搜档网
当前位置:搜档网 › 管道类失效分析实例

管道类失效分析实例

管道类失效分析实例
管道类失效分析实例

管道类失效分析实例

管道是由无缝钢管或焊接钢管用接头或阀门联接的气体或液体的通道。它主要起预热、冷却及输送气体或液体的作用。

管道的破裂,尤其是压力管道的突然破裂或炸裂是非常严重的事故,必须立即停止工作,以最大限度地减轻或避免其它容器及管道的损坏。管道破裂常常造成泄漏。

管道的破裂失效可以划分为过热引起的破裂和脆化引起的破裂两种类型。

过热引起的破裂失效,通常主断口具有鱼嘴形貌,其中又分为“厚唇’式或“薄唇’式两类破裂失效。

脆化引起的破裂失效包括:腐蚀或积垢引起的破裂;疲劳失效、冲击引起的破裂;应力腐蚀开裂失效及其它形式失效等。

本章主要介绍锅炉预热管、化工设备中的冷却管及其它用途的管道失效的分析实例。

冷却管失效分析

1.化肥设备中的外冷管失效

由上海某锅炉厂生产的化肥设备,用汽车运往安徽某化肥厂,到厂后发现设备中的外冷管已发生开裂。其材质为18-8奥氏体不锈钢,外冷管断裂在螺纹部位,图1显示外冷管断口的宏观形貌。图2显示外冷管断口的微观电子图象。

化肥设备由于用汽车长途运输,没有采用防振措施,一路颠簸振动,使化肥设备中各类管道、花卷板等在试车时均开裂,并且是疲劳断裂。因此可认为这是由于运输振动引起的疲劳断裂。

图1 OPI 图象说明:

断口较平滑,断口受到机械摩擦或机械擦伤情况较严重。宏观形貌特征具有许多台阶,其裂纹在外冷管表面萌生,向内表面扩展。

图象说明:

具有明显的疲劳断裂的微观

特征——疲劳辉纹,箭头指示的方

向为疲劳裂纹的扩展方向。

图2 TEM 10000×

2.氨冷凝器冷却管失效

某化肥厂用于90m3氨冷凝器中的冷凝管管材为1Cr18Ni9Ti,管外径为φ14mm,内径为φ6mm,工作时管内通氨,管外壁用黄浦江水冷却,工作温度约200℃左右,使用约一年发现多根冷凝管有泄漏现象。拆下检查时在泄漏处发现有多条裂纹如图3所示。把裂纹打开,它的断口宏观形貌如图4所示。

图3 OPI 图象说明:

失效冷却管外观形貌。在管外壁可观察到多条裂纹。

图象说明:

图3的冷却管沿裂纹处打开

后的断口宏观形貌,可发现断口

上有一层腐蚀产物覆盖。根据裂

纹的外观形貌及断口特征,判定

裂纹均起源于外壁,并向内壁扩

展。

图4 OPI

3.船用预热水管断裂失效

船用预热水管材料为1Cr18Ni9Ti奥氏体不锈钢。预热温度为60~70℃,水压为200kPa,预热水管只使用1400小时就发生破裂现象。

预热水管断口宏观形貌呈人字条纹。根据人字条纹的指向可断定:裂源位于水管内壁表面,裂纹从内壁向外壁及两侧扩展。裂源区的微观形特征见图5、图6。

根据断口的宏观、微观形貌特征,可断定预热水管的断裂属疲劳脆断。疲劳起源于水管内壁表面,呈聚集、串链状的氮化物夹杂。

图5 TEM 5000×图象说明:

船用预热水管断口裂源区的电子图象。具有大块状的氮化物夹杂,夹杂周围有明显的二次裂纹。

图6 TEM 5000×图象说明:

船用预热水管断口裂源区的微观形貌。具有明显的疲劳辉纹,疲劳起源于串链状氮化物夹杂处。图上还可见到机械擦伤条纹,如箭头所指。

锅炉管道失效分析

1.锅炉过热蒸汽管的开裂失效

过热蒸汽管是某糖厂锅炉的一个重要部件,用φ42×3.5mm的12CrMoV牌号的无缝钢管制成,通过它产生3939kPa压力和450℃的蒸汽。

工作时,过热蒸汽管外露在800~900℃的火烟中加热,燃料为煤粉。实际运行9个月后,过热蒸汽管爆裂失效。

过热蒸汽管爆裂失效的宏观形貌见图7。在断口裂缝尖端(箭头所指处)截取试样,沿纵向外壁面磨制金相试样,肉眼可见相互平行的纵向裂纹(见图8箭头所指)。

图象说明:

过热蒸汽管破裂处宏观形貌。断裂

(裂口)沿轴向扩展,裂源处变形鼓起,

管外壁锈蚀严重。从裂口处看内壁,内

壁有轻微锈蚀,内壁的其余部位均呈光

滑的黑褐色。

图7 OPI 0.33×

图8 OPI 3×

图象说明:

在裂口尖端附近截取试样,沿轴向外壁磨制金相试样,经抛光,在不浸蚀条件下,肉眼可见相互平行的纵向裂纹,如白色箭头所指。由此可见,管壁的薄弱之处已普遍存在。黑色箭头所指为另一个腐蚀麻坑。

2.20g 钢管爆裂原因分析

φ38×5mm 壁厚之20g 钢管,是上海某锅炉厂生产的锅炉用过热器管。该过热器管使用情况:过热器出口温度380~400℃,管外烟气温度750~800℃,管内工作压力为15~20kg/cm 2。该新锅炉安装使用一个月左右,过热器中间面向炉堂第三排上部处管子即发生爆裂事故。开裂管子实物形貌如图9所示。开裂部分隆起,裂口由内壁向外张开呈鱼嘴状,中间宽,两头细,其长度约为60mm ,最宽处为5mm ,裂纹最薄处的厚度仅为管壁厚度的

2

1。开裂处周围布有较多沿纵向分布粗细不一的裂纹,断口截面上可观察到大量腐蚀坑,管子外表面已严重锈蚀。

分别在裂纹尾端、近裂纹尾端但未开裂处及管子较正常部位截取试样,进行金相观察分析。未经浸蚀试样磨面上的腐蚀及氧化情况如图10、11所示。

此管外表上有较多厚薄不一之浅灰色氧化皮层及严重腐蚀凹坑,以及粗细不一之裂纹,说明该过热器管较长时间处于高温状态下工作,引起表面严重氧化与脱碳。从宏观断口上可观察到该炉管上有的腐蚀凹坑,深度已达到钢管截面,大大降低了钢管的有效截面。

该锅炉在使用过程中曾停炉四次(炉温冷热有起伏),按正常热处理该钢管之微观组织应为铁素体+珠光体,而从过热器管出现的铁素体及点粒状珠光体以及沿晶呈半网式网状渗碳体之组织可知,该过热器管在较长时间内处于高温下及在温度时有起伏的条件下, 由于金相组织的改变导致钢管强度剧烈下降,脆性显著增大。

综上所述,该过热器管爆裂原因,是钢管表面在烟气高温条件下产生严重氧化与脱碳,并有大量腐蚀凹坑与沿晶裂纹,使钢管厚度大大减薄,又在管内较大的压力作用下,当钢管厚度承受不了内在压力时,导致过热管的早期爆裂而失效。

图9 OMI 50×图象说明:

过热器管开裂情况实物照片。

图象说明:

裂纹尾端试样。在沿管外表面

发现有较多起始于腐蚀凹坑之粗

大裂纹,裂纹由外向内伸展,其内

充满浅灰色氧化皮,并在沿管外表

面上布有较多细小裂纹。

图10 OMI 50×

图11 OMI 50×图象说明:

在管内表面均发现有厚薄不一之氧化皮层,图示裂纹尾端的内表面存在厚薄变化不大的氧化皮层。

其它管道失效分

1.不锈钢钢管爆裂失效

爆裂钢管系合成洗涤剂厂洗衣粉车间喷粉塔上的管道,用φ51×4的1Crl8Ni9Ti 不锈钢无缝钢管制造。管道内输送pH值为9~10、温度为60~70℃的浆料,浆料由烷基苯磺酸钠、三聚磷酸钠、芒硝、泡化碱、纯碱及40~50%的水所组成,管内工作压力为7~8MPa。为保证管内桨料粘度,不锈钢管外套φ89×4.5mm的碳素无缝钢管,其间通以温度不超过100℃的热水。

管道服役三年左右即发生不锈钢管突然爆裂。停机拆卸爆裂管,其外壁呈暗褐的氧化色,管内沉积着约6mm坚硬、白色的浆料沉积物。钢管爆裂部位的宏观全貌见图12,爆裂口管壁有轻度鼓胀,其周围布有明显可见的纵向裂纹,经取样抛光后低倍检查证实:裂纹起源于钢管外表面腐蚀坑并以枝叉状由此向内扩展。

根据钢管爆裂部位的宏观形貌特征和裂纹的起源与扩展走向的特点。可以断定不锈钢管的爆裂属典型的应力腐蚀开裂。

其理由:①不锈钢管材料晶粒细小,本身有较高的内应力,同时管子是在一定压力下工作,再加上桨料重力的作用,故三者之和使管壁在受了相当高的应力条件下股役。②钢管长期处在热水中股役,故完全有可能在钢管外表面那些有缺陷的地方被选择性腐蚀形成腐蚀凹坑。当腐蚀坑长年在介质和应力的联合作用下萌生裂纹源,裂纹不断扩展,管壁有效截面缩小,直到不能承受工作负荷时,就会突然破裂。

图12 OPI 0.5×图象说明:

不锈钢管爆裂部位的外观全貌。

2.交通牌货车刹车紫铜管断裂失效

1981年11月,一辆交通牌货车(1980年11月出厂)运货至余姚,在余姚陆埠桥南桥脚弯道处,当驾驶员采取刹车减速时,突然发觉刹车失灵,汽车推动制动冲下桥面,造成死亡两人,重伤一人的严重事故。

事故发生后,余姚县车辆管理站、公安局派人赶赴现场勘查,并对制动系统部件进行检

查,认为造成这次事故的主要原因是由于汽车后刹车油管接头(喇叭口)下端铜管破裂,致使刹车突然失灵而引起的机械事故,断裂件外观形貌如图13、14所示。

图象说明:

用肉眼与放大镜观察断裂铜

管,断口较平坦,向两侧外翘张开,

断口左右两侧局部区域发现有明

显老伤痕迹。断裂部分可用手轻轻

掰开,可见只有少量基体相连。

图13 OPI

图14 OPI 图象说明:

同图13。

压力管道应急预案

襄垣县鸿达煤化有限公司压 力 管 道 应 急 预 案 目录 1.总则 2.应急处理机构和职责 3.压力容器、管道设备概况及分布 4.危险性因素的分析 6.事故报告程序及内容 7.事故应急的终止程序 8.压力管道设备应急预案的管理

9.压力管道设备应急预案的监督与考核 10.附则 1.总则 1.1 依据《安全生产法》、《国务院关于特大安全事故行政责任追究的规定》、《特种设备安全监察条例》(国务院第373号令)和《锅炉压力容器和特种设备安全事故处理规定》(国家质检总局第2号令)的要求,制定本预案。 1.2 特种设备指由国家认定的因设备本身和外在因素的影响容易发生事故,并且一旦发生事故会造成人身及伤亡重大经济损失的危险性较大的设备,包括压力容器(含气瓶)、压力管道等。 1.3 本应急预案适用于压力管道事故的报告、调查、处理以及事故的统计、 分析。 1.4响应级别 1.4.1特别重大事故:是指造成死亡30(含30人,下同)以上,或者受伤(包括急性中毒,下同)100人以上,或者直接经济损失1000万元以上的设备事故;(响应级别:公司Ⅰ级) 1.4.2特大事故:是指造成死亡10-29人,或者受伤50-99人,或者直接经济损失500-1000万元的设备事故;(响应级别:公司Ⅱ级) 1.4.3重大事故:是指造成死 亡3-9人,或者受伤20-49人,或者直接经济损失100-500万元的设备事故;(响应级别:公司Ⅲ级)1.4.4严重事故:是指造成死亡1-2人,或者受伤19人以下,或者直接经济损失50-100万元的设备事故;(响应级别:公司Ⅳ级) 1.4.5一般事故:是指无人员伤亡,设备损坏不能正常运行,且直接经济损失50万元以下的设备事故;(响应级别:公司Ⅴ级)

生产过程中的危险因素分析

生产过程中的危险因素分析 在《企业职工伤亡事故分类》GB6441中,将生产过程中的危险因素分为以下20类:物体打击、车辆伤害、机械伤害、起重伤害、触电、淹溺、灼烫、火灾、高处坠落、坍塌、冒顶片帮、透水、放炮、火药爆炸、瓦斯爆炸、锅炉爆炸、容器爆炸、其他爆炸、中毒和窒息、其他伤害等。参考以上分类标准,对甲基纤维素醚生产装置的危险因素进行分析,在生产过程中存在下面几种危险因素: 1)火灾、爆炸危险 火灾是可燃物质燃烧失去控制而造成的事故,爆炸是物质发生变化的速度不断急剧增大,并在极短的时间内释放出大量能量的现象,火灾和爆炸事故都能造成较大的人员伤亡和财产损失的后果。 a.化学性火灾、爆炸 分析生产中使用的原料性质,精棉虽不属于危险化学品,但极易发生燃烧引起火灾事故,加工精棉时散发的棉纤维还能形成爆炸性的粉尘,还存在发生爆炸的危险。环氧丙烷、异丙醇、甲苯、氯甲烷属于易燃物质,遇到火源会发生燃烧,形成的爆炸性气体遇到火源会发生爆炸事故。因此生产过程中存在危险物料发生火灾、爆炸的危险性。 危险物质的泄漏主要发生在加料、反应过程中,如果设备、输料管、阀门、法兰等处密封不严,容易造成物料泄漏,遇到火源就会发生燃烧,易燃物料泄漏后挥发的蒸汽还会形成爆炸性气氛,遇到火源会发生爆炸,因此存在火灾爆炸的危险。

易燃物料的高位槽液位计损坏不能正常指示,打料时容易发生跑料现象,遇到明火、火花等有发生火灾、爆炸的危险。 操作失误或自控系统失灵,造成反应超温超压发生沸料、喷料现象,可能造成大量易燃物质泄漏,或形成爆炸性蒸汽,容易发生火灾、爆炸。 设备框架、基础不牢固发生坍塌现象,罐、釜中的易燃物料发生外泄,容易发生火灾、爆炸事故。 爆炸区域内电气设施不防爆或防爆级别达不到要求,运行过程中易产生电火花,容易引燃引爆系统内的可燃物料而发生火灾、爆炸事故。 设备、管线的防静电装置不合格,在易燃物料输送、搅拌时会产生静电并集聚,达到一定程度会产生静电火花,构成引火源。 检修时未进行置换或置换不彻底,容器、管线内存在易燃易爆物料,动火作业时容易发生爆炸事故。 外来火源引发易燃物质发生的火灾、爆炸,如人员吸烟、铁器撞击产生火花、电气火花、雷击火花、车辆排气管火花等b.电气火灾 变压器中的绝缘油若遇到高温易挥发,同空气混合能形成爆炸性混合物,一旦变压器内部发生过载或短路,内部的可燃材料和油就会因高温或电火花、电弧在作用而分解、膨胀以致汽化,使变压器内部压力剧增,引起变压器外壳爆炸,绝缘油喷出燃烧,造成火灾事故。

压力容器和压力管道的失效(破坏)与事故分析

压力容器和压力管道的失效(破坏) 1.失效的定义: 完全失去原定功能; 虽还能运行,但已失去原有功能或不能达到原有功能; 虽还能运行,但已严重损伤而危及安全,使可靠性降低。 2.失效的方式: 1)从广义上分类: 过度变形失效:由于超过变形限度而失效。 断裂失效:由于出现裂口而失效。 表面损伤失效;因表面腐蚀而导至失效。 2)一般分类:可分为 a)过度变形失效:失效后存在较大的变形。 b)断裂失效:失效是由于存在缺陷如裂纹、腐蚀等缺陷而引起的。 c)表面损伤失效:因腐蚀、表面损伤、材料表面损伤等原因引起的失效。 3.失效的原因 1)韧性失效:容器所受应力超过材料的屈服强度发生较大的变形而导致失效,原因为设计不当、腐蚀减薄、材质劣化强度下降、超压、超温。断口有纤维区、放射纹区、剪切唇区。 2)脆性失效:容器在无明显变形情况下出现断裂导致失效,开裂部位存在较大的缺陷(主要是裂缝),材质劣化变脆、应力腐蚀、晶间

腐蚀、疲劳、蠕变开裂。断口平齐,有金属光泽,断口和最大主应力方向垂直。 3)疲劳失效:容器长期受交变载荷引起的疲劳开裂导致疲劳失效。原因为容器长期受交变载荷、开裂点应力集中、开裂点上有小缺陷。断口比较平齐光整,有三个区萌生区、疲劳扩展区和瞬断区。其中扩展区有明显的贝壳样条纹。 4)腐蚀失效:因腐蚀原因导致失效。 均匀腐蚀减薄导致强度不够;应力腐蚀导致断裂;晶间腐蚀导致开裂;氢蚀导致开裂、点蚀造成的泄漏;缝隙腐蚀造成的泄漏或开裂;冲蚀造成局部减薄,泄漏;双金属腐蚀造成局部减薄。 晶间腐蚀:金属材料均属多晶材料,晶粒间存在晶界,晶间腐蚀是指晶界发生腐蚀。 应力腐蚀:金属材料的材质、介质、和拉应力三个因素共同作用下发生的裂纹不断扩大。裂纹的发展可以是沿晶的也可以是串晶的。 氢蚀:在高温下氢气常形成原子状态氢极易渗透到钢材内部,进入钢材的氢与渗碳体中的碳生成甲烷,使渗碳体脱碳材料变软,生成的甲烷在金属中体积增大,使金属内压力增大金属表面形成鼓包。 腐蚀失效的形式:韧性失效、脆性失效、局部鼓胀、爆破、泄漏、裂纹泄漏、低应力脆断、材质劣化。

各类材料失效分析方法

各类材料失效分析方法 Via 常州精密钢管博客 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 失效分析流程 图1 失效分析流程 各种材料失效分析检测方法 1 PCB/PCBA失效分析 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。

图2 PCB/PCBA 失效模爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段· 无损检测: 外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 显微红外分析(FTIR) 俄歇电子能谱分析(AES) X射线光电子能谱分析(X PS) 二次离子质谱分析(TOF-SIMS)· 热分析:· 差示扫描量热法(DSC) 热机械分析(TMA) 热重分析(TGA) 动态热机械分析(DMA) 导热系数(稳态热流法、激光散射法) 电性能测试: · 击穿电压、耐电压、介电常数、电迁移· 破坏性能测试: 染色及渗透检测

2 电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式 开路,短路,漏电,功能失效,电参数漂移,非稳定失效等 常用手段· 电测:连接性测试电参数测试功能测试 无损检测: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 制样技术: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 显微形貌分析: 光学显微分析技术 扫描电子显微镜二次电子像技术 表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 俄歇电子能谱分析(AES)

PCB失效分析技术及部分案例

PCB失效分析技术及部分案例 作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。 对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。 1.外观检查 外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。 2.X射线透视检查 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。 3.切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB

输气站场危险有害因素分析

输气站场危险、有害因素分析 Lilyliang 输气站场的主要危险、有害因素分析如下。 1 火灾爆炸危险性分析 管道输送的天然气属易燃易爆物质,泄漏与空气均能形成爆炸性混合物,若遇火源,易发生火灾爆炸等事故。 (1)管道及站场装置均为带压运行,在发生泄漏时,会造成天然气的快速扩散,在遇到点火源(如明火、雷电、电火花等)时,就会发生火灾甚至爆炸。 (2)站场天然气升到操作温度、操作压力心须保持一定的速率,升温、升压过快产生的热应力、压力会损坏设备,可造成重大事故。 (3)设备或管道因阀门内漏、腐蚀、安装质量差、以及设备开停频繁、温度升降骤变等原因,极易引起设备、管道及其连接点、阀门、法兰等部位泄漏,造成着火爆炸。 (4)放空设施故障,会造成放空天然气的聚集,易造成火灾事故。 (5)在设备检修作业过程中由于违章检修、违章动火作业引起的爆炸等等。 2 物理爆炸危险性分析 输气站场中输送天然气的管道、站场设施和管道都是压力容器和压力管道。其内部介质均为易燃、易爆的物质。如果由于金属材料疲劳、蠕变出现裂缝,过载运行,后继管道内料流不畅、操作失误、监控失灵,用作安全保护的安全阀等不能有效发挥作用或超过其有效的保护极限等,均可能导致管道或设施内部压力过高,压力无法释放,引发容器爆炸。特别是一旦发生容器爆炸,由于装置的易燃、易爆性,还可能导致二次更大的事故灾害。 压力容器或压力管道还可因管理不善而发生爆炸事故。如压力容器设计结构不合理;制造材质不符要求;焊接质量差;检修质量差;设备超压运行,致使设备或管道承受能力下降;安全装置和安全附件不全、不灵敏或失效;当设备或管道超压时又不能自动泄压;设备超期运行,带病运行;高低压系统的串联部位易发生操作失误,高压气体窜入低压系统,引起爆炸。

压力管道事故常见原因及防范措施.docx

压力管道事故常见原因及防范措施 摘要:列举压力管道事故案例,归纳事故主要原因并提出防范措施,指出要大力加强压力管道的安全文化建设,确保安全运行。 关键词压力管道事故原因防范措施安全文化 一、前言 压力管道是生产、生活中广泛使用的可能引起燃爆或中毒等危险性较大的特种设备,为确保安全运行,劳动部于1996年颁布《压力管道安全管理与监察规定》。与锅炉压力容器相比,《压力管道安全管理与监察规定》由于颁布较晚,人们对压力管道的安全意识比较淡薄,检验机构在推行压力管道的监督检验工作还有一定的阻力,部分压力管理的竣工验收和使用登记并未完全走上规范轨道,在用检验也未完全开展。这并不意味着压力管道安全运行的可靠性已经很高,正相反,压力管道发生的恶性事故危害性并不亚于锅炉压力容器,从某种意义上说,它的隐患及事故危害性已超过了锅炉压力容器。近年来,压力管道事故呈明显上升趋势。与工业发达国家相比,我国压力管道安全管理工作还有一定的差距,压力管道事故发生率很高。 二、事故案例 1、西安98.3.5特大事故 98.3.5西安煤气公司液化石油气管道所发生大爆炸,大火从3月5日直烧至3月7日才告熄灭。两个400m3的液化石油气球罐炸毁,4个液化石油气卧罐及7辆汽车罐车全部焚毁,爆炸刚发生时,附近近十万居民恐慌大逃亡,引起极大的混乱。爆炸造成12人死亡(其中消防官兵7人),30人受伤(其中重伤15人)。 事故原因:11号球罐下排污阀上部法兰密封面局部失效,造成大量液化石油气泄漏,浓度达爆炸极限,遇配电室火花引起大爆炸。该法兰密封处属压力管与压力容器接合部。 2、福建某炼油化工有限公司92.10.22事故 92.10.22福建某炼油化工有限公司液化石油气装船管线波纹补偿器爆裂,造成管道内液化石油气跑损113吨,幸未遇明火而发生爆炸事故。 事故原因:管道安全阀起跳后,工作人员未能正确查明压力,关闭安全阀前后手阀,准备重新定压,致使液化石油气在长达6500m的管线处于封闭状态,温度升高,管内产生巨大压力,引起管线最薄弱的一个波纹补偿器爆裂。 3、福建某炼油化工有限公司96.4.21事故

《材料失效分析》实验教案2014上.

课程教案 课程名称:材料失效分析实验 任课教师:刘先兰 所属院(部):机械工程学院 教学班级: 2011级金属材料工程教学时间:2013—2014学年第二学期 湖南工学院

《材料失效分析》实验 实验课程编码: 学时:6 适用专业:金属材料工程 先修课程:材料科学基础、材料力学性能、金属塑性成型原理、现代材料检测技术等 考核方式: 一、实验课程的性质与任务 帮助学生进一步理解所学知识,加深对一般工程结构和机械零件失效分析的基础知识、基本方法和基本技能的掌握;能够利用所学的知识建立失效分析方法和思路(故障树);熟悉判断失效零件裂纹源的方法;熟知各类断裂件的断口形貌及断裂机制,分析各种断裂类型、起裂点及断裂过程。 二、实验项目 实验一材料失效中的金相分析法实验(2学时) 实验二零件失效的宏观分析法(2学时) 实验三静载荷作用下的金属材料断裂失效断口分析(2学时) 三、实验报告要求 每个实验均应写实验报告。按统一格式,采用统一封面和报告纸。实验报告内容应包括实验名称、目的、内容和理论基础、实验设备(名称、规格及型号)及材料名称,实验步骤、实验结果、结果分析。 四、其它要求 实验中,注重知识、能力、素质的协调发展,突出学生的创新精神与创新能力的培养。 五、教材和参考资料 1教材: 《材料失效分析》,庄东汉主编.华东理工大学出版社. 2.参考资料: [1]《机械零件失效分析》,刘瑞堂编,哈尔滨工业大学出版社.. [2]《材料成形与失效》,王国凡主编,化学工业出版社. [3]《材料现代分析方法》,左演声主编,北京工业出版社. [4] 《断口学》,钟群鹏主编,高等教育出版社. [5] 《金属材料及其缺陷分析和失效分析100例》,候公伟主编,机械工业出版社.

其它件失效分析实例

其它件失效分析实例 本部分主要是列举了有关加工工艺过程的产品:冷成型件、铸件、锻件、焊接件等失效的实例;同时也介绍了有关服役过程中产生的失效实例,如模具失效、飞机零部件失效、纺纱嘴失效……等。详细情况请参阅下面各具体实例。 1.黄铜板裂纹失效 H68黄铜板冷冲压成型(有筋肋)后,未经过其它后续退火等热处理,就直接在含有铁锈、一定汞量及其它杂质的水介质中应用。断续使用数月后,在铜板冲压件的一些筋肋处出现明显的裂纹如图1所示。取样作金相分析检查,其微观组织及裂纹分布情况如图2所示。由于出现颇多裂纹,使该件大量报废。 从裂纹的分布形态并结合生产工艺和使用情况可知,其裂纹的产生,是由于铜板冲压变形后,未经消除应力处理,而后又在含汞等介质中使用之故。产生的裂纹属应力腐蚀裂纹。 一般铜制冲压件均有较大的内应力存在,应在200~300℃温度范围进行数小时退火处理,方可避免因冲制而引起的应力腐蚀破坏。 图1 OPI 图象说明: 黄铜板筋肋的宏观裂纹分布情况。垂直裂纹截取试样,作剖面金相观察,在放大60倍下裂纹已经穿透整个截面。

图象说明: 黄铜板之微观组织和裂纹分 布情况。裂纹沿α相晶界扩展。 试样经浸蚀后,在原裂纹区 域放大至200倍观察,组织为α 单相固溶体,裂纹大多沿α相晶 粒边界分布,这是铜制件的一种 典型应力腐蚀裂纹形态。 图2 OPI 2.葫芦吊钩失效 失效件为起重葫芦吊钩,是进口设备,材料采用相当于18CrNi钢。该吊钩服役四年之后,在1983年11月26日吊装甲醇塔时,葫芦吊钩突然断裂,发生重大事故。 观察吊钩的外观形貌,发现断裂是从钩子轴端点起始的,如图3所示。宏观观察断口呈暗灰色,断口面倾斜,凹凸不平,有明显的拉伸纤维特征如图4所示。 图3 OPI 图象说明: 葫芦吊钩宏观外形。图中左上方圆环部位是钩子轴端断裂处,如箭头所指。

压力管道的定义及概念详解

压力管道的定义及概念详解 更新时间:2008-11-19 7:43:00 《特种设备安全监察条例》对压力管道的定义是:压力管道,是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。这就是说,现在所说的“压力管道”,不但是指其管内或管外承受压力,而且其内部输送的介质是“气体、液化气体和蒸汽”或“可能引起燃爆、中毒或腐蚀的液体”物质。这里所谓能燃爆、能中毒或有腐蚀性,具有如下内涵: 介质的燃爆性:即介质具有可燃性和爆炸性,在一定条件下能引起燃烧或爆炸,酿成火灾和破坏。这些介质包括可燃气体、液化烃和可燃液体等有火灾危险性的物质,也包括容易引起爆炸的高温高压介质如蒸汽、超过标准沸点的高温热水、压缩空气和其他压缩气体等。其中,可燃介质的火灾危险性根据《石油化工企业设计防火规范》 GB50160和《建筑设计防火规范》GBJ16,共分为甲、乙、丙三类。 其中甲、乙类可燃气体与空气混合物的爆炸下限(体积)分别规定为: 甲类可燃气体:<10%; 乙类可燃气体:≥10%。 甲、乙和丙类可燃液体的分类见表1。 表1 液化烃、可燃液体的火灾危险性分类 注:闪点低于45 ℃的液体称为易燃液体;闪点低于环境温度的液体称为易爆液体。在GBJ16的规定中,属于甲类火灾危险性的可燃介质(或生产过程)还有:常温下能自行分解或在空气中氧化即能导致自燃或爆炸的物质;常温下受到水或蒸汽作用能产生气体并引起燃烧或爆炸的物质;遇酸、受热、撞击、摩擦、催化及遇有机物或硫磺等易燃的无机物,极易引起燃烧或爆炸的强氧化剂;受撞击、摩擦或与氧化剂、有机物接触时能引起燃烧或爆炸的物质;以及在密闭设备内操作温度等于或超过物质本身自燃点的生产。属于乙类火灾危险性的介质主要是指不属于甲类火灾危险性的氧化剂和化学易燃固体,以及助燃气体。(B)介质的毒性:即介质具有使人中毒的特性。当这些介质被人吸入或与人体接触后,能对人体造成伤害,甚至死亡。根据《职业性接触毒物危害程度分级》GB5044的规定,毒物按急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高允许浓度等六项指标,共分为极度危害、高度危害、中度

金属材料及零部件的失效分析

金属材料及零部件失效分析 随着科学技术和工业生产的迅速发展,人们对机械零部件的质量要求也越来越高。材料质量和零部件的精密度虽然得到很大的提高,但各行业中使用的机械零部件的早期失效仍时有发生。通过失效分析,找出失效原因,提出有效改进措施以防止类似失效事故的重复发生,从而保证工程的安全运行是必不可少的。 相关行业 汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等金属相关行业。 常见失效模式 断裂:韧性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂、疲劳断裂、蠕变断裂、液态金属脆化、氢脆 腐蚀:化学腐蚀、电化学腐蚀 磨损:磨粒磨损、粘着磨损、疲劳磨损、微动磨损、变形磨损 其他:功能性失效、物理性能降级等等 金属失效分析的意义

1. 减少和预防产品同类失效现象重复发生,减少经济损失,提高产品质量; 2. 为裁决事故责任,制定产品质量标准等提供可靠的科学技术依据。 失效分析常用手段 (1)断口分析: 分析断裂源、断口特征形貌,并分析这些特征与失效过程的相互关系。 解理断裂沿晶断裂 (2)金相组织分析 评估组织级别、工艺匹配程度、缺陷等级等等。

(3)成分分析: SEM/EDS; ICP-OES; XRF; 火花直读光谱。 (4)痕迹分析: 分析失效件与成型、使用、环境交互影响留下的细微痕迹。

(5)热学分析:评判材料在热环境使用的合理性。 (6)机械性能分析:评估力学强度、硬度、热性能等指标是否符合使用要求。(7)微区分析:分析表面形貌及微区成分,为失效机理推断提供定性定量依据。(8)极表面分析:对极表面腐蚀产物、微量异物进行定性定量分析。

压力管道事应急处置预案

压 力 管 道 安 全 事 故 应 急 预 案 陕西西岳华山城市建设投资开发有限公司

目录 1.总则 (2) 2.应急处理机构和职责 (3) 3.压力容器、管道设备概况及分布 (5) 4.危险性因素的分析 (5) 6.事故报告程序及内容 (7) 7.事故应急的终止程序 (9) 8.压力管道设备应急预案的管理 (9) 9 .压力管道设备应急预案的监督与考核 (10) 10.附则 (10)

1.总则 1.1 依据《安全生产法》、《国务院关于特大安全事故行政责任追究的规定》、《特种设备安全监察条例》(国务院第373号令)和《锅炉压力容器和特种设备安全事故处理规定》(国家质检总局第2号令)的要求,制定本预案。 1.2 特种设备指由国家认定的因设备本身和外在因素的影响容易发生事故,并且一旦发生事故会造成人身及伤亡重大经济损失的危险性较大的设备,包括压力容器(含气瓶)、压力管道等。 1.3 本应急预案适用于压力管道事故的报告、调查、处理以及事故的统计、分析。 1.4响应级别 1.4.1特别重大事故:是指造成死亡30(含30人,下同)以上,或者受伤(包括急性中毒,下同)100人以上,或者直接经济损失1000万元以上的设备事故;(响应级别:公司Ⅰ级) 1.4.2特大事故:是指造成死亡10-29人,或者受伤50-99人,或者直接经济损失500-1000万元的设备事故;(响应级别:公司Ⅱ级) 1.4.3重大事故:是指造成死亡3-9人,或者受伤20-49人,或者直接经济损失100-500万元的设备事故;(响应级别:

公司Ⅲ级) 1.4.4严重事故:是指造成死亡1-2人,或者受伤19人以下,或者直接经济损失50-100万元的设备事故;(响应级别:公司Ⅳ级) 1.4.5一般事故:是指无人员伤亡,设备损坏不能正常运行,且直接经济损失50万元以下的设备事故;(响应级别:公司Ⅴ级) Ⅰ、Ⅱ、Ⅲ、Ⅳ级事故由公司负责处理,Ⅴ级由发生事故单位负责处理。 1.5压力管道设备事故预案工作的核心就是依法管理,保持高度警惕,预防各类事故发生,保证此设备安全平稳及长周期的运行。 1.6压力管道的事故发生后,应该按照规定启动事故预案,采取措施抢救人员和防止事故扩大,同时做好现场物件、痕迹的保护。 2.应急处理机构和职责 2.1成立压力管道设备事故应急救援领导小组,作为我厂应急处理压力管道设备事故的领导机构,统一领导压力管道设备事故的应急抢险救援处理工作。 压力管道设备事故应急救援指挥部设在管网科 压力管道设备事故应急救援领导小组 组长:厂长、书记 副组长:主管设备副厂长

金属构件失效分析精简版

第一章 1、失效分析:对装备及其构件在使用过程中发生各种形式失效现象的特征及规律进行分析研究,从中找出产生失效的主要原因及防止失效的措施。 2、失效形式:(1)变形失效a弹性变形失效b塑性变形失效(2)断裂失效a韧性断裂失效b 脆性断裂失效c疲劳断裂失效(3)腐蚀失效a局部(点腐蚀、晶间腐蚀、缝隙腐蚀、应力腐蚀开裂、腐蚀疲劳)b全面(均匀、不均匀)(4)磨损失效 3、引起失效的原因:(1)设计不合理:结构或形状不合理,构件存在缺口、小圆弧转角、不同形状过渡区等高应力区(2)选材不当及材料缺陷(3)制造工艺不合理:工艺规范制定不合理(4)使用操作不当和维修不当 4、失效:金属装备及其构件在使用过程中,由于应力、时间、温度、环境介质和操作失误等因素的作用,失去其原有功能的现象时有发生。 5.自行车的失效形式:磨损;家用液化气瓶:变形;锅炉:断 第二章 1、铸态金属常见的组织缺陷:a缩孔:金属在冷凝过程中由于体积收缩而在铸锭或铸件心部形成管状或分散孔洞称为缩孔。细小的缩孔称为疏松。b偏析:金属在冷凝过程中由于某些因素的影响而形成的化学成分不均匀现象。c内裂纹d气泡和白点 2、金属锻造及轧制件缺陷:(1)内部组织缺陷a粗大的魏氏体组织b网络状碳化物及带状组织c钢材表层脱碳(2)钢材表面缺陷:折叠、划痕、结疤、表面裂纹、分层 3、钢中金属夹杂物种类:a脆性夹杂物b塑性夹杂物c半塑性变形的夹杂物 4、脆性夹杂物易成为疲劳断裂的裂纹源原因:对于变形率低的脆性夹杂物,在钢加工变形过程中,夹杂物与钢基体相比变形甚小,由于夹杂物与钢基体之间的变形性的显著差异,造成在夹杂物与钢基体的交界处产生应力集中,导致微裂纹产生或夹杂物本身开裂 5、a比b的危害大的原因:夹杂物的变形率V可在V≈0~1这个范围变化,若变形率低,钢经加工变形后,由于钢产生塑性变形,而夹杂物基本上不变形,便在夹杂物和钢基体的交界处产生应力集中,导致在钢与夹杂物的交界处产生微裂纹,这些微裂纹便成为零件在使用过程中引起疲劳破坏的隐患。 6、焊接裂纹的分类:a热裂纹:结晶裂纹、高温液化裂纹、多边化裂纹b再热裂纹c冷裂纹:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹d:层状撕裂 7、氧化膜应满足以下条件才具有保护性:a除致密和完整以外,金属氧化物本身稳定、难溶、不挥发、不易与介质发生作用而被破坏;b氧化膜与基体结合良好,有相近的热膨胀系数,不会自行或受外界作用二玻璃脱落;c氧化膜有足够的强度和塑性,足以经受一定的应力、应变作用,具有足够强度和抗变形能力。 8、金属氧化膜的生长规律:直线规律、抛物线规律、对数规律、立方规律、反对数规律 9、腐蚀原电池的模型:锌在硫酸溶液中的溶解,同时有氢气自锌表面析出。阳极(氧化)阴极(还原)析氢、吸氧。 阳极:Zn---Zn2+ +2e阴极:2H+ +2e----H2 10、在除氧气的稀硫酸溶液中锌板遭受腐蚀而铜板不受腐蚀的原因:铜的标准电极电位为0.3419V,在除氧的稀硫酸溶液中,H+不能成为铜的氧化剂,铜不发生腐蚀;但当稀硫酸含氧时,铜电极的某些部位发生O2+4H++4e→2H2O,O2消耗电子,还原成H2O,这是O2为氧化剂,铜板受腐蚀。 11裂纹焊接的分类:a热裂纹:结晶裂纹、高温液化裂纹、多边化裂纹b再热裂纹c冷裂纹:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹d:层状撕裂 12、为什么高强材料、大型装备及焊接工艺问世后,低应力脆断事故会不断地出现?传统

生产作业过程危险有害因素分析

1.1.生产作业过程危险有害因素分析 3.2.1生产单元 (一)化学灼伤、腐蚀 盐酸、氢氧化钠属于腐蚀品。与人体接触有强烈刺激作用而造成灼伤,滴入眼中可导致严重伤害甚至失明,吸入可导致急性中毒。如果储存装卸、管道输送、生产过程中出现泄漏,人体皮肤和眼与其直接接触可引起灼伤。此外设备、管道及接口腐蚀致使腐蚀性物料泄漏;工人在操作设备、阀门失误导致物料外泄;工作中未穿戴劳保用品和劳保用品穿戴不规范。 该企业生产中使用腐蚀品对设备、管路、设施都有很强的腐蚀性。与金属材料易发生反应生成氢气,因此也可能存在氢腐蚀。该企业靠近海边,空气湿度大,生产过程中少量无组织排放的酸性气体遇水汽形成酸,如果设备、输送管道、或设备、管路等钢结构外防腐蚀措施不好,会受到腐蚀,造成破坏,导致危险物料的泄漏。 (二)中毒、窒息 企业在生产、储存过程中,存在中毒的危险性,主要是因为原料、反应加热产生的气体等物料有毒害性,因设备的密闭等故障,导致物料泄漏,操作人员吸入有毒物质引起中毒事故。 1)生产设备、管道等发生盐酸、乙酸乙酯泄漏,作业人员吸入含量超标的空气,引起中毒事故;此外设备检修,进入容器未进行气体分析,检修过程中发生中毒事故。 2)氮气吹扫设备、管道等发生氮气泄漏,使得作业环境中,氧气浓度低于15%以下,导致作业人员发生窒息事故。 (三)火灾、爆炸

1)产品的生产过程中,设备保持正压,如反应失控,可能会发生超温、超压情况,引发火灾、爆炸。 2)生产设备、管道发生物料泄漏遇点火源发生火灾爆炸事故。 泄漏原因:操作失误;管道设备故障;超压爆炸、破裂;生产设备故障等。 点火源:违章动火作业、现场吸烟、明火、静电火花、电火花和电弧、雷击。 3)生产厂房、库房中物料堆放不合理、不规范、禁忌物料混放,也可能引起火灾事故。 4)生产过程中产生的一些废弃物料,如废液、废料、废纸、抹布等,若处理方法不当,也可能产生火灾事故。 5)安全生产管理松懈,操作人员责任心不强、玩忽职守,违章作业,或者操作人员未经培训,不熟悉其危险特性,在操作过程中若不采取相应的防护措施,这些因为人的不安全行为,容易引起火灾事故。 6)物理爆炸主要是由于反应釜、空气压缩机等压力设备、压力容器、压力管道因储存温度过高、压力增大、安全附件实效、操作失误等超压所引发的物理爆炸。 (四)电气伤害 电气伤害包括雷电、静电、漏电伤害、触电等事故。该企业生产装置有各种机泵、动力设备(压缩机)、配电房、另外还设有许多照明、控制等设施,电缆电线等。若电气线路或电气设备安装操作不当,保养不善,接地、接零损坏或失效等,尤其是上海地区空气湿度大,大气腐蚀严重,设备、电缆等易老化,将会引起电气设备绝缘性能降低或保护失效,有可能造成漏电,包括杂散电流,或带电部位裸露,引起触电事故或其它电气伤害。若厂区防雷电设施或接地损坏、失效可能遭受雷击,

压力管道缺陷检验与风险评估

压力管道缺陷检验与风险评估 发表时间:2019-07-31T11:57:27.620Z 来源:《科学与技术》2019年第05期作者:梁耀成 [导读] 针对压力管道缺陷检验进行分析,并对压力管道的风险评估进行了初步的探讨。 广西壮族自治区特种设备检验研究院贵港分院 【摘要】随着我国经济社会的快速发展,对特种设备安全提出了更高要求,虽然我国特种设备安全法律、法规体系已不断完善,监管水平也不断提高,但相比锅炉、压力容器,对压力管道管理起步较晚,企业对管道发生事故的可能性认识不足,安全更难掌控。压力管道作为特种设备的八大类之一,在生产(包括设计、制造、安装、改造、维修)、使用等环节都有可能存在缺陷和安全隐患,而且压力管道存在分布广、种类多、介质流程复杂等特点,泄漏、爆炸事故时有发生,压力管道安全问题更加不可忽视,压力管道检验工作更显重要。本文主要针对压力管道缺陷检验进行分析,并对压力管道的风险评估进行了初步的探讨。 【关键词】压力管道缺陷检验风险评估 1 引言 压力管道用途广泛,在石油、化工、医药、冶金等领域中发挥着很重要的作用,并且很多都是用来输送高压、易燃易爆、有腐蚀性、剧毒的介质,容易存在着一些缺陷或隐患。一旦出现压力管道断裂、泄漏等情况,会对人们的生命财产造成严重的损失和极坏的社会影响,其运行安全不容忽视。因此,如何加强压力管道缺陷检验与风险评估,及时排查、消除隐患,减少压力管道事故发生,是一个值得研究的课题。本文首先对压力管道进行概述和失效原因分析,并分析介绍压力管道缺陷检验的主要方法,并对其风险评估进行探讨。 2 压力管道概述 压力管道,是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),介质为气体、液化气体、蒸汽或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体,且公称直径大于或者等于50mm 的管道。公称直径小于150mm,且其最高工作压力小于1.6MPa(表压)的输送无毒、不可燃、无腐蚀性气体的管道和设备本体所属管道除外。压力管道在实际的使用过程中,从设计、制作、运输等不同的环节中都或多或少存在一些问题,压力管道一旦出现问题后果不堪想象,因此,要加强压力管道缺陷检验与风险评估,有效的防止压力管道出现安全问题。 3 压力管道损伤模式和失效形式分析 压力管道在外部机械力、介质环境、热作用等作用下,造成材料性能下降、结构不连续或承载力下降,从而造成管道损伤。当损伤积累到一定程度,管道功能不能发挥其设计规定或强度、刚度不能满足使用要求的状态从而造成管道失效。造成压力管道失效的原因有很多,主要有以下这些方面的原因:压力管道设计不合理、管到材料质量问题、选材不当,焊接缺陷;严重损伤未被及时检测发现,不及时维修或维修不当;运行管理水平低;外部因素比如机械损伤、地震、台风、洪水自然灾害等。 4 压力管道的缺陷检验 压力管道缺陷检验主要包括宏观检验、表面缺陷检验、埋藏缺陷检验、安全附件检验等方面。首先要区分工业管道、公用管道、长输管道三个类别,分析可能损伤模式和失效形式,制定不同的检验策略进行有针对性的检验。压力管道检验前应审查压力管道设计、制造、安装竣工资料和运行记录,掌握这些基础信息,并结合管道介质、铺设环境、使用情况等因素确定检验重点部位和项目。下面主要工业管道为例介绍缺陷检验。 4.1 压力管道宏观检验 压力管道宏观检验,主要是利用目视方法检验管道结构、几何尺寸、表面情况、焊接接头、防腐层、隔热层等,必要时利用内窥镜、放大镜或是其他辅助仪器、工具。首先分析压力管道风险较高的管段。其次检查压力管道否存在泄漏、防腐层损坏、隔热层损坏等。再次重点检查压力管道有无弯曲变形的,法兰、支架、阀门等有无松动、损坏等情况,必要时增加测厚等。最后对检查出的泄漏、腐蚀、损坏部位进行详细的记录并分析处理,以便后续检验工作的顺利开展。 4.2 压力管道表面缺陷检验 压力管道表面缺陷的检验主要有渗透检测和磁粉检测两种方法,其中铁磁性材料的管道优先采用磁粉检测,主要对确定好的重点部位进行检验。一般情况是在压力管道宏观检验中发现或怀疑问题的部位进行检测,如外部缺陷检查中发现的有裂纹的部位、支管角焊缝部位、特定条件和管道材质的焊接接头受力集中部位、隔热层损坏或者可能渗进雨水的奥氏体不锈钢管道部位、以及存在环境开裂倾向的管道部位等。 4.3 压力管道埋藏缺陷检验 对于压力管道埋藏缺陷检验主要是通过超声波和射线这两种方法进行检测,当检验现场无法实施时,可采用其他有效的检测方法。抽查的部位应从重点部位选定,重点部位包括安装和使用过程中返修或者补焊部位,发现焊缝表面裂纹需要进行埋藏缺陷检测部位,错边量超过相关安装标准要求的焊缝部位,出现泄漏的部位以及附近的焊接接头,安装时管道的固定口等应力集中部位,泵、压缩机进出口第一道或者附近的焊接接头,支吊架损坏部位附近的焊接接头,异种钢焊接接头,管道变形较大部位的焊接接头等。 总而言之,在检测缺陷的过程中,要按照上述的步骤和方法对确定好的重点区域运用合理的方法进行检测,确认管道的运行情况,为日常的维护工作做好指引。 5 压力管道风险评估 压力管道的风险评估一般采用RBI方法,因为RBI可以使检测管道的成本合理分配,直接降低检测管道的成本,并能对管道的风险进行分类,以便对高风险管道进行重点检测,从而提高管道的安全性。大大降低了压力管道的风险,为人们的生活和财产提供了重要的技术支持和重要的保护,所以下面对RBI方法在管道风险评估中做一个简单的讨论。RBI分析有三种方法:定量RBI分析、半定量RBI分析和定性RBI分析。这三种方法在管道风险分析中有各自的特点,具体介绍如下。 5.1 定量RBI分析 定量RBI分析是三种风险评价技术中最科学、最合理的一种,也是今后压力管道风险评价的技术发展趋势。但由于前期准备工作复杂,短期内无法实现。由此可见,RBI压力管道检测技术是风险评估和控制的有效措施之一。经过风险评估后,我们可以将重点放在高风险压力管道的检测上,也可以对低风险管道进行适当的检查,在保证管道安全可靠的前提下,大大降低了成本。RBI技术综合考虑了压力管道评价

材料失效分析

材料失效分析

关于散装无铅焊料的脆性到塑形断裂的 转变温度的研究 姓名:肖升宇专业:材料科学与工程学号:0926000333 摘要 断裂韧性的散装锡,锡铜无铅焊料,锡银和测量功能温度通过一个摆锤冲击试验(冲击试验)。韧脆断裂转变他们发现,即急剧变化,断裂韧性,相比没有转变为共晶锡铅。过渡温度高纯锡,Sn-0.5%铜和Sn-0.5%铜(镍)合金在- 125℃含有Ag的焊料显示过渡在较高温度:在范围78到45–°–°C最高转变温度45℃–°测定锡- 5%银,这是球以上的只有30–°角的增加的银内容变化的相变温度较高的值,这可能与高SnAg3颗粒体积分数的焊料的量。这些结果被认为是非常重要的选择最好的无铅焊料组合物。 简介 由2006年七月份。铅的使用电子在欧洲将被禁止,以及无铅焊料应取代锡铅焊料,常用于微电子领域超过50年。许多以Sn为基体的焊料针对于过去几年进行深入研究,如锡银,铜,Sn-Ag-Cu等等,特别是关于其可靠性,工作是远远没有完成。自从这个“软”铅被从焊料中提取出来之后,导致无铅焊料不容易变行和增长了当地积累的应力水平,这也增加了裂缝成核的概率。这显着影响着主要焊点的失效模式,即焊料疲劳。这是众所周知的一些金属松动的低温延性,并表现出脆性断裂模式。因此,韧性到脆性转变温度是一个重要参数。

至于我们的知识,只有现有无铅合金的数据,见迈耶[1],显示出锡5%银的转变温度为-25°,相比没有过渡锡,铅-1.5Ag93.5%。这其实是相当令人失望,因为许多标准热 循环试验开始温度低至-40甚至-60℃,这会影响故障模式。此外,这个温度范围也有一些应用程序,例如航天。“本文的目的是研究几大部分含铅量焊料的脆性到韧性骨折转变温度。 实验 众所周知的一个摆锤冲击试验,“摆锤试验”,用以确定在断裂消耗的能源量,这是一个断裂韧性的措施材料,如温度的功能。“实验装置如图1所示。 对7种合金材料做了测试,结果如下: ·99.99wt.%Sn ·Sn-0.7wt.%Cu, ·Sn-0.7wt.%Cu (0.1wt.%Ni) ·Sn-3wt%Ag-0.5wt%Cu, ·Sn-4wt%Ag-0.5wt%Cu ·Sn-5wt%Ag ·Sn-37wt.%Pb,作为参考 根据所进行的测试ASTM E23标准的V型缺口样品大小为 10x10x55mm。对于某些样本大小为5x5x55mm的合金被使用,由于只有有限的物质可用。锤能量为50J和冲击速度为3.8米/秒。能源锤358J被用于多次测量时吸收能量大于50J。结果是由截面样品表面正

FA失效分析案例集

FA失效分析案例集 案例1:大电流导致器件金属融化 某产品在测试现场频频出现损坏,经过对返修进行分析,发现大部分返修产品均是某接口器件失效,对器件进行解剖后,在金相显微镜下观察,发现器件是由于EOS导致内部铝线融化,导致器件失效,该EOS能量较大。进一步分析和该铝条相连的管脚电路应用,发现电路设计应用不当,没有采用保护电路,在用户现场带电插拔产生的电浪涌导致该器件失效。通过模拟试验再现了失效现象。 解决方法:强调该产品不支持带电插拔,建议客户在测试或使用的过程,需等电源关掉后,在进行插拔动作。 1.jpg

案例2: 客户反馈显示异常,显示暗淡,颜色异常,通过示波器查看波形,发现波形异常,通过一系列测试,判断IC 驱动损坏,通过EMMI 测试发现照片如下: 放大细节:

分析芯片内部电路,低压逻辑部分损坏。 分析原因:此IC的抗ESD能力 发现 COM SEG PIN在MM模式下,更容易被击穿。在HMB模式,小于+/-3K的 ESD均OK. 此IC现象是由于ESD损坏IC,导致IC出现短路所致。 具体解决方法: 生产,测试的注意,注意检查机台是否漏电,检查每位员工的ESD环是否OK.

下面简单谈谈在开发过程中的一些建议: 要想设计质量可靠性达到要求的产品,主要有以下几个步骤: 1, 明确产品的质量可靠性要求, 如是消费级还是电信级,最终的客户是谁,客户的需求是什么,使用的环境是什么,产品返修率指标是多少?等等。。。。,由此确定产品的质量可靠性要求,作为产品规格明确下来。 2, 在明确质量可靠性规格以后进行产品总体设计,这时最重要的是选择和使用质量可靠性符合产品规格要求的器件. 比如产品的使用环境比较恶劣,如使用在高海拔、强辐射地区,则需要对应的选择合适的器件。如果在应用环境中,选用的器件本身的质量可靠性无法满足要求,那么这个设计从一开始就注定是失败的。 3,在选好器件后,就要考虑在设计应用中避免各种可能的应力对器件的损伤, 如ESD防护设计、电浪涌防护设计、热设计、环境应力设计等,考虑到各种可能应力,并进行降额设计或者进行最坏情况分析。另外,还要进行信号完整性分析,EMC兼容设计等,来保证设计的产品的功能可靠性。在这一阶段,FMEA(失效模式影响分析)也是必不可少的步骤。 4, 在设计阶段还要考虑产品的可加工性. 如生产线的ESD、MSL控制水平是多少,如果生产线最多只能保证100V的ESD水平,那么ESD等级低于100V的器件就不

花山水电站主要危险因素分析

水电站(花山)主要危险、有害因素分析 危险因素是指能对人造成伤亡或对物造成突发性损坏的因素。有害因素是指能影响人的身体健康,导致疾病,或对物造成慢性损坏的因素。 1工程选址及枢纽总体布置危险性分析(略) 2物料危险性分析 2.1不属于危险化学品但有一定危险性的物质 2.1.1 透平油 透平油主要用于机组润滑系统,比水轻又不溶于水,属可燃物品,储运、使用过程应注意防止外流污染环境和着火燃烧。油系统发生泄漏,油浸入保温层,长期在高温下,引起着火。油和水易乳化,失去润滑作用,导致转动设备损坏。 2.1.2 变压器油 变压器油主要是存在于电气设备中,属可燃液体。变压器油由于其绝缘性能好、流动性能好、冷却性能好、抗氧化安定性好、闪点高等优点,主要用于变压器等设备冷却。变压器在正常运行时,绕组和铁芯磁件外壳产生大量的热量,变压器油温最高可达 90℃以上。如果变压器过负荷运行,油温将会更高。在变压器油质劣化或者变压器进水受潮时,会引起变压器绝缘击穿,造成短路,产生电弧。在电弧的高温作用下,迅速使油分解气化、闪燃并着火,从而使变压器内部压力急剧增加,造成外壳爆裂,大量喷油着火。燃烧的油流,可能烧毁其他设备甚至导致全厂停电、全所停电,造成很大经济损失和人员伤亡。油系统如果发生泄漏,并且周围有未保温或保温不好的热体极易发生着火事故。2.1.3 润滑油 润滑油系丙类火灾危险性可燃液体,遇高热或明火,也会引起火灾、爆炸。如果发生泄漏,并且周围有未保温或保温不好的热体极易发生齿轮油着火事故2.1.4 蓄电池 蓄电池室内存放有大量免维护阀控铅酸蓄电池,其在正常运行过程中,可以保证气密和液密状态,基本不会有氢气和酸气逸出。但在蓄电池故障时,仍有可能释放出氢气,如果升压站蓄电池室通风不良,电气设备不防爆,存在明火等点火源,可能造成氢气爆炸事故。另外,蓄电池漏液与人体直接接触,可造成人员化学灼伤。 2.2 危险化学品物质 花山电站在生产过程中涉及的原辅材料中属于危险化学品的有六氟化硫、氧气、乙炔、柴油等;

相关主题