搜档网
当前位置:搜档网 › Floyd最短路算法的MATLAB程序

Floyd最短路算法的MATLAB程序

Floyd最短路算法的MATLAB程序
Floyd最短路算法的MATLAB程序

Floyd最短路算法的MATLAB程序

2006-08-17 20:14

%floyd.m

%采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵

%r是路由矩阵

function [d,r]=floyd(a)

n=size(a,1);

d=a;

for i=1:n

for j=1:n

r(i,j)=j;

end

end

r

for k=1:n

for i=1:n

for j=1:n

if d(i,k)+d(k,j)

d(i,j)=d(i,k)+d(k,j); r(i,j)=r(i,k)

end

end

end

k

d

r

end

void Dijkstral(int v0)

{

int i;

bool s[MAX_VEX];

for(i=0;i

{

d[v0][i]=map[v0][i];

s[i]=false;

if((i!=0)&&(d[v0][i]

p[v0][i]=v0;

else

p[v0][i]=-1;

}

s[v0]=true;

d[v0][v0]=0;

for(i=0;i

{

double min=INF;

int u=v0;

for(int j=0;j

if(!s[j]&&d[v0][j]

{

u=j;

min=d[v0][j];

}

s[u]=true;

for(int w=0;w

{

if((!s[w])&&(d[v0][w]>d[v0][u]+map[u][w]))

{

d[v0][w]=d[v0][u]+map[u][w];

p[v0][w]=u;

}

}

}

}

Justin Hou

介绍

寻找最有价值路径(c语言)

描述:

从上(入口)往下行走,直到最下节点(出口)结束,将所经节点上的数值相加,要求找到一条最有价值路径(既是路径总数值最大)并输出总数值。

图:

入口↓

/\

⑤④

/ \ / \

①②⑤

\ / \ /

⑨⑧

\ /

出口↓

输入文件:(abc.in)

第一行只有一个数n(1<=n<=199),且n为奇数,说明节点的层。从第二行到底n+1行为每一层中各节点的数值(在0和100之间),各个数用空格隔开,输入不要求判错。

输出文件:(abc.out)

只有一个数,为所求路径的价值数。

例子:

输入文件内容:

5

3

5 4

1 2 5

9 8

3

输出文件内容:

23

正文

/*

* File: longest.c

* Desciption: 动态规划算法计算网络的最长路线和最短路线

* Created: 2001/12/2

* Author: Justin Hou [mailto:justin_hou@https://www.sodocs.net/doc/e86748686.html,]

*

*/

#include

#define N 7

/* 顶点数目*/

#define I 999

/* 表示无穷大*/

int graph[N][N] = {

/* 图的邻接矩阵*/

{I, 4, 5, 8, I, I, I},

{I, I, I, 6, 6, I, I},

{I, I, I, 5, I, 7, I},

{I, I, I, I, 8, 9, 9},

{I, I, I, I, I, I, 5},

{I, I, I, I, I, I, 4},

{I, I, I, I, I, I, I}

};

int List[N];

/* 存放拓扑序列*/

int TopologicalOrder();

/* 拓扑排序函数*/

void main()

/* 主函数*/

{

int i, j, k, l;

int ee[N], el[N];

/* 最长最短距离*/

int path_e[N][N], path_l[N][N], n_e[N], n_l[N];

/* 记录路径数据*/

/* 初始化数据*/

for (i = 0; i < N; i++) {

n_e[i] = 0; /*

到i 的最短路线的结点数*/

n_l[i] = 0; /* 到

i 的最长路线的结点数*/

ee[i] = I;

el[i] = 0;

}

ee[0] = el[0] = 0; /* 初始化头结点*/

path_e[0][0] = 0;

path_l[0][0] = 0;

n_e[0] = 1;

n_l[0] = 1;

/* 拓扑排序*/

if (!TopologicalOrder())

return;

未完

Top

2 楼atlantis13579(更深的蓝)(^_^)回复于2002-07-21 15:42:06 得分0

作者Justin Hou

介绍

寻找最有价值路径(c语言)

描述:

从上(入口)往下行走,直到最下节点(出口)结束,将所经节点上的数值相加,要求找到一条最有价值路径(既是路径总数值最大)并输出总数值。

图:

入口↓

/\

⑤④

/ \ / \

①②⑤

\ / \ /

⑨⑧

\ /

出口↓

输入文件:(abc.in)

第一行只有一个数n(1<=n<=199),且n为奇数,说明节点的层。从第二行到底n+1行为每一层中各节点的数值(在0和100之间),各个数用空格隔开,输入不要求判错。

输出文件:(abc.out)

只有一个数,为所求路径的价值数。

例子:

输入文件内容:

5

3

5 4

1 2 5

9 8

3

输出文件内容:

23

正文

/*

* File: longest.c

* Desciption: 动态规划算法计算网络的最长路线和最短路线

* Created: 2001/12/2

* Author: Justin Hou [mailto:justin_hou@https://www.sodocs.net/doc/e86748686.html,] *

*/

#include

#define N 7

/* 顶点数目*/

#define I 999

/* 表示无穷大*/

int graph[N][N] = {

/* 图的邻接矩阵*/

{I, 4, 5, 8, I, I, I},

{I, I, I, 6, 6, I, I},

{I, I, I, 5, I, 7, I},

{I, I, I, I, 8, 9, 9},

{I, I, I, I, I, I, 5},

{I, I, I, I, I, I, 4},

{I, I, I, I, I, I, I}

};

int List[N];

/* 存放拓扑序列*/

int TopologicalOrder();

/* 拓扑排序函数*/

void main()

/* 主函数*/

{

int i, j, k, l;

int ee[N], el[N];

/* 最长最短距离*/

int path_e[N][N], path_l[N][N], n_e[N], n_l[N];

/* 记录路径数据*/

/* 初始化数据*/

for (i = 0; i < N; i++) {

n_e[i] = 0; /*

到i 的最短路线的结点数*/

n_l[i] = 0; /* 到

i 的最长路线的结点数*/

ee[i] = I;

el[i] = 0;

}

ee[0] = el[0] = 0; /* 初始化头结点*/

path_e[0][0] = 0;

path_l[0][0] = 0;

n_e[0] = 1;

n_l[0] = 1;

/* 拓扑排序*/

if (!TopologicalOrder())

return;

/* 对于拓扑序列,运用动态规划步步算出最长路线与最短路线*/

for (i = 0; i < N; i++) {

/* 提取拓扑序列的元素*/

k = List[i];

/* 更新它所指向顶点的所有数

据*/

for (j = 0; j < N;

j++) {

/* 寻找指向的顶点*/

if (graph[ k][j] != I) {

/* 如果新路径更短*/

if (graph[k][j] + ee[k] < ee[j]) {

/* 更新最短路径长度*/

ee[j] = graph[k][j] + ee[k];

/* 更新最短路线*/

for (l = 0; l < n_e[k]; l++) {

path_e[j][l] = path_e [k][l];

}

path_e[j][l] = j;

n_e[j] = l + 1;

}

/* 如果新路径更长*/

if (graph[k][j] + el[k] > el[j]) {

/* 更新最长路径长度*/

el[j] = graph[k][j] + el[k];

/* 更新最长路线*/

for (l = 0; l < n_l[k]; l++) {

path_l[j][l] = path_l[ k][l];

}

path_l[j][l] = j;

n_l[j] = l + 1;

}

}

}

}

/* 输出结果到屏幕*/

for (i = 0; i < N; i++) {

printf("shortest(%d): %2d Path: ", i + 1, ee[i]);

for (j = 0; j < n_e[ i]; j++) {

printf("%d ", path_e[i][j] + 1);

}

printf("\n");

printf("longest (%d): %2d Path: ", i + 1, el[i]);

for (j = 0; j < n_l[i ]; j++) {

printf("%d ", path_l[i][j] + 1);

}

printf("\n");

}

}

int TopologicalOrder()

{

int i, j, top, count;

int indegree[N], Stack[N];

top = 0;

/* 栈顶标志*/

for (i = 0; i < N; i++) {

indegree[i] = 0;

/* 初始化入度*/

for (j = 0; j < N;

j++) {

if (graph[j ][i] != I) { /* 如连通*/

indegree[i]++; /* 入度自增1 */

}

}

if (!indegree[i]){

/* 如入度为零*/

Stack[top++] = i; /* 入栈*/

}

}

count = 0;

/* 输出顶点数*/

while (top != 0) {

i = Stack[--top];

List[count++] = i;

for (j = 0; j < N;

j++) {

if (graph[i ][j] != I) { /* 如连通*/

if (!(--indegree[j])) { /* 而且入度为零*/

Stack[top++] = j; /* 入

栈*/

}

}

}/* for */

}/* while */

return (count < N) ? 0 : 1;

}

正文完

Top

4 楼langhaixin(C++如此多娇,引无数高手尽折腰!)回复于2002-07-21 22:31:06 得分0

格式有点乱,请间量

===========================================================

/*==============================ShortestPath算法

=================================================*/

#define MAXINT 9999

#define MAXN 100

typedef int MAT[MAXN][MAXN];

MAT cost; //有向图的加权邻接矩阵

int dist[MAXN], //dist[]放着从源点v到图任意点的k的最短路径的长度

pre[MAXN], //pre[j]放着到顶点j的最短路径的前一个结点,即前趋结点

n,v

void ShortestPath(MAT cost,int n,int v,int dist[],int pre[])

{

int s[MAXN],i,j,k,min; //s[]放着第一组顶点,s[]中表示以求出最短路径的顶点集合

//初始pre[]和dist[],将dist[]中放入源点v可达顶点的权将v可达的顶点的前趋结点设置为v

for(i=1;i<=n;i++)

{

dist[i]=cost[v][i]; //从源点v到各顶点的权

s[i]=0; //将s[]清空

if(dist[i]

pre[i]=v; //能到达的则将其前趋结点设置为v

else

pre[i]=0; //否则记为0,表示v无法到底

}

s[v]=1; //将源点v放入s[]中

pre[v]=0; //设置源点v是不可到达的

//主循环,开始统计出从源点v到各顶点的最短距离

for(i=q;i<=n;i++)

{

min=MAXINT;

k=0;

for(j=1;j<=n;j++) //找到源点v到V-S中距离最短的顶点

if(s[j]==0) //判断该顶点是否已经在s[]中了

if(dist[j]!=0&& //dist[j]==0表示源点v无法到达该顶点

dist[j]min说明v到j的距离大于v到其他顶点的距离

{

//满足该顶点不在s[]中,且v可到达该点和v到达该点比到其他点距离短;

min=dist[j]; //则将v到j的距离设为最短距离

k=j; //令k指向顶点j

}

if(k==0)

continue; //未找到最短距离

s[k]=1; //将k加入s[]中

for(j=1;j<=n;j++) //更新dist[]和pre[],为下次循环做准备

if(s[j]==0&& //判断该顶点是否在s[]中

cost[k][j]

if(dist[k]+cost[k][j]

{

dist[j]=dist[k]+cost[k][j]; //将dist[]中直接到达j的距离替换为通过k到达j的距离

pre[j]=k; //将该顶点的前趋结点设置为k

}

}

}

最短路算法[1]

最短路算法及其应用 广东北江中学余远铭【摘要】 最短路问题是图论中的核心问题之一,它是许多更深层算法的基础。同时,该问题有着大量的生产实际的背景。不少问题从表面上看与最短路问题没有什么关系,却也可以归结为最短路问题。本文较详尽地介绍了相关的基本概念、常用算法及其适用范围,并对其应用做出了举例说明,侧重于模型的建立、思考和证明的过程,最后作出总结。 【关键字】 最短路 【目录】 一、基本概念 (2) 1.1 定义 (2) 1.2简单变体 (2) 1.3负权边 (3) 1.4重要性质及松弛技术 (4) 二、常用算法 (5) 2.1 Dijkstra算法 (5) 2.2 Bellman-Ford算法 (7) 2.3 SPFA算法 (8) 三、应用举例 (10) 3.1 例题1——货币兑换 (10) 3.2 例题2——双调路径 (11) 3.3 例题3——Layout (13) 3.4 例题4——网络提速 (15) 四、总结 (18)

【正文】 一、基本概念 1.1 定义 乘汽车旅行的人总希望找出到目的地尽可能短的行程。如果有一张地图并 在地图上标出了每对十字路口之间的距离,如何找出这一最短行程? 一种可能的方法是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。然而我们很容易看到,即使不考虑含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是没必要考虑的。 下面我们将阐明如何有效地解决这类问题。在最短路问题中,给出的是一 有向加权图G=(V ,E),在其上定义的加权函数W:E →R 为从边到实型权值的映射。路径P=(v 0, v 1,……, v k )的权是指其组成边的所有权值之和: 11()(,)k i i i w p w v v -==∑ 定义u 到v 间最短路径的权为 {}{}min ():)w p u v u v v δυ→(,=∞ 如果存在由到的通路 如果不存在 从结点u 到结点v 的最短路径定义为权())w p v δυ=(,的任何路径。 在乘车旅行的例子中,我们可以把公路地图模型化为一个图:结点表示路口,边表示连接两个路口的公路,边权表示公路的长度。我们的目标是从起点出发找一条到达目的地的最短路径。 边的权常被解释为一种度量方法,而不仅仅是距离。它们常常被用来表示 时间、金钱、罚款、损失或任何其他沿路径线性积累的数量形式。 1.2简单变体 单目标最短路径问题: 找出从每一结点v 到某指定结点u 的一条最短路 径。把图中的每条边反向,我们就可以把这一问题转化为单源最短路径问题。 单对结点间的最短路径问题:对于某给定结点u 和v ,找出从u 到v 的一 条最短路径。如果我们解决了源结点为u 的单源问题,则这一问题也就获得了解决。对于该问题的最坏情况,从渐进意义上看,目前还未发现比最好的单源算法更快的方法。 每对结点间的最短路径问题:对于每对结点u 和v ,找出从u 到v 的最短 路径。我们可以用单源算法对每个结点作为源点运行一次就可以解决问题。

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

蚁群算法TSP问题matlab源代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q) %%===================================================== ==================== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.sodocs.net/doc/e86748686.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%===================================================== ==================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线

图论及其应用(精)

图论及其应用 学时:40 学分:2 课程属性:专业选修课开课单位:理学院 先修课程:高等代数后续课程:无 一、课程的性质 《图论及其应用》是数学与应用数学专业的专业选修课程。 二、教学目的 通过教学,使学生掌握图论及其算法的基本理论和基本技巧,初步掌握图论及其算法的基本应用手段、基本算法设计及编程,并能用所学理论解决一些应用问题。 三、教学内容 1.图的基本概念 2.图的连通性 3.树的基本性质及其应用 4.Euler Graphs and Hamilton Graphs with Applications 5.平面图性质 6.匹配,求最大匹配算法及应用 7.图的染色及应用 8.极图理论 四、学时分配 章课程内容学时 1 图的基本概念 4 2 图的连通性 6 3 树的基本性质及其应用 6 4 Euler Graphs and Hamilton Graphs with Applications 4 5 平面图性质 6 6 匹配,求最大匹配算法及应用 6

7 图的染色及应用 4 8 极图理论 4 合计40 五、教学方式 本课程采用多媒体课堂讲授,结合实际范例深入浅出讲解讨论。 六、考核方式 本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。 七、教材及教学参考书 参考教材: [1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications, The Macmillan Press LTD,1976. [2] 蒋长浩.图论与网络流.北京:中国林业出版社,2000. 参考书目: [1] Bela Bollobas.Modern Graph Theory(现代图论,影印版).北京:科学出版社,2001. [2] 殷剑宏、吴开亚.图论及其算法.合肥:中国科学技术大学出版社,2003. [3] 谢金星、邢文训.网络优化.北京:清华大学出版社.2000. [4] 程理民、吴江、张玉林.运筹学模型与方法教程.北京:清华大学出版社,2000. [5] 三味工作室.SPSS V10.0 for Windows 实用基础教程.北京:北京希望电子出版社2001. [6] 孙魁明、张海彤.Mathematica工具软件大全.北京:中国铁道出版社,1994. [7] 楼顺天、于卫、闫华梁.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997.八、教学基本内容及要求 第一章图的基本概念 1.教学基本要求 掌握的图的基本概念、特殊图概念,了解最短路问题。 2.教学具体内容 图的基本概念,路和圈,最短路问题。

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

蚁群算法matlab程序代码

先新建一个主程序M文件ACATSP.m 代码如下: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%================================================== ======================= %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 蚁群算法MATLAB程序最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 表示蚁群算法MATLAB程序信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================== =======================

%% 蚁群算法MATLAB程序第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 end D(j,i)=D(i,j); %对称矩阵 end end Eta=1./D; %Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n); %Tau为信息素矩阵 Tabu=zeros(m,n); %存储并记录路径的生成

最短路问题及其应用——最短路径

最短路问题及应用 摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法以及这两种算法在实际问题中的应用和比较。 关键词:最短路获克斯特拉(Dijkstra),弗罗伊德(Floyd)算法 1.引言 图论是应用数学的一个分支,它的概念和结果来源非常广泛,最早起源于一些数 学游戏的难题研究,如欧拉所解决的哥尼斯堡七桥问题,以及在民间广泛流传的一些游戏难题,如迷宫问题、博弈问题、棋盘上马的行走路线问题等。这些古老的难题,当时吸引了很多学者的注意。在这些问题研究的基础上又继续提出了著名的四色猜想 和汉米尔顿(环游世界)数学难题。 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学的发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学 等各个领域的问题时,发挥出越来越大的作用在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题的有力工具之一。 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点 间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学 与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2.最短路算法 2.1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该ij 算法能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

蚁群算法matlab

蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解 % % % the procedure of ant colony algorithm for VRP % % % % % % % % % % % % %initialize the parameters of ant colony algorithms load data.txt; d=data(:,2:3); g=data(:,4); m=31; % 蚂蚁数 alpha=1; belta=4;% 决定tao和miu重要性的参数 lmda=0; rou=0.9; %衰减系数 q0=0.95; % 概率 tao0=1/(31*841.04);%初始信息素 Q=1;% 蚂蚁循环一周所释放的信息素 defined_phrm=15.0; % initial pheromone level value QV=100; % 车辆容量 vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40; % 计算两点的距离 for i=1:32; for j=1:32;

dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end; end; %给tao miu赋初值 for i=1:32; for j=1:32; if i~=j; %s(i,j)=dist(i,1)+dist(1,j)-dist(i,j); tao(i,j)=defined_phrm; miu(i,j)=1/dist(i,j); end; end; end; for k=1:32; for k=1:32; deltao(i,j)=0; end; end; best_cost=10000; for n_gen=1:50; print_head(n_gen); for i=1:m; %best_solution=[]; print_head2(i);

关于最短路问题算法的一点思考

关于最短路问题算法的一点思考 最短路问题,实际上是P95。也就是我们用一个算法解决SP问题时,就是在找这个加权图G中从s到t的P(s,t)中边权之和最小的P*(s,t). 由定义就可以看出,实际生活中经常有最短路问题的例子。例如: 实例1.某公司在六个城市s,t,a,b都有分公司,公司成员经常往来于它们之间,已知从Vi到Vj的直达航班票价由下述矩阵的第i行,第j列元素给出(∞表示无直达航班),该公司想算出一张任意两个城市之间的最廉价路线航费表。 图+矩阵 实例2.如图的交通网络,每条弧上的数字代表车辆在该路段行驶所需的时间,有向边表示单行道。若有一批货物要从s号顶点运往t号顶点,问运货车应沿哪条线路行驶,才能最快地到达目的地? 图+矩阵 因此怎么样快速又精确的求解一个最短路问题就显得至关重要。下面我们来介绍几种解决SP问题的有效途径。 一、把求最短路问题转化为LP问题 P95 二、最短路问题的原始对偶算法:Dijkstra算法 Pdf最短路+课本P138 综上,即为Dijkstra算法,它的有效实施体现在:P161 对Dijkstra算法的一点思考: 1.关于Dijkstra算法,书中的例子定义了一个使用范围,即寻求有向图中,从一固定顶点到其余各点的最短路径。那么一个简单的推广就是在于,对于无向图或者混合图的情况Dijkstra算法还能否使用?答案应该是肯定的。也就是说,实例2中无论是单行道,双行道的情况都是可以应用Dijkstra算法进行求解的。 2. 作为学习图论的一名学生,Dijkstra算法的本质可以说就是在一个图中,进行标号,每次迭代产生一个永久标号, 从而生长一颗以s为根的最短路树,在这颗树上每个顶点与根s 节点之间的路径皆为最短路径. 3.Dijkstra算法明确要求权(费用)非负,这无疑会限制一些是实际生活中的例子进行求解,若出现的边权为负的情况,Dijkstra算法就要进行修改。并且,如果我们对Dijkstra算法进行编程,即使根据书中拟Algol语言的提示以我现有的水平也根本写不出Matlab的高级程序语言。但是有另外一种算法有效的避免了这个麻烦,它的逻辑更为简单,并允许网络中的弧有负权,能探测网络中负费用圈,与一般的原始对偶算法不同。 三、Floyd-Warshall算法 P164 并且,有一点比较吸引我的地方是在于Floyd-Warshall算法的逻辑较为简单,我可以跟据课本上拟Algol语言,编写出一部分Matlab的程序,但是因为编译程序的水平的限制,每次运行的时候都会出现不同的错误。在与计算数学的同学进行讨论的时候,因为他们偏重绘图而我们偏重优化,导致也为得出有效的解决措施。

蚁群算法MATLAB代码

function [y,val]=QACStic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM聚类算法。FCM算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第1章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚”。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means,FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn[10]首先将其推广到加权WGSS函数,后来由Bezdek扩展到加权WGSS的无限族,形成了FCM聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第2章聚类分析方法 2-1聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

相关主题