要的视角 1 Workshop 6-1, 线和面体

Training Manual ANSYS Workbench - DesignModeler 如图所示标注矩形为600X300 mm [Sketch] > Dimension > General 水平 = 600 mm 竖直 = 300 mm 将草图缩放充满窗口并移动尺寸到合适的位置 [Sketch] > Dimension > Move Workshop 6-1, 线和面体

Training Manual ANSYS Workbench - DesignModeler 1. 加入2条竖直线并像图中所示标注尺寸Add 2 vertical lines and [Sketch] > Draw > Line 2.将光标放在最上面的线附近直到出现 “C ” 重合约束. 移动光标到底线直到出现 “C ” 和表示 竖直约束的“V ”. 3.对第二条线重复刚才的步骤.如图所示施加水平尺寸.[Sketch] > Dimension > Horizontal 调整细节使所有尺寸如图所示. 2 3 Workshop 6-1, 线和面体

ANSYS WORKBENCH中文介绍

网格变形和优化 对于很多单位,进行优化分析的最大障碍是CAD 模型不能重新生成,特征参数不能反映那些修改研究的几何改变。通过与ANSYS WORKBENCH 的结合,ANSYS MESH MORPHER (FE-MODELER 的新增加模块)可以实现这个功能,甚至更多。 通过网格操作而不是实体模型,ANSYS MESH MORPHER 对于来自于CAD 的非参数几何数据,如IGES 或者STEP,以及来自于ANSYS CDB 文件的网格数据,实现了模型参数化。将网格读入FE MODELER,并且产生对应于该网格的“综合几何”的初次配置。ANSYS MESH MORPHER 提供了四种不同的转换:面平移丶面偏置丶边平移和边偏置。更多样的配置可以通过以上转换的组合实现。例如,一个圆柱表面的面偏置就等效于变更其半径。 在ANSYS WORKBENCH 中,ANSYS 和ANSYS CFX 技术的集成取得了更大的进步。在ANSYSWORKBENCH 环境中,用户可以完整地建立丶求解和后处理双向流固耦合仿真。最新的版本也提供了单一后处理工具,可以用更少的时间获得复杂多物理问题的解决,并且扩展了仿真的应用领域。 利用ANSYS CFX 软件的统一网格接口可以在ANSYS 和ANSYS CFX 之间传递FSI 载荷,所有流固耦合问题的结果的鲁棒性和精度获得了改进。界面载荷传递技术的突破,很明显的好处就在于让同一团队的FEA 和CFD 专家共享信息更方便。在新版中流固耦合的领域也得到了扩展。 涡轮系统一体化解决方案 ANSYS WORKBENCH 环境提供了旋转机械设计过程所需的几何设计和分析的集成系统。ANSYSWORKBENCH,作为高级物理问题的集成平台,能够让设计人员建立旋转机械的模型,比如水泵丶压缩机丶风扇丶吹风机丶涡轮丶膨胀器丶涡轮增压器和鼓风机。ANSYS 解决方案集成到设计过程,从而消除了中性文件传输丶结果变换和重分析,使得CAE过程几周内就完成了。 ANSYS ICEM CFD 和AI ENVIRONMENT 中的创新在于多区域体网格划分工具,可用于空气动力学中。新的网格划分方法提供了对块(结构网格方法)的灵活性和控制,易于使用的自动(非结构化)网格方法。半自动多区网格算法允许用户在面和体上对网格进行总体控制,边界上通过映射或者扫描块提供了纯六面体网格,而内部过渡到四面体或者六面体为主的网格。映射丶扫描和自由划分技术为模型中最重要区域的结构化六面体网格划分提供了自由,可以保证用较少的精力得到高质量的自动化网格。 ANSYS ICEM CFD 和AI ENVIRONMENT产品也回答了古老的问题:“我应该用四面体划网还是花更多的时间用六面体划网”。相对于传统的四面体网格算法,新的体-拟合笛卡儿划网方法可以帮你用更少的时间划分纯六面体网格。包含四面体和金字塔形状的混合网格划分方法减少了限制并且提供了更容易的方法编辑网格。这个方法产生的六面体网格的统一性更适合于显式碰撞分析或者任何六面体网格更适合的分析。 线性和非线性动力学

ANSYSworkbench教程—疲劳分析

第一章简介 1.1 疲劳概述 结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。一般认为应变疲劳(strain-based)应该用于低周疲劳计算。 在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。接下来,我们将对基于应力疲劳理论的处理方法进行讨论。 1.2 恒定振幅载荷 在前面曾提到,疲劳是由于重复加载引起: 当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。 否则,则称为变化振幅或非恒定振幅载荷。 1.3 成比例载荷 载荷可以是比例载荷,也可以非比例载荷: 比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。 相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括: σ1/σ2=constant 在两个不同载荷工况间的交替变化; 交变载荷叠加在静载荷上; 非线性边界条件。 1.4 应力定义 考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况: 应力范围Δσ定义为(σmax-σmin) 平均应力σm定义为(σmax+σmin)/2 应力幅或交变应力σa是Δσ/2 应力比R是σmin/σmax 当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。这就是σm=0,R=-1的情况。 当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是σm=σmax/2,R=0的情况。 1.5 应力-寿命曲线 载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示: (1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少; (3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。 S-N曲线是通过对试件做疲劳测试得到的弯曲或轴向测试反映的是单轴的应力状态,影响S-N曲线的因素很多,其中的一些需要的注意,如下: 材料的延展性,材料的加工工艺,几何形状信息,包括表面光滑度、残余应力以及存在的应力集中,载荷环境,包括平均应力、温度和化学环境,例如,压缩平均应力比零平均应力的疲劳寿命长,相反,拉伸平均应力比零平均应力的疲劳寿命短,对压缩和拉伸平均应力,平均应力将分别提高和降低S-N曲线。 因此,记住以下几点:一个部件通常经受多轴应力状态。如果疲劳数据(S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要注意:(1)设计仿真为用户提供了如何把结果和S-N曲线相关联的选择,包括多轴应力的选择;(2)双轴应力结果有助于计算在给定位置的情况。 平均应力影响疲劳寿命,并且变换在S-N曲线的上方位置与下方位置(反映出在给定应力幅下的寿命长短):(1)对于不同的平均应力或应力比值,设计仿真允许输入多重S-N曲线(实验数据);(2)如果没有太多的多重S-N曲线(实验数据),那么设计仿真也允许采用多种不同的平均应力修正理论。 早先曾提到影响疲劳寿命的其他因素,也可以在设计仿真中可以用一个修正因子来解释。 1.6 总结

ansysworkbench概念建模及计算(详解)及中英解释

概念建模(基础)及各命令中英解释 快捷键:滚动鼠标滚轮缩放,按住鼠标滚轮不放移动鼠标旋转,ctrl+鼠标中键(滚轮)移动。Shift+鼠标中键上下移动改变视图大小。Ctrl+鼠标左键点选可选择不连续多个对象(可在绘图窗口直接选择或在设计树中选)。绘图时(草图模式sketching下)选中某个对象按delete 可删除该对象。 注意:概念建模中有梁,杆单元,概念建模完成后需要将模型文件与分析文件链接。系统默认状态下这些代表梁杆单元的“线”不会被导入到分析文件。所以, 概念建模前,必须改变软件的设置。主界面上找到“tool” ,点击它,等一下出现这个窗口。 选择这个栏,点选这个,点击OK。 打开建模程序,选择毫米为单位。 在“XYplan”建立草图“sketch1”,

切换到草图模式(点击上图左下角的“sketching”按钮)开始绘图。 绘制成上图所示的图形(可以自己决定绘图方式),回到模型界面(点击第一个图左下角的“modeling”按钮)。 在下图中找到按钮,点击,选择“line from point”选项。

出现下图中的。 按住ctrl,两个端点一组,选择下列四条线的端点:

生成图中所示的绿色线条。 找到这个按钮,点击。 然后按上述步骤操作,选择下图所示的个点,要按住ctrl一个点挨着一个点选择一周。生成十几条线段。不能直接选择四个端点生成四条长线。 注意:将下图中的Operation改为Add Frozen。这样将会生成数十条线段而不是将所有的线 段生成一个整体的“line body”。点击。

选择,点击,选择下拉菜单里的“face from edges”,按逆时针选择下图所示的四条线(都按照逆时针方向可以保证所生成的面朝向同一方向)。点击。 生成这样的平面。

ansysworkbench学习必备

第1章初识ANSYS Workbench 导言 本章 ★了解ANSYS Workbench的应用 ★掌握Workbench 15.0的启动 ★认识Workbench 15.0的操作界面 ★掌握ANSYS Workbench项目与文件的管理方法 ★熟悉Workbench的分析流程 1.1 ANSYS Workbench 15.0 概述 经过多年的潜心开发,ANSYS公司在2002年发布ANSYS 7.0的同时正式推出了前后处理和软件集成环境ANSYS Workbench Environment(AWE)。到ANSYS 11.0版本发布时,已提升了ANSYS软件的易用性、集成性、客户化定制开发的方便性,深获客户喜爱。

Workbench在2014年发布的ANSYS 15.0版本中,在继承第一代Workbench的各种优势特征的基础上发生了革命性的变化,连同ANSYS 15.0版本可视为第二代Workbench(Workbench 2.0),其最大的变化是提供了全新的项目视图(Project Schematic View)功能,将整个仿真流程更加紧密地组合在一起,通过简单的拖曳操作即可完成复杂的多物理场分析流程。 Workbench所提供的CAD双向参数链接互动、项目数据自动更新机制、全面的参数管理、无缝集成的优化设计工具等,使ANSYS在仿真驱动产品设计(Simulation Driven Product Development)方面达到了前所未有的高度。 在ANSYS 15.0版本中,ANSYS对Workbench架构进行了全新设计,全新的项目视图(Project Schematic View)功能改变了用户使用Workbench仿真环境(Simulation)的方式。 在一个类似流程图的图表中,仿真项目中的各项任务以互相连接的图形化方式清晰地表达出来,可以非常容易地理解项目的工程意图、数据关系、分析过程的状态等。 项目视图系统使用起来非常简单:直接从左边的工具箱(Toolbox)中将所需的分析系统拖曳到右边的项目视图窗口中或双击即可。 工具箱(Toolbox)中的分析系统(Analysis Systems)部分,包含了各种已预置好

ANSYS WORKBENCH建模

第一章 第章 引言DesignModeler

课程目标 Training Manual ?教会用户DesignModeler在以下方面的使用: –总体上理解用户界面 –建立草图与指定尺寸流程、方法、步骤、程序 –3D几何体创建与修改流程 –导入CAD几何体操作、使用3D操作形成流场区域 –参数化建模

B. ANSYS Workbench概述 Training Manual ?什么是ANSYS Workbench? –ANSYS Workbench提供了与ANSYS系列求解器相交互的强大方法。这种环境为CAD系统和您的设计过程提供了独一无二的集成。 系统和您的设计过程提供了独一无二的集成 ?ANSYS Workbench由多种应用组成(一些例子): –Mechanical用ANSYS求解器进行结构和热分析。 ?网格划分也包含在Mechanical应用中 M h i l –Fluid Flow (CFX) 用CFX进行CFD分析 –Fluid Flow (FLUENT) 用FLUENT进行CFD分析 Geometry(DesignModeler)几何体为在 –Geometry (DesignModeler)创建和修改CAD几何体,为在Mechanical中所用的实体模型做准备。 –Engineering Data 定义材料属性。 g pp –Meshing Application 创建CFD和显式动态网格 –Design Exploration用于优化分析 –Finite Element Modeler (FE Modeler)转换NASTRAN和ABAQUS 中的网格以便在ANSYS中使用 Bl d G(Bl d G t) –BladeGen (Blade Geometry)用于创建叶片几何 –Explicit Dynamics用于非线性动态的显式动态模拟特性建模

AnsysWorkbench静力学分析详细实例.pdf

Ansys静力分析实例:  1 问题描述:  如图所示支架简图,支架材料为结构钢,厚度10mm,支架左侧的两 个通孔为固定孔,顶面的开槽处受均布载荷,载荷大小为500N/mm。  2 启动Ansys Workbench,在界面中选择Simulation启动DS模块。

3 导入三维模型,操作步骤按下图进行,单击“Geometry”,选择“From File”。  从弹出窗口中选择三维模型文件,如果文件格式不符,可以把三维图转换为“.stp”格式文件,即可导入,如下图所示。  4 选择零件材料:文件导入后界面如下图所示,这时,选择“Geometry”下的“Part”,在左下角的“Details of ‘Part’”中可以调整零件材料属性。

5 划分网格:如下图,选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可。【此时也可以在左下角的“Details of ‘Mesh’”对话框中调整划分网格的大小(“Element size”项)】。

生成网格后的图形如下图所示:

6 添加分析类型:选择上方工具条中的“New Analysis”,添加所需做的分析类型,此例中要做的是静力分析,因此选择“Static Structural”,如下图所示。  7 添加固定约束:如下图所示,选择“Project”树中的“Static Structural”,右键选择“Insert”中的“Fixed Support”。

这时左下角的“Details of ‘Fixed Support’”对话框中“Geometry”被选中,提示输入固定支撑面。本例中固定支撑类型是面支撑,因此 要确定图示6位置为“Face”,【此处也可选择“Edge”来选择“边”】 然后按住“CTRL”键,连续选择两个孔面为支撑面,按“Apply”确 认,如下图所示。

ANSYS WORKBENCH全船结构 元分析流程

一、建立有限元模型 与ANSYS经典版相比,WORKBENCH的操作界面更加美观,建模、分析的过程更加智能化,更容易上手。但作为一个专注于有限元分析的软件,其日渐强大的建模模块(Geometry)对建立复杂的船体曲面仍显得力不从心。因此需要在其他建模软件(笔者使用了SolidWorks)中建立船体实体模型后导入WORKBENCH中,完成随后的建模和分析工作。 鉴于实体单元在计算中消耗过多的内存和计算时间,本文采用概念建模(Concept)的方法将船体板定义为无厚度的壳体(SurfaceBody),将船体骨架定义为线体(Line Body),壳体和线体划分的网格类似于经典版的壳单元(Shell)和梁单元(Beam)。 1.导入实体模型 可采用多种方法导入,如直接将模型文件拖入WORKBENCH的ProjectSchematic(项目概图)窗口,如图1所示。还可双击启动Geometry模块后,在其File菜单中选择导入命令,导入后的模型如图2所示。 模型已冻结,分为船体和上层建筑两部分,船首指向X轴正向,船体上方指向Z轴正向。坐标原点位于船体基平面、中站面和中线面的交点处。 图2导入后的模型 2.生成舷墙 (1)在中纵剖面(ZXPlane)建立草图(NewSketch),进入绘制草图模式。点击“TreeOutline”→“Sketching”,沿甲板边线位置绘制一条曲线。返回模型模式,点击“Sketching”→“Modeling”→“Extrude”,生成一个SurfaceBody。

(2)沿甲板将船体分开,点击 “Create”→“Slice”,在“DetailView”窗口“SliceType”选项中选择“SlicebySurface”项,“TargetFace”选择上一步生成的SurfaceBody,“Slice Targets”选项中选“SelectedBodies”,点选船体结构→“Apply”→“Generate”,原来的船体分成两部分,上面是舷墙部分,下面是船舱部分,如图3所示。 图3船体分为两部分 这时生成的SurfaceBody已完成历史使命,可将其抑制(Suppress)掉了。注意不是把拉伸操作Extrude1、而是生成的面SurfaceBody抑制掉。 (3)生成舷墙:选择(2)中生成的舷墙部分进行抽壳,点击“Thin”→“Surface”,在“DetailView”窗口“Selection Type”选项中,选择“FacetoKeep”项,保留舷墙部分,设置厚度为0,然后点选“生成”。 3.生成船体外表面 本文使用的船舶钢板厚度都是一样的,可将上层建筑与船体一起定义。倘若船体各处钢板厚度不同,计算过程中可分别定义各钢板的厚度。 (1)布尔并运算:点击“Create”→“Boolean”,在“DetailView”窗口Operation选项中选择Unite项,“Tool Bodies”选择上层建筑生成的船舱部分,然后点选“生成”。 (2)生成船体表面:选中(1)中生成的体,然后抽壳,保留全部外表面,厚度设置为0。抽壳后将在图4所示的蓝色区域内产生甲板大开口状,需要补上去。 (3)补全甲板:点击“Concept”→“Surfaces From Edges”,选中图4所示蓝色线条位置处的4条边,然后生成1个面。 图4抽壳后甲板位置有开口 4.在船体骨架位置处生成边 船体是一个板架结构,除了钢板之外还应该有骨架。有限元模型中骨架必须位于船体板上,以免计算时骨架与板分离造成计算结果错误。为了保证模型的骨架位于船体板上,需要在船体板上添加边(edges),以便在边上生成骨材(LineBody)。

相关主题