搜档网
当前位置:搜档网 › On Joint Iterative Decoding of Variable-length Source Codes and Channel Codes

On Joint Iterative Decoding of Variable-length Source Codes and Channel Codes

On Joint Iterative Decoding of Variable-length Source Codes and Channel Codes
On Joint Iterative Decoding of Variable-length Source Codes and Channel Codes

On Joint Iterative Decoding of

Variable-length Source Codes and Channel Codes

Ahmadreza Hedayat and Aria Nosratinia?

Multimedia Communications Laboratory,

The University of Texas at Dallas,

2601N.Floyd Road,EC-33,Richardson,TX75080

{hedayat,aria}@https://www.sodocs.net/doc/ee10310320.html,

Abstract

The residual redundancy that intentionally or unintentionally remains in source en-coded streams can be exploited by joint source-channel coding.This principle has been

successfully applied to variable-length encoded sequences via iterative detection.It has

been shown that the resulting source-channel decoding outperforms the separable coun-

terpart.However,the computational complexity of the two systems are not comparable.

We pose the question:with equivalent computational complexity,is it bene?cial to invest

a part of the available transmission rate in a redundant entropy code?To answer this ques-

tion,we compare two systems with equivalent overall rate:joint source-channel coding

with iterative decoding,vs.a separable system with concatenated channel code.We show

that the joint source-channel coding with reversible variable length codes,as previously

reported,is inferior to the separable system under equitable conditions.The joint source-

channel coding is superior only with a careful design of redundant entropy codes according

to the design rules of serial concatenated codes.

1Introduction

Joint source-channel coding greatly improves the performance of communication systems un-der complexity and/or delay constraints.One variation of joint source-channel coding(JSCC) utilizes the source-induced dependency that,intentionally or unintentionally,remains in the compressed bit-stream.This residual redundancy and the techniques that exploit it have been investigated in a variety of guises[1,2].In particular,it is possible to perform iterative(turbo) decoding between the redundancy of channel code and the residual redundancy of the source code[3,4].

?This work was supported in part by the NSF grant CCR-9985171and THECB grant009741-0120-1999.

This versatile technique can be used,for example,when the stream is entropy encoded with a variable length code(VLC).1Often there is residual redundancy left in the VLC,for example in the case of reversible variable length codes(RVLC)[5]utilized in the video coding standard H.263+and its descendants.Bauer and Hagenauer[3]proposed a novel iterative (turbo)decoding scheme between a channel code and the residual redundancy of an RVLC. They reported a signi?cant coding gain compared to a system with equivalent transmission rate which employs a Huffman code for the same source and a slightly more powerful convolutional code.

The ef?ciency of the serial concatenation of a VLC and channel code depends on the amount of redundancy that exists in both codes.In the maximum likelihood(ML)or iterative decoding of the serial chain,the intentional redundancy of the VLC plays a role as important as the redundancy of the channel code.Huffman codes and other entropy codes retain very little redundancy,thus it is dif?cult to achieve improvements through iterative decoding.A question then arises as to when there is merit in leaving intentional redundancy in an entropy code to construct a good serial concatenated code.

In this paper we show that leaving redundancy in an entropy code,with the hope of iterative decoding between the entropy and the channel decoders,should be done based on the design principles of serial concatenated codes[6].As is mentioned in[3],the nature of the redundancy in a VLC represents a“weak binary channel code,”e.g.RVLC,and this may not be a good constituent code for the serial chain.Although iterative detection makes the best use of the remaining redundancy,we present our observation of using the ef?cient entropy codes and leaving the redundancy in channel codes.More speci?cally,we show experimentally that removing the intentional residual redundancy from the RVLC in[3],i.e.utilizing a Huffman code,and forming a serial concatenated convolutional code outperforms the setup in[3](with the same overall transmission rate).

This paper is organized as follows.We describe our system in Section2.In Section3,the iterative decoding between a VLC and a channel code,and the necessary soft-input soft-out blocks are explained.In Section4,we present the conjecture described above,give some hints toward the answer of the above question,and present our experimental results in Section4.1. We conclude in Section5.

2System Description

We consider a basic source-channel coding scenario common in many compression schemes. It consists of a serial concatenation of a non-binary source,an entropy coder,and a channel coder(See Figure1).

The non-binary source in Figure1represents a typical source in a video,image,speech, or text compression system.We employ VLC’s as entropy codes in our system,because of their high ef?ciency.The channel code protects the entropy-encoded sequence in Figure1,so 1Variable length codes are particularly prone to the effects of channel errors since an individual bit error can propagate and cause many symbol errors.

Figure1:System block diagram

that an acceptable reconstruction of the data is feasible at the receiver.Convolutional codes are used extensively in communication systems,therefore we consider convolutional codes and their concatenated variations[7,6]in our system.We use binary phase-shift keying(BPSK) modulation.We investigate both AWGN and slow?at Rayleigh fading channels.

3Iterative VLC and Channel Decoding

In the conventional decoder of the system in Figure1,the received noisy sequence is?rst channel decoded,and then entropy-decoding is applied.Due to hostile channel conditions,the channel decoder may not be able to deliver an errorless sequence to the entropy decoder.In such a case,even a few bits in error may make several output symbols of the entropy-decoder erroneous.The described decoder is not an ML decoder,hence the overall performance can be improved either by ML decoding or its approximated version,iterative decoding.

Iterative detection(decoding)is possible when a sequence has two or more sets of con-current likelihood expressions for a data sequence.These expressions represent different con-straints over the sequence.Obviously,all constraints have to be satis?ed for the detection process.Iterative decoding consists of enforcing each constraint separately and repeating the process.The use of interleaver and deinterleaver(see Figure1)makes the iterative detection more accurate[7,8].

In iterative decoding,each decoder processes the noisy received sequence and produces a type of information,called extrinsic information,to be used by the other decoders[7,8]. Extrinsic information represents the additional information obtained by applying the constraint of a constituent decoder.

A soft-input soft-output(SISO)module is the heart of an iterative decoder.An SISO mod-ule takes as input a noisy sequence and outputs the extrinsic information[9].We discuss this block for a channel code and a VLC in the following sections.

3.1Soft-input soft-output channel decoder

A soft-output algorithm for channel decoding was introduced by Bahl et al.in1974[10].A slightly different version of this algorithm,called the SISO module,was introduced in[9].We give a system-level description of this block in the following.

An SISO module(shown in Figure2)works on the trellis of the channel code.It accepts two probability streams P(c;I)and P(u;I)as inputs.The former describes the coded sequence c and the latter describes the information sequence,u.Applying the constraint provided by the channel code,additional information is obtained for both sequences,P(c;O)and P(u;O),

Figure 2:The SISO module

which are called the extrinsic information [9].This newly generated information can be used by the other decoder.Each decoder repeats this process by using the extrinsic information that has been fed back as its new input.

3.2Bit-level soft-input soft-output VLC decoder

Many ef?cient channel decoding algorithms are trellis-based.Particularly,Viterbi algorithm (V A),and SISO algorithm [10,9]are both trellis-based.By building a trellis for a VLC,one may employ these algorithms in the decoding of VLC’s.

The trellis in [3]is simply obtained by assigning the states of the trellis to the nodes of the VLC tree.The root node and all terminal nodes are assumed to represent the same state,since they all show the start of a new symbol (a new sequence of bits).Other nodes,the so-called internal nodes,are assigned one-by-one to the other states of the trellis.The number of states of the trellis is equal to the number of internal nodes and the root node.As an example,Figure 3shows the trellis corresponding to the Huffman code C ={00,11,10,010,011}.

There is a difference between the implementation of trellis-based algorithms on the trellis of a VLC and that of a convolutional code.Considering such a trellis (for example in Figure 3),only one symbol (bit)is assigned to each branch.This is not the case in the trellis of a convo-lutional code which has two symbols assigned to each branch (the information symbol and the coded symbol).This difference simpli?es the trellis-based algorithms 2.

R I1I2I3

R

Figure 3:The tree and bit-level trellis of the VLC C ={00,11,10,010,011}

2Also

in the Viterbi algorithm,only in the root node R the compare-select process is done,and a surviving

path is selected.In other nodes only the metric is calculated.

Based on the above trellis representation of a VLC,we derive an SISO algorithm for VLC’s. Following the notation of[9],the extrinsic information is calculated as follows.At time k the output probability distribution is evaluated as

?P k (u;O)=?h∑

e:u(e)=u

A

k?1

(s S(e))B k(s E(e))P k(u;I)

where,e represents a branch of the trellis;u(e),s S(e),and s E(e)are,respectively,the branch value,the starting state,and the ending state of the branch e.?h is a normalizing factor that

ensures?P

k (0;O)+?P k(1;O)=1.The quantities A k(.)and B k(.)are calculated through forward

and backward recursions,respectively,as follows.

A k (s)=∑

e:s E(e)=s

A

k?1

(s S(e))P k(u;I)

B

k

(s)=∑

e:s S(e)=s B

k+1

(s S(e))P k+1(u;I)

with initial values A0(s)=B N(s)=0for all states except for the root state,A0(0)=B N(0)=1, since the trellis always starts and ends at the root state.

In order to exclude the input probability,P

k (u;I),from the output probability,and obtain

the so-called extrinsic information,both sides of the previous equation are divided by P

k

(u;I).

P k (u;O)=

?P

k

(u;O)

P

k

(u;I)

=h∑

e:u(e)=u

A

k?1

(s S(e))B k(s E(e))

where h is again a normalization factor.P

k (u;I)(input probability)and P k(u;O)(extrinsic

information)together form the a posteriori probability(APP)of the input sequence.

3.3Iterative decoding

An iterative decoding scheme for the system in Figure1is shown in Figure4,using the SISO blocks already introduced.The blocks shown byπandπ?1are interleaver and deinterleaver, respectively.As mentioned earlier,they make the iterative detection more accurate by intro-ducing weak correlation between the extrinsic information components of the SISO modules, hence the subsequent SISO processes a less correlated sequence.

In each iteration,only the extrinsic information generated by each SISO,P

CC (u;O)and

P VLC (u;O),are exchanged between the soft-output decoders.After the last iteration,the?-

nal soft-output sequence,P

VLC (u;I)+P VLC(u;O),is decoded at symbol-level by the Viterbi

decoder over the same bit-level trellis.

4Redundancy in Entropy Codes

In parallel or serial concatenated codes[7,6],the knowledge of the redundancy in each con-stituent decoder puri?es the noisy sequence and adds more information(i.e.extrinsic informa-tion)to what is already known,possibly approaching the ML solution.The same fact applies to

Figure4:Iterative VLC and channel decoding

the case of concatenated VLC and channel codes.Hence,one would expect that the improve-ment of an iterative decoding scheme between a Huffman code and a channel code is negli-gible,since the outer code has almost no https://www.sodocs.net/doc/ee10310320.html,pared to Huffman codes,RVLC’s have more redundancy,which supports a more powerful concatenated code when followed by a channel code.

Good serial concatenated codes are characterized by some design rules for both outer and inner codes[6].Among the design rules,the ones corresponding to the outer code should be adopted for a VLC whose output data is to be channel encoded.For example,given the total rate and the complexity of the constituent codes,we know that the free distance of the outer code determines the so-called interleaver gain[6].

The results of iterative decoding of an RVLC decoder and a convolutional decoder is re-ported in[3].RVLC’s may have free distance greater than one.The free distance of VLC’s is de?ned in[11,3]3.The serial concatenated RVLC and convolutional code is compared to a conventional chain of a Huffman code and a convolutional code(with the same overall rate) in[3],and it is shown that the iterative decoding of the former outperforms signi?cantly the conventional decoding of the latter.The comparison,however,is not altogether fair because the two compared methods have vastly different computational complexity.A more equitable test would use an iterative channel code as the baseline for comparison,where the two systems have equal overall rate.

In the serial chain of RVLC’s and channel codes,the outer code plays a weak role,because of having low free distance.According to[6],the overall performance of the chain can be improved by assigning more redundancy to the outer code.This can be done in different ways.One may employ a more redundant entropy code,e.g.variable-length error correcting codes[11].One may alternatively invest the intentional redundancy of the RVLC in the channel code and leave the entropy code with no redundancy,https://www.sodocs.net/doc/ee10310320.html,ing Huffman codes.The former answer is the subject of our ongoing research.We verify the latter solution in the next section.

3Unlike RVLC’s,Huffman codes have free distance of one,because the two longest codewords have the same length and differ only in the last bit.

RVLC+CC

HC+SCCC

Figure5:Comparison between the two systems:Redundancy in VLC versus channel code 4.1Experimental results

Our experimental setup is shown in Figure5.Two entropy codes designed for a5-ary source with probability{0.33,0.30,0.18,0.10,0.09}are considered in Figure5.The RVLC code has the codebook C1={00,11,010,101,0110}with average length2.46[5,3].The Huffman code designed for the same source,with average length2.19,is C2={10,11,00,010,011} (See Figure3).

In the?rst system,an eight-state recursive convolutional code,C i,with rate1/2and gen-

erator polynomial G i(D)=(1,1+D+D3

1+D )is used.For the second system a serial concatenated

convolutional code(SCCC)[6]is used.The outer code is a convolutional code,C o,with rate 1/2and generator polynomial G o(D)=(1+D,1+D+D3).The inner code is a punctured version4of C i with rate8/9.In both systems,a packet of2000symbols is entropy-encoded,in-terleaved,and channel encoded.In the?rst system,the iterative VLC and channel decoding is employed.In the second system,regular iterative decoding of SCCC’s is used[6].Simulation is conducted in AWGN and Rayleigh fading channels with coherent receiver.

Note that the existing redundancy in C1(RVLC code)is removed in the second system and the Huffman code of the given source,C2,is employed.The released rate from C1,almost8/9, is employed in the form of an inner punctured convolutional code.By doing so,the SCCC has outer code of rate1/2and d f=5,and one would expect to perform better.It is worth mentioning that the rate of the constituent codes of the SCCC of the second system might be selected differently and still have the same overall transmission rate.For example,both outer and inner codes may have rate of2/3which has the same rate with the setups in Figure5.Or, a different concatenated channel,such as parallel concatenated codes[7],can be used.

The results of comparison between the two systems are shown in Figure6for AWGN channel and in Figure7for fast Rayleigh fading channel.Levenshtein distance[12,3]is used in reporting SER in Figure6(a)and Figure7(a).Levenshtein distance is de?ned as the minimum number of insertions,deletions or substitutions that transform one sequence to another one.The SER of the output of VLC decoder is better represented by Levenshtein distance than Hamming distance because of the self-synchronizing property of VLC’s.Figure6(b)and Figure7(b) compares the BER of the output of the channel decoder in the two systems.The second system 4The SCCC used in the second system is taken from[6],Section V.B.3,but no optimization is applied for puncturing the inner code.

1010101010S y m b o l E r r o r R a t e (S E R )Figure 6:Comparison between the two systems in Figure 5for 0,2,3,and 4iterations,AWGN channel

outperforms the ?rst system after the ?rst few iterations.The ?rst system shows negligible improvement after the few ?rst iterations,suggesting that the ML performance is achieved by a few further iterations.In fact,our results,not shown here for clarity of the ?gures,show very little improvement (for up to 9iterations in the same E b /N 0range)to what has been achieved by the ?rst ?ve iterations.On the other hand,the second system shows signi?cant improvement by each iteration.

5Conclusion

Motivated by the application of inef?cient entropy codes,we question if the assignment of a part of the transmission rate to a redundant entropy code is bene?cial.Reversible VLC,employed in state-of-art compression standards,is an example of introducing redundancy in entropy codes.The concatenation of entropy codes and channel codes resembles the serial concatenated codes.Therefore,we advocate applying the design rules of serial concatenated codes to the investigated system.In the serial concatenation of RVLC and convolutional code,the design rule regarding the outer code is not considered.To show the inferior performance of such a concatenated code,we propose an equivalent system,consisting of an ef?cient entropy code and a concatenated channel code,which outperforms the investigated system.It is also possible to employ entropy codes with higher redundancy (while keeping the overall rate ?xed)which complies the design rules speci?ed by the serial concatenated codes.The latter approach is our ongoing research.

References

[1]J.Hagenauer,“Source-controlled channel decoding,”IEEE Transactions on Communi-

cations ,vol.43,pp.2449–2457,September 1995.

1010101010S y m b o l E r r o r R a t e (S E R )Figure 7:Comparison between the two systems in Figure 5for 0,2,3,and 4iterations,fast Rayleigh Fading

[2]A.Murad and T.Fuja,“Robust transmission of variable-length encoded sources,”in

Proc.IEEE Wireless Communications and Networking Conference ,September 1999.

[3]R.Bauer and J.Hagenauer,“On variable length codes for iterative source/channel decod-

ing,”in Proc.Data Compression Conference ,April 2001,pp.273–282.

[4]R.Perker,M.Kaindl,and T.Hindelang,“Iterative source and channel decoding for

GSM,”in Proc.IEEE ICASSP ,May 2001,vol.4,pp.2649–2652.

[5]Y .Takishima,M.Wada,and H.Murakami,“Reversible variable length codes,”IEEE

Transactions on Communications ,vol.43,pp.158–162,February/March/April 1995.

[6]S.Benedetto,D.Divsalar,G.Montorsi,and F.Pollara,“Serial concatenation of inter-

leaved codes:performance analysis,design,and iterative decoding,”IEEE Transactions

on Information Theory ,vol.44,no.3,pp.909–926,May 1998.

[7]C.Berrou and A.Glavieux,“Near optimum error correcting coding and decoding:Turbo

codes,”IEEE Transactions on Communications ,vol.44,pp.1261–1271,October 1996.

[8]J.Hagenauer,E.Offer,and L.Papke,“Iterative decoding of binary block and convolu-

tional codes,”IEEE Transactions on Information Theory ,vol.42,pp.429–445,March

1996.

[9]S.Benedetto,D.Divsalar,G.Montorsi,and F.Pollara,“A soft-input soft-ouput APP

module for iterative decoding of concatenated codes,”IEEE Communications Letters ,

vol.1,no.1,pp.22–24,January 1997.

[10]L.R.Bahl,J.Cocke,F.Jelinek,and J.Raviv,“Optimal decoding of linear codes for

minimizing symbol error rate,”IEEE Transactions on Information Theory ,vol.20,pp.

284–287,March 1974.

[11]V.Buttigieg,“Variable-Length Error-correcting Codes,”Ph.D.Thesis,Department of

Electrical Engineering,University of Manchester,1995.

[12]T.Okuda,E.Tanaka,and T.Kasai,“A method for the correction of garbled words based

on the Leveneshtein metric,”IEEE Trans.on Computers,vol.C-25,no.2,pp.172–176, February1976.

真空辅助RTM成型技术的研究[1]

真空辅助RTM成型技术的研究Ξ 李柏松 王继辉 邓京兰 (武汉工业大学材料复合新技术国家实验室,武汉430070) 摘要: 本文详细介绍了目前RT M工艺中最先进的两种真空辅助成型技术高渗透介质辅助成型及引流槽辅助成型。采用这两种技术的RT M工艺能够制造超厚超大的产品,适应更加广阔市场需求。同时,真空辅助RT M成型技术也将RT M工艺的应用领域进一步扩大。 关键词: RT M 真空辅助成型 高渗透性介质 引流槽 1 前 言 树脂传递模塑成型(RT M)工艺自90年代以来, 得到越来越广泛的应用。传统的RT M工艺是将纤维 增强材料铺放到闭合的模腔中,用压力将树脂注入模 腔,树脂浸透纤维增强材料,然后固化,脱模成型制 品。这一方法受到材料品种及其性能的限制,很难适 应大尺寸及厚壁制品的生产要求。由于闭模操作,虽 然人们采用各种各样的方法,也很难将制品的缺陷降 到一个可以普遍接受的水平。随着复合材料工业对 成型工艺的要求越来越高,特别是对成型工艺的环保 及成本方面的要求越来越高。近年来,国外研制开发 了真空辅助RT M成型技术(Vacuum-Assisted Resin Trans fer M olding)简称VART M。与传统的RT M工艺相比,其模具成本可以降低50-70%,使用这一工艺在成型过程中有机挥发物(VOC)非常少,充分满足了人们对环保的要求,并且成型适应性好,因为真空辅助,可以充分消除气泡。这一工艺制造的单件制品的最大表面积可以达到186m2,厚度150mm〔1〕,纤维重量含量最大可达75~80%〔2〕。正因为这些优点,这一技术正迅速地得到推广。 2 VART M工艺 VART M工艺是最近几年发展起来的一种改进的RT M工艺。其基本方法是使用敞开模具成型制品。这里所说的敞开模具是相对传统的RT M的双层硬质闭合模具而言的,VART M模具只有一层硬质模板,纤维增强材料按规定的尺寸及厚度铺放在模板上,用真空袋包覆,并密封四周,真空袋采用尼龙或硅树脂制成。注射口设在模具的一端,而出口则设在另一端,注射口与RT M喷枪相连,出口与真空泵相连。当模具密封完好,确认无空气泄漏后,开动真空泵抽真空。达到一定真空度后,开始注入树脂,固化成型。 2. 1 高渗透介质辅助VARTM工艺 形状复杂的大型厚壁制品,在充模过程中,对于树脂胶液在模腔内的流动时间及流动模式的预测至关重要,准确的流动时间及流动模式对于调整树脂的凝胶时间,保证树脂对纤维增强材料的浸透起着关键作用。对此美国俄亥俄大学的L.James Lee〔1〕等人采用高渗透介质辅助的VART M工艺,借助高渗透介质对流动的帮助可以预测树脂在模腔内的流动情况。高渗透介质辅助VART M工艺中,纤维增强材料直接铺放在硬质模板上,在纤维增强材料顶上铺设一层剥离层,剥离层通常是一层很薄的低孔隙率、低渗透率的纤维织物,剥离层上铺放高渗透介质,然后用其真空袋包覆、密封、结构形式如图1所示。 图1 高渗透介质辅助VART M结构 对于单纯的平面流动,高渗透介质的渗透率可以用下面的方程来描述: t= μ< 2kP0 s2(1)这里,s是从注射口到流动前缘的距离,t是相应的时间,μ是树脂胶液的粘度,P o是注射口处的压力,<是高渗透介质的孔隙率,采用的高渗透介质孔隙率一般为0.85-0.88。树脂胶液在高渗透介质中的流动时间可以决定纤维织物在充模过程中的渗透率。这是因为真空辅助RT M工艺过程中树脂胶液是在两种截然不同的多孔介质内造成的。模腔内树脂胶液的流动行为可以用如下达西定理和连续方程进行控制: ? V=0(2) 71  2001年1月 Ξ国家自然科学基金资助项目(19872051)和高等学校骨干教师资助计划资助项目 玻璃钢/复合材料 FRP/C M 20011No.1

VARI成型实验讨论

VARI成型实验及讨论 一.实验目的和要求 本次实验通过实际操作,加深对真空辅助成型技术(此后简称VARI成型)的了解,熟悉其工艺原理、操作要求以及技术要求等。同时通过课后自主学习,了解VARI成型工艺发展现状,分析其存在的问题和不足。 VARI成型是借助成型袋与模具之间抽真空形成的负压对复合材料坯料进行加压,利用树脂的流动、渗透实现对纤维及其职务浸渍,并在真空压力下固化成型的方法。 该成型工艺有如下技术要求: (1)采用粘度低、力学性能好的树脂; (2)树脂粘度应在0. 1~0. 3Pa·s 范围内,便于流动和渗透; (3)足够长时间内树脂粘度不超出0. 3Pa·s; (4)树脂对纤维浸润角小于8° ; (5)足够的真空度,真空度不低于-97KPa; (6)选择合适的导流介质,利于树脂流动和渗透; (7)保证良好的密封,防止空气进入体系而产生气泡; (8)合理的流道设计,避免缺陷的产生。 二.实验设备及要求 下图为VARI成型工艺图: 下图为VARI成型封装示意图:

由于工艺特殊,VARI成型工艺对树脂体系、封装系统、控制有特定的要求:(1)黏度低,粘度范围:0.1-0.3Pa.s; (2)足够长时间内黏度不变,有利于浸透、排气; (3)可在较低温度下完全固化; (4)固化时无需额外压力,只需真空压力; (5)具有良好的力学性能,满足结构使用要求; (6)具有较高的玻璃化转变温度,满足耐热要求; (7)树脂凝胶前的低粘度时间平台要足够长,保证充分的操作时间; (8)对于高温环境下使用的树脂,应具有较高的玻璃化转变温度(Tg); (9)树脂应具有良好的力学性能和阻燃性能; (10)真空负压最佳值为≥0.095MPa,保证纤维铺层压实致密; (11)良好的密封有利于提高真空度和排除气泡,减少产品气孔率; (12)恰当的选择制品成型厚度; (13)合理的树脂流道和真空通道设计,保证能排出气体和树脂能均匀浸渍增强材料,避免产生缺陷。 三.实验步骤 1.准备模具 2.使用磨砂纸清洁模具,使成型表面清洁,同时注意不能破坏成型体表面 3.使用丙酮清洗模具,晾10-15分钟,再清洗一次。待干后,再模具上涂一层脱模剂 4.晾10--15分钟后,在模具的外侧贴胶衣,平行贴两层 5.量取模具的尺寸,裁剪大小适合的碳纤维编织布。将碳纤维布铺在模具内部,调整大小,使其始终比内层胶衣所围成的尺寸小 6.铺好4层碳纤维布后,在其上方铺一层大小相等的脱模布,并固定好,之后再在脱模布上方再铺一层导流网并固定好 7.剪取两段长度适中的导流管,固定在内侧胶衣以内,将两段导流管分别固定于两侧。将真空管插入导流管中部的三口管,并固定在胶衣上 8.剪取比模具尺寸大的真空袋,用密封胶带密实的模具包裹起来。注意伸出的导流

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

焊接技术及自动化实验指导书

焊接技术及自动化专业 实验指导书

材料成型及控制教研室主编 《CBE模式下焊接技术及自动化专业学生实践能力培养体系的改革研究》课题组参编 目录 一、《金属学及热处理》实验指导书 1.实验一金相显微镜的使用及金相试样的制备 (1) 2.实验二铁碳合金平衡组织的显微分析 (7) 3.实验三碳钢的热处理 (9)

二、《焊接冶金与金属焊接性》实验指导书 1.实验一焊缝金属中扩散氢的测定 (13) 2.实验二斜Y型坡口焊缝裂纹实验 (17) 3.实验三插销实验 (19) 三、《焊接结构》实验指导书 1.实验一不同焊接参数下平板变形量测量与分析 (23) 2.实验二不同焊接方法下平板变形量测量与分析 (25) 3.实验三不同焊接位置下平板变形量的分析 (26) 4.实验四焊接变形的矫正 (27)

四、《焊接方法与设备》实验指导书 1.实验一不同的酸碱度焊条的焊接工艺性 (29) 2.实验二埋弧自动焊焊接 (32) 3.实验三 CO2保护焊焊接参数对焊缝成形的影响 (36) 4.实验四钨极氩弧焊焊接方法 (41) 5.实验五焊条电弧焊实训项目 (43) 五、《弧焊电源》实验指导书 1.实验一弧焊电源外特性和调节性能的测定 (45) 2.实验二弧焊电源的结构认识与观察 (48)

3.实验三弧焊整流器的结构认识与观察 (50) 六、《Pro/E造型及模具设计》实验指导书 1.实验一基于Pro/E Wirdfire设计软件初步练习 (52) 2.实验二Pro/E截面草绘功能练习 (53) 3.实验三Pro/E基本成型特征功能练习 (57) 4.实验四Pro/E基准特征建模功能练习 (61) 5.实验五 Pro/E零件建模工程特征功能练习 (63) 6.实验六Pro/E实体特征编辑功能练习 (65) 7.实验七Pro/E曲面造型功能练

焊接技术与自动化专业简介

焊接技术与自动化专业简介 专业代码560110 专业名称焊接技术与自动化 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握焊接电工基础、焊接工艺、焊接质量等基本知识,熟悉焊接机器人等自动化、智能化焊接技术,具备焊接操作、焊接工装夹具选用与设计、焊接质量检测与控制、焊接生产管理等能力,从事焊接制造工艺编制及实施、生产操作和工艺技术创新等工作的高素质技术技能人才。 就业面向 主要面向机械、汽车、船舶、航空航天、军工、铁路机车车辆等装备制造行业及其科研院所,在焊接成型、表面技术领域,从事工艺的编制与实施、焊接质量检验与分析、焊接工艺试验以及基层管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备常用焊接方法的熟练操作能力; 3.具备对产品设计图纸进行工艺性审查的能力; 4.具备编制与实施焊接结构制造工艺规程的能力; 5.具备根据标准编制焊接工艺评定规程及报告的能力; 6.具备选用和设计焊接工装夹具的能力; 7.具备对焊接设备进行安装和调试的能力; 8.具备焊接机器人及其他常用自动化、智能化焊接技术的使用能力; 9.掌握焊接质量分析、检测与控制技能。

核心课程与实习实训 1.核心课程 机械制图、工程材料与热处理、焊接电工基础、熔焊过程与缺欠控制、焊接方法与设备使用、焊接工艺制定与评定、焊接结构制造工艺及实施、焊接质量检测技术等。 2.实习实训 在校内进行典型焊接接头电弧焊、焊接施工图识读、焊接专业毕业综合实践等实训。在机械、船舶、汽车等企业进行实习。 职业资格证书举例 焊工特种作业操作工 衔接中职专业举例 焊接技术应用 接续本科专业举例 焊接技术与工程

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

VARI真空辅助成型技术

V ARI真空辅助成型技术 VARI(VacuumAssistedResinlnfusion,简称真空辅助成型)技术是一种新型的复合材料低成本、高性能成型技术,近年来在航空领域受到广泛的重视。VARI技术是在真空下,利用树脂的流动、渗透实现对纤维及其织物浸渍,并在真空下固化的成型方法。美国已进行了VARI技术F-35、P-3、S-3、C-5、C-130等机型上试验及验证工作。VARI技术在其他国防领域(导弹仪器舱段、潜艇壁板等)也进行了大量的应性研究,因此具有巨大的应用前景。 一、引言 基体树脂是VARI技术的基础材料。目前国针对VARI工艺开发了一系列基体树脂,主要有酯树脂、乙烯基树脂、环氧树脂、双马来酰亚胺树脂、氰酸酯树脂等。其中聚酯树脂、乙烯基树脂由于强度和耐热性差,成本低,主要用于船舶领域。航空航天领域主要采用低粘度环氧树脂、双来酰亚胺树脂。国内目前针对VARI工艺开发的树脂只有BA9911,属于乙烯基—双马来酰亚胺树脂改性体系,具有较好的耐热性和阻燃性。但不能满足航空航天构件的要求。适合VARI工艺的高性能基体树脂在国内还是空白。因此,开发高性能VARI 工艺基体树脂是开展该复合材料低成本技术在航空航天领域应用研究、缩短与国外差距的基本前提。 二、实验部分 1、BA9912树脂的配制 经过大量试验和分析比较,选用了低黏度高性能的TDE-85环氧树脂,研制了低黏度高活性的BA-1固化剂和高效的BA-2固化促进剂,实现了BA9912树脂的中温固化,满足了VARI低成本成型工艺的低黏度要求。按适当配比称取TDE-85环氧树脂、BA-1固化剂和BA-2促进剂,先将TDE-85环氧树脂与BA-2促进剂混合搅拌10min,再加入BA-1固化剂继续搅拌20min,抽真空除去搅拌过程中产生的气泡,即可制得棕黄色透明的BA9912中温固化环氧树脂体系。 2、BA9912树脂浇注科的制备 在浇注料模具上均匀涂上适量的硅脂脱模剂,在120℃烘箱中处理0.5h,将脱气后的BA9912棚旨浇注入模具之中。升温到120、保温固化4h,再在150t下后处理2h以消除内应力,停止加热,自然冷却至室温,取出BA9912浇注料制作相应试验件,测试其力学性能和耐热性能。

碳纤维性能的优缺点及其对策

碳纤维性能的优缺点及其对策 现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。 2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3)疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

焊接技术及自动化专业考试样题答案

武汉船舶职业技术学院2015年单独招生焊接技术专业专业知识考试样题一(参考答案) 一、单项选择题(每小题3分,共60分) 1、人类历史上最早使用、制作工具及用品的金属材料是(B )。 A:铸铁 B:青铜 C:铝合金 D:镁合金 2、两个10欧姆的电阻串联后的总电阻是( D )欧姆。 A:5 B:10 C :15 D:20 3、两个100欧姆的电阻并联后的总电阻是( A )欧姆。 A:50 B:100 C:150 D:200 4、“金银铜铁”打一城市名( D )。 A:武汉 B:上海 C:黄石 D:无锡 5、把一种交流电压变成频率相同的不同等级电压的一种电器是( A )。 A:变压器 B:电动机 C:发电机 D:整流器 6、焊条型号中,表示焊条的字母是( A )。 A:E B:Q C:H D:A 7、通过人体的电流越大,引起致命的危险( B )。 A:越小 B:越大 C:不变 D:无规律变化 8、人体触电后电流通过人体最危险的路径是( D )。 A:从手到手 B:从手到肩 C:从脚到脚 D:从手到脚 9、电流通过人体的时间越长,则电击的危害程度( B )。 A:越小 B:越大 C:不变 D:不确定 10、瓦是( D )物理量的单位。 A:电量 B:热量 C:能量 D:电功率

11、物质在瞬间以机械功的形式释放出大量的气体和能量的现象是( C )。 A:火灾 B:燃烧 C:爆炸 D:自燃 12、乙炔瓶着火时,不能用( C )来灭火。 A:CO2灭火器 B:泡沫灭火器 C:水 D:四氯化碳灭火器 13、噪声的频率越大、强度越高,则对人体的伤害就( B )。 A:越小 B:越大 C:无规律变化 D:不变 14、我国家庭照明电路的电压是( B )伏。 A:110 B:220 C:440 D:300 15、微型计算机中,能实现算术运算、逻辑运算以及进行控制的部件是( D ) A:运算器 B:控制器 C:存储器 D:中央处理器 16、不属于微型计算机性能的是( D ) A:运算速度 B:内存储器容量 C:字长 D:抗病毒能力 17、铁的化学元素符号是( B )。 A:C B:Fe C:O D:Cr 18、在下列钢号中,( A )是优质碳素结构钢。 A:20 B:Q235-A C:T10 D:16Mn 19、耐腐蚀钢有较好的( B )性。 A:抗氧化 B:抗腐蚀 C:耐高温 20、焊条的直径是以( A )来表示的. A:焊芯直径 B:焊条外径 C:药皮厚度 D.焊芯直径和药皮厚度之和 二、判断题(每小题3分,对的打√,错的打×,共75分) 1、焊接电流的单位是安培。(√) 2、CO气体是易燃有毒气体。(√) 3、两块金属间的焊接连接,是不可拆卸的连接。(√) 4、电弧焊安全生产中对焊工防触电有较高要求和一定的防护措施。(√)

焊接技术及自动化毕业论文论文正文优选稿

焊接技术及自动化毕业论文论文正文 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

毕业论文 铸铁件焊缝设计 系(部): 专 业: 目录 毕业论文开题报告 (2) 毕业论文任务书 (3) 摘要............................................................. (4) 引言............................................................. ...5第一章焊接的发展史.. (6) 1.1焊接的发展史 (6)

1.2焊接的发展前景 (7) 1.2.1国内外概况 (7) 1.2.2产品情况 (8) 第二章灰口铸铁的焊缝设计 (9) 2.1?铸铁焊接存在的问题 (9) 2.1.1焊后产生白口组织 (9) 2.1.2焊接接头出现裂纹 (9) 2.2灰口铸铁的化学成分及力学性能 (10) 2.2.1灰口铸铁的化学成分 (10) 2.2.2灰口铸铁的力学性能 (10) 2.3常用铸铁件的焊接方法 (10)

2.3.1热焊法 (11) 2.3.2冷焊法 (11) 2.3.3加热减应焊法 (12) 2.4接头形式的选择及坡口的选择 (13) 2.4.1焊缝的布置工艺设计原则 (13) 2.4.2接头形式的选择 (15) 2.4.3坡口的选择 (16) 第三章焊后检验 (18) 3.1焊缝外观及尺寸的检验 (18) 3.2致密性检验 (18) 3.3无损探伤 (18)

3.3.1磁粉探伤的基本原理 (18) 3.3.2 漏磁场的强度主要取决磁化场的强度和缺陷对于磁化场垂直截面的影响程度 (19) 3.3.3磁粉探伤的一般程序 (19) 3.3.4磁愤探伤的验收标准 (20) 结论............................................................. ..21 致谢............................................................. ..22参考文献.. (23) 毕业论文开题报告

真空辅助树脂传递模塑工艺

真空辅助树脂传递模塑工艺 真空辅助树脂传递模塑工艺(VARTM/SCRIMP)适用于质量要求高、小批量和尺寸较大的制品。它和传统的热压罐成型工艺相比,具有模具低成本,树脂室温固化以及几乎不受限制的制品尺寸等突出的特点。在国外VARTM已成功地用于舰船、军事设施、国防工程、航空和民用工业等领域。目前,真空辅助树脂传递注塑中应用最广泛的工艺之一,SCRIMPTM成型工艺,是在19世纪80年代后期在RTM 工艺基础上发展起来的以低成本、适合制作大型复合材料制品的成型工艺。该加工工艺的成品有较好的品质,如:孔隙率低、纤维含量高,和良好的机械性能,并且可以将挥发性有毒气体的排放量控制在最小的程度。 SCRIMP真空辅助树脂传递注塑是利用薄膜将增强材料密封于单边模具上,完全借助于真空将低黏度树脂吸入,利用高渗透率介质沿增强材料的表面快速浸渍,并同时向增强材料厚度方向进行浸润的加工工艺。用这种方法加工的复合材料,纤维含量高,制品力学性能优良,而且产品尺寸不受限制,尤其适合制作大型制品。最近,由于树脂体系和纺织增强材料成型技术的不断发展,航空制造者们也对VARTM表现出了浓厚的兴趣,主要表现为采用碳纤维-环氧树脂、碳纤维-双马来酰亚胺树脂的复合材料。 几种常用的纺织复合材料增强体 和传统的开模成型工艺相比,SCRIMP成型工艺具有许多的优点。SCRIMP工艺比手工铺放节约成本约50%,树脂浪费率低于5%,特别是加工过程的环保性,是SCRIMP工艺最突出的优点。在同样原材料的情况下,与手糊构件相比,复合材料的强度、刚度或硬度及其它的物理特性可提高30%-50%以上。产品质量不受操作人员影响,产品性能的均匀性和重复性比开模产品好得多,缺陷也少得多。SCRIMP由于是采用闭模成型工艺,挥发性有机物和有毒空气污染物均受到很大程度的控制,VOC排放不超过5PPm的标准,而开模成型的苯乙烯的挥发量超过500PPm。SCRIMP工艺特别适合制造较大的制品,并且可以进行芯材、加筋结构件的一次成型以及厚的、大型复杂几何形状的制造,提高了产品的整体性,而且材料和人工的节省实为可观。采用SCRIMP制作的构件,不论是同一构件还是构

焊接自动化就业前景

焊接自动化就业前景 导读:本文是关于焊接自动化就业前景,希望能帮助到您! 焊接自动化就业前景(一) 焊接技术已从传统的热加工工艺发展到集材料、冶金、结构、力学、电子等多门类科学为一体的工程工艺学科,是许多高新技术产品制造不可缺少的加工方法。在我国应对国际金融危机提出的十大振兴行业(汽车,钢铁,纺织,造船,装备制造,电子,轻工,石化,有色金属和物流业)中,汽车、钢铁、造船、装备制造、有色金属、石化等六个行业对焊接技能型人才需求量较大。总体来看,我国焊接行业现状如下: 1、焊接技能型人才缺 焊接工程和产业的市场大,焊接人才的培养规模小,供求矛盾十分突出。近年来我国的钢材消费量很大,从事焊接行业就业人数远远不够缺乏,而高校培养的焊接专业人才远远满足不了社会的要求。特别是焊接检测、焊接自动化技术人才缺乏,严重制约着我国经济社会的发展。 2、焊接技术发展速度快 国外焊接技术发展速度快,国内焊接技术发展存在较大差距。工业发达国家焊接机械化、自动化率水平,目前焊接技术与现代制造技术、焊接科学与工程、焊接自动化与焊接机器人不断融合,焊接技术已经向自动化,智能化方向发展。而我国主要还是以手工操作为主,焊接生产机械化、自动化水平较低,焊接行业发展空

间巨大。 3、焊接钢材用量大 国外焊接结构与钢材产量的比例高,国内焊接结构与钢材产量的比例低,结构不合理。目前世界工程技术界已公认将焊接结构用钢量作为衡量一个国家工业发达及焊接技术先进的主要指标。焊接已成为制造业,尤其是装备制造业中的重要加工手段,全世界平均45%的钢用于焊接结构,而工业发达国家焊接结构用钢量已达到占钢产量的60-70%。 4、用人单位需求急 目前我国焊接技能型人才需求量大、需求急、待遇高。据某些企业自身预测,他们对焊接专业人才的需求在未来几年内还会递增,供求矛盾将进一步加剧。 据有关资料介绍,全世界钢铁产量中约有50%左右是通过焊接加工由原材料变成成品的。目前,很多焊接作业已采用机械化、自动化、数控、人工智能等很多高新技术。据有关资料不完全统计,在一些工业发达国家焊接机械化的平均水平已达70%~80%,而我国只有20%~30%,绝大部分焊接作业离不开人工操作。 电焊、氩弧焊、数控等技术类工种近年来在就业日趋艰难的大形势下仍是一枝独秀,就是这种就业好的现状吸引了大量的学员投身于技术工种。但是许多人对焊接类工种就业形式并没有深刻的了解,包括一些正在学习电焊专业的学员对本专业的发展及就业前景的认识都比较模糊,电焊专业的就业前景究竟怎样,笔者就此做一浅析。(许多的焊接过程需要高温以便使金属接合。热

FRP真空辅助成型工艺实验研究

62FRP真空辅助成型工艺实验研究2010年7月 FRP真空辅助成型工艺实验研究 吴忠友1,孙祖莉2,李年1 (1.威海中复西港船艇有限公司,威海 264200;2.烟台大学化学生物理工学院,烟台 264005) 摘要:通过真空辅助成型工艺实验(VARTM),对树脂粘度和凝胶时间随温度的变化规律进行了研究,并对影响玻璃钢制件机械性能的主要工艺参数进行了测试。结果表明,真空度大小和充模时间对制件机械性能有显著影响,真空度越大机械性能越好,充模时闯长不利于机械性能的提高;在实验范围内,温度的影响不明显。 关键词:复合材料:真空辅助成型;机械性能中图分类号:TQ024 文献标识码:A 文章编号:1003—0999(2010)04—0062—03 ●—】』_.——一 1 日U舌 真空辅助树脂灌注(Vacuum Assisted Resin Transfer Molding,简称VARTM)是近年发展起来的 一种新型复合材料成型工艺。其主要特点是成本 低、产品孔隙率低、环境友好、质量均匀、纤维含量高¨J。对于一次成型大尺寸、带有夹芯及加筋的大 型结构件,VARTM是一种理想的工艺方法旧J。因此,VARTM成型工艺在船舶、风电、飞机、汽车等行业发展迅速。 VARTM成型工艺流程为:预先在模具型面上铺放纤维增强材料,覆盖真空薄膜、密封型腔边缘、抽真空,然后树脂在真空压力下,通过导流系统注入模腔内,浸渍纤维及其织物,并在室温和真空压力下进 行固化,形成具有一定树脂/纤维比例的复合材料。 VARTM工艺系统如图1所示。 图1 VARTM工艺过程不意图 VARTM工艺过程包含若干因素,如树脂粘度、 增强材料结构型式与性能、孔隙率、模具表面质量、充模温度、真空度和树脂分配系统结构等。这些因素决定着产品的质量,若它们的取值及其组合不合理,产品就会产生缺陷,常见的缺陷有:干斑、干点、树脂富集、孔隙和气泡等。干斑是树脂浸润纤维预 成型体不充分,树脂富集是该部分纤维含量低,气泡 形成于树脂的流动、凝固过程中。缺陷的存在会使构件的力学性能不一致,妨碍了FRP的应用,尤其对于力学性能要求高的领域。有资料显示,当微孔含量增加1%,构件的机械性能,如层间剪切强度、弯瞌强度和弯曲模量下降将超过5%”’4』。因而各工艺参数直接影响复合材料制件的力学性能,且与复合材料的力学性能是非线性关系。 为满足特定用途制件的力学性能要求,本文通过VARTM工艺试验,研究了真空度、充模温度、充 模时间对制件机械性能的影响,获取了较合理的工 艺参数。 2实验因素选取 制备高品质FRP的关键之一是获得良好的工艺条件,以使树脂与纤维增强体充分浸润。 Darcy定律,即: 石:一_r vp (1) 叩 以宏观的平均概念描述了流体在多孔介质中的 流动行为,避免了微观渗流动力学现象的描述,将所有的纤维和树脂间的相互作用概括为综合反映渗透 特性的渗透率张量参数。式中,石为流体穿过孔隙介质的速度矢量;K为渗透率张量;刁为树脂粘度;VP为流动方向上的压力梯度。 实际成型工艺中,树脂流动充模过程为动边界过程,一般情况下为非线性行为,很难直接由Darcy定律获得解析解L5j。另一方面Darcy定律没有直接反映树脂浸润纤维的质量效果,且纤维种类、铺层形 收稿日期:2010-03-02 基金项日:国家“863”计划项目(2007AA03A229) 作者简介:吴忠友(1964一),男,工程师,主要从事玻璃钢船舶制造研究。 FRP/CM 2010.No.4 万方数据

碳纤维特性

碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K 以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐

焊接技术及自动化专业毕业实习报告范文

焊接技术及自动化专业 毕 业 实 习 报 姓名:杜宗飞 学号:2011090118 专业:焊接技术及自动化 班级:焊接技术及自动化01班指导教师:赵建明 实习时间:XXXX-X-X—XXXX-X-X 20XX年1月9日

目录 目录 (2) 前言 (3) 一、实习目的及任务 (3) 1.1实习目的 (3) 1.2实习任务要求 (4) 二、实习单位及岗位简介 (4) 2.1实习单位简介 (4) 2.2实习岗位简介(概况) (5) 三、实习内容(过程) (5) 3.1举行计算科学与技术专业岗位上岗培训。 (5) 3.2适应焊接技术及自动化专业岗位工作。 (5) 3.3学习岗位所需的知识。 (6) 四、实习心得体会 (6) 4.1人生角色的转变 (6) 4.2虚心请教,不断学习。 (7) 4.3摆着心态,快乐工作 (7) 五、实习总结 (8) 5.1打好基础是关键 (8) 5.2实习中积累经验 (8) 5.3专业知识掌握的不够全面。 (8) 5.4专业实践阅历远不够丰富。 (8) 本文共计5000字,是一篇各专业通用的毕业实习报告范文,属于作者原创,绝非简单复制粘贴。欢迎同学们下载,助你毕业一臂之力。

前言 随着社会的快速发展,用人单位对大学生的要求越来越高,对于即将毕业的焊接技术及自动化专业在校生而言,为了能更好的适应严峻的就业形势,毕业后能够尽快的融入到社会,同时能够为自己步入社会打下坚实的基础,毕业实习是必不可少的阶段。毕业实习能够使我们在实践中了解社会,让我们学到了很多在焊接技术及自动化专业课堂上根本就学不到的知识,受益匪浅,也打开了视野,增长了见识,使我认识到将所学的知识具体应用到工作中去,为以后进一步走向社会打下坚实的基础,只有在实习期间尽快调整好自己的学习方式,适应社会,才能被这个社会所接纳,进而生存发展。 刚进入实习单位的时候我有些担心,在大学学习焊接技术及自动化专业知识与实习岗位所需的知识有些脱节,但在经历了几天的适应过程之后,我慢慢调整观念,正确认识了实习单位和个人的岗位以及发展方向。我相信只要我们立足于现实,改变和调整看问题的角度,锐意进取,在成才的道路上不断攀登,有朝一日,那些成才的机遇就会纷至沓来,促使我们成为焊接技术及自动化专业公认的人才。我坚信“实践是检验真理的唯一标准”,只有把从书本上学到的焊接技术及自动化专业理论知识应用于实践中,才能真正掌握这门知识。因此,我作为一名焊接技术及自动化专业的学生,有幸参加了为期近三个月的毕业实习。 一、实习目的及任务 经过了大学四年焊接技术及自动化专业的理论进修,使我们焊接技术及自动化专业的基础知识有了根本掌握。我们即将离开大学校园,作为大学毕业生,心中想得更多的是如何去做好自己专业发展、如何更好的去完成以后工作中每一个任务。本次实习的目的及任务要求: 1.1实习目的 ①为了将自己所学焊接技术及自动化专业知识运用在社会实践中,在实践中巩固自己的理论知识,将学习的理论知识运用于实践当中,反过来检验书本上理论的正确性,锻炼自己的动手能力,培养实际工作能力和分析能力,以达到学以致用的目的。通过焊接技术及自动化的专业实习,深化已经学过的理论知识,提高综合运用所学过的知识,并且培养自己发现问题、解决问题的能力 ②通过焊接技术及自动化专业岗位实习,更广泛的直接接触社会,了解社会需要,加深

焊接技术及自动化专业可行性报告

焊接技术及自动化专业论证报告 一、背景分析 1、焊接技术现状与发展趋势 作为材料连接的特殊手段,焊接技术历史悠久,是衡量一个国家科学技术和工业发展水平的综合指标之一。现代工业生产中,焊接广泛应用于各工业部门,已成为机械制造工业和修理行业中重要的加工工艺,在国防、造船、化工、石油、冶金、电力、建筑、桥梁、车辆、机械、电子器件以及航空航天、海洋开发等方面焊接技术都发挥着重要的作用。在工业发达国家,焊接结构生产约占其钢铁总产量的45%左右。 (1)汽车工业焊接技术 汽车生产随国情在发生变化,对各种类型汽车的需求量也在急剧上涨,这对汽车的生产提出了更高要求。因汽车生产业的特点,焊接方法被广泛应用,如电阻焊、焊条电弧焊、特种焊、各种类型的气体保护焊、氧乙炔焊、钎焊等。 随着消费者要求的提高,在焊接技术上很多方面急需更新。如电阻点焊在控制模式、控制方法及决策方面以及弧焊技术方向的跟踪、高效方面需要加快更新的步伐,同时摩擦焊、激光焊也需要更新。 (2)机械金属结构行业 近年来,随着国家重点工程的发展和产品结构的调整,焊接用钢的种类品种大幅度增多,焊接结构的年产量也大幅度提高。焊接结构件以其独特的优势,已取代了铆接结构及铸造结构,成为重型机械行业金属结构设备的主导结构。

因产品型式多种多样,各种焊接工艺方法被广泛应用于不同的结构生产中。重型机械金属结构行业开始起步一般采用焊条电弧焊工艺方法。近年来,一些大型企业通过技术改造,相继应用双丝埋弧焊、双丝窄间隙埋弧自动焊、龙门式焊机、轧辊埋弧堆焊及气体保护焊等先进的焊接工艺方法,以此来满足产品制造的技术要求。 (3)汽车制造与工程机械焊接技术 近年来,我国造船业在技术水平、汽车制造与工程机械类型、建造质量以及建造周期等方面都取得了长足的进步,其中汽车制造与工程机械焊接技术的长足进步贡献突出,使我国造船业具备了一定的国际竞争能力。如造船生产中应用的高效焊接工艺、方法,基本满足了建造出口汽车制造与工程机械、海洋石油平台及各类非汽车制造与工程机械产品的需要;高效率焊接手段大幅度提高;船厂的焊接设备构成逐渐趋于合理;汽车制造与工程机械焊接新工艺、新技术、新材料得到应用与推广;高效焊接材料应用异军突起等,同时焊接技术上的创新也给壬造船业带来较大的经济效益和社会效益。 发展趋势:在国外船厂已经采用高新技术的前提下,我国在原有焊条电弧焊、二氧化碳气体保护焊、埋弧焊等常规焊接手段的基础上,结合国情汽车制造与工程机械焊接技术的发展方向应是努力提高造船焊接机械化、自动化水平,推广高效、节能型焊接设备,结合新产品的开发,研究应用焊接新工艺、新技术、新材料,进一步提高焊接生产效率。比如要解决好船用钢板切割下料的技术更新,要形成火焰切割、等离子切割和激光切割三足鼎立的局面;在焊接电弧跟踪技术方面也要有成熟的实用技术。

相关主题