搜档网
当前位置:搜档网 › 考虑空气阻力时大角度单摆的周期研究

考虑空气阻力时大角度单摆的周期研究

考虑空气阻力时大角度单摆的周期研究
考虑空气阻力时大角度单摆的周期研究

高中物理实验探究单摆的摆长与周期的关系学案

实验十三 探究单摆的摆长与周期的关系 考纲解读1.知道把单摆的运动看做简谐运动的条件.2.会探究与单摆的周期有关的因素.3.会用单摆测定重力加速度. 基本实验要求 1.实验原理 当偏角很小时,单摆做简谐运动,其运动周期为T =2π l g ,它与偏角的大小及摆球的质量无关,由此得到g =4π2 l T 2.因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值. 2.实验器材 带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺. 3.实验步骤 (1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处作上标记,如实验原理图所示. (3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r. (4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =t N (N 为全振动的次数),反复测3次,再算出周期T =T 1+T 2+T 33. (5)根据单摆周期公式T =2π l g 计算当地的重力加速度g =4π2 l T 2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值. (7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因. 规律方法总结 1.注意事项 (1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.

《实验:探究单摆周期与摆长的关系》参考教案

实验:探究单摆周期与摆长的关系 一、教学目标 1、知识与技能: (1)探究摆长对单摆周期的影响及其定量关系 (2)理解单摆周期与摆长的定量关系 (3)学会借助计算机处理实验数据 2、过程和方法: 体验用计算机辅助系统进行科学探究的过程,学会科学探究的基本思想和基本方法 3、情感、态度和价值观:科学研究的浓厚兴趣,培养科学探究能力,培养团队合作精神 二、教学重点与难点 重点:实验探究单摆周期与摆长的定量关系 难点:精确测量摆长 三、教学结构 四、教学过程 (一)情景导入,提出问题 复习单摆理想模型,分析描述单摆作简谐振动的条件。 (二)观察实验,做出猜测 1.两摆的振幅不同 2.两摆的质量不同 3.两摆的摆长不同 (三)设计方案与讨论 1:利用米尺和游标卡尺分别测量出细线长度和小球的半径,算出摆长。 2;让单摆做简谐运动,用秒表测出振动周期。(课件出示注意事项) 注意事项 1.为减小误差,测量时间时从摆球经过平衡位置计时,此处摆球速度最大,计时误差相对较小。 2.为提高测量准确度,采取叠加测量,即测量30个周期时间,再除以次数,也

可减小测量误差。 (四)学生实验,教师辅导 每个小组改变摆长测量10组摆长和周期的数据。(直接记录到电脑的Excel 表格中) 学生进行实验,老师辅导,约10分钟 (五)实验总结,数据分析 1、原始数据定性分析大致规律 学生观察采集到的原始数据,根据数据定性分析。 学生观察采集的数据,可以从数据中看到:随着摆长逐渐减小,单摆的周期也在逐渐减小。 2、作图并拟合曲线分析定量关系 从数据的变化我们已经可以看出,摆长的确是影响单摆周期的因素之一,而且他们的大致关系是摆长越小周期也越小。excell 中,提供了对表格数据的绘图功能,利用这个功能,可以用计算机快捷地把原始数据绘制成图象。 学生活动:在计算机上画出图象,用各种函数进行拟合一次函数、二次函数、三次函数、平方根函数、三次方根函数等,观察哪条函数图线拟合得最好。 学生观察结果:平方根函数拟合得最好。 3、转化参量提高定量分析精度 师:曲线的拟合程度高低看起来还不是非常直观,最好能把图线转化成直线,这样更能说明问题。可以把周期的数据平方,当然也可以选择把摆长的数据开平方根,都可以更加精确地证明我们的猜想。而且利用软件提供的功能,可以非常快捷地完成这个过程。 学生活动,分两大组分别用两种方法处理数据,重新绘制图线。 4、找到规律总结思想方法 学生分析:从重新绘制的拟合图线中可以看出,将周期平方或者将摆长开平方根以后得到的拟合图线与正比例函数拟合得非常好,从而表示出了周期与摆长的定量关系,那就是L T ∝2,或L T ∝。 (六)讨论摆长与其他因素的关系 1、设计实验讨论细节

单摆周期公式的推导与应用

单摆周期公式的推导与特殊应用 新课程考试大纲与2003年理科综合考试说明(物理部分)相比,有了很大的调整。知识点由原来的92个增加到了131个,并删去了许多限制性的内容。如在振动和波这一章,删去了“不要求推导单摆的周期公式”这一限制性的内容。这就说明,新课程考试大纲要求学生会推导单摆的周期公式。而查看《全日制普通高级中学教科书(试验修订本)物理第一册(必修)》,在关于单摆周期公式的推导中也仅仅讲到单摆受到的回复力F 与其位移x 大小成正比,方向与位移x 的方向相反为止。最后还是通过物理学家的研究才得出了单摆的周期公式。这样一来,前面的推导似乎只是为了想证明单摆的运动是简谐运动。 一.简谐运动物体的运动学特征 作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F -=,其中k 是比例系数。对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有: kx ma F -==,即x m k a - = 因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。因为x (或F )是变 量,所以a 也是变量,小球作变加速运动。把加速度a 写成22dt x d ,并把常数m k 写成2 ω得到 x dt x d 2 2 2ω-=。对此微分方程式,利用高等数学方法,可求得其解为)sin(?ω+=t A x 。这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为T m k π ω2= = ,从而得到作简谐运动物体的周期为k m T π 2=。 二.单摆周期公式的推导 单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。 当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。当摆球运动到任一点P 时,重力G 沿着圆弧 切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很 小﹝如θ<0 10﹞时,l x ≈ ≈θθsin ,所以单摆受到的回复力x l mg F - =,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数, 所以l mg 可以用常数k 来表示,于是上式可写成kx F -=。因此,在偏角θ很小时,单摆受到的回 复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。把l mg k =代入到简谐运动物体 B G G 图 1

2021届新高考物理第一轮复习课时强化训练:探究单摆周期与摆长的关系(解析版)

2021届新高考物理第一轮复习课时强化训练 探究单摆周期与摆长的关系 一、选择题 1、利用单摆测定重力加速度g时,下列情况中会导致所测得的g值偏大的是( ) A.小球质量过大 B.摆线太长 C.把悬线长和小球直径之和当作摆长 D.把悬线长当作摆长 解析:选C.由单摆周期T=2π l g ,得g= 4π2l T2 .由此可得,摆球 质量不影响测量结果,摆长l应是悬线长加上小球半径,加上小球直径使得l偏大,从而导致g偏大.故只有选项C正确. 2、(多选)某同学测得g值比当地标准值偏大,其原因可能是( ) A.测量摆长时忘记加上小球半径 B.振幅过小 C.将摆长当成了摆线长和球直径之和 D.摆动次数多记了一次

E .小球不是在竖直平面内摆动 F .摆球质量过大,空气阻力影响所致 解析:因为T =2π l g ,所以g =4π2l T2,由g 的表达式可知g 测偏大的原因可能是l 测偏大或T 测偏小,可知C 、D 正确,A 错;小球 做圆锥摆的周期T =2π lcos θg

D .选择密度较小的摆球,测得的重力加速度值误差较小 解析:为减小计时误差,应从摆球经过最低点的瞬间开始计时,A 错误;通过最低点100次的过程中,经历的时间是50个周期,B 错误;应选用密度较大的球以减小空气阻力的影响,D 错误;悬线的长度加可知记录l +r g 2π =T 摆球的半径才等于摆长,由单摆周期公式的摆长偏大时,测得的重力加速度也偏大,C 正确. 答案: C 4、单摆是为研究振动而抽象出的理想化模型,其理想化条件是 ( ) A .摆线质量不计 B .摆线长度不伸缩 C .摆球的直径比摆线长度短得多 D .只要是单摆的运动就是一种简谐运动 解析:单摆由摆线和摆球组成,摆线只计长度不计质量,摆球只计质量不计大小,且摆线不伸缩,A 、B 、C 正确.但把单摆作为简谐运动来处理是有条件的,只有在摆角很小(θ<10°)的情况下才能视单摆运动为简谐运动. 答案:ABC

单摆周期公式及影响单摆周期的因素研究

单摆周期公式及影响单摆周期的因素研究 摘要:结合理论知识,基础物理实验,构建线性数学模型。对单摆运动进行分析。其中,理论部分主要依据高等数学及数学物理方法的知识,对单摆运动周期公式进行论证;实验部分主要通过改变单摆摆线长度进行实验;观察、分析单摆运动规律。从而验证单摆周期公式。并对影响单摆周期的因素展开研究。最后总结出影响单摆周期的因素。 关键词:数学模型;单摆运动;周期公式 单摆运动问题是一个古老的问题,无论是中学物理还是大学物理,我们都在学习研究单摆。作为一个重要的理想物理模型,单摆的运动周期规律和实验研究在生产生活中意义重大。单摆问题是物理学中经典问题。从阅读物理学史并可知道,早在1583 年,十九岁的伽利略(1564—1642)在比萨教堂祈祷时注意到因被风吹而摆动的大灯,他利用自己的脉搏来测定大灯的摆动周期,发现了摆的等时性。但现在这个故事的真实性受到怀疑,因为比萨大教堂所保留的许多相关历史文献都表明该吊灯是在伽利略二十三岁那年才首次安装的。专家指出,伽利略是于1602 年注意到单摆运动的等时性,不过伽利略误认为在大摆动条件下等时性也成立,他说:“物体从直立圆环上任一点落到最低位置的时间相同。”随后吉多彼得做实验发现这个结论与实验不符,伽利略解释说可能是由于摩擦力。伽利略从实验中得出单摆周期与摆长的平方根成正比。他还指出周期与摆球质量无关。他说:“因此我取两个球,一个是铅的而另一个是软木的,前者比后者重100 多倍,用两根等长细线把它们悬挂起来、把每一个球从铅直位置拉到旁边,我在同一时刻放开它们,它们就沿着以这些等长线为半径的圆周下落,穿过铅垂位置,并且沿同一路径返回。”最早系统地研究单摆的是惠根斯(ChristiaanH uygens)。由于当时实验技术条件的落后,重力加速度在惠根斯之前是很难精确测出来的,所以惠更斯不可能从实验中总结出或猜出单摆周期公式的系数π2。事实上,反过来重力加速度是1659 年惠更斯根据单摆周期公式首次精确测出来的。他在巴黎用一个周惠更斯期为2s的单摆(即秒摆),测出摆长为 3.0565英尺,从而计算出2 /2.9s g=。惠更斯于1657 年取得了关于摆钟的专利权。惠更斯最伟大的著作《摆式时钟或用于时钟上的摆的运动的几何证明》于1673 年在巴黎问世。这本书共分5部分,第一与或第五部分讨论时钟,第二部分讨论质点在重力作用下的自由落体运动以及沿光滑平面或曲面所作的约束运动,并证明了在大摆动下约束在旋轮线上的物体等时降落的性质,第三部分建立渐屈线理论,第四部分解决了复摆问题。这是人类第一次系统地研究约束运动的论著。1659 年,在对单摆的研究中,他导出了摆动周期和沿着摆的长从静止开始的自由落体时间之间

探究单摆周期与哪些因素有关

探究单摆周期与哪些因素有关(单摆第2课时教学设计) 长兴华盛虹溪中学沈卫忠 一、教材分析和处理 本节内容是通过实验探究单摆周期规律,是学生自主设计、探索的好素材,在本章中有着重要的地位。《课程标准》要求学生通过实验,探究单摆的周期与摆长的关系。会用单摆测定重力加速度。为了研究周期与各种因素是否有关以及有怎样的关系,可以采用控制变量的方式进行定性和定量相结合的方案来研究这些关系。本节课的教学力求贯彻新课程体验,将课本演示实验改为探究性的学生分组实验。首先提出单摆的周期可能与哪些因素有关,让学生猜想,并设计实验验证让学生在获得知识的同时,体验科学探究过程,了解科学研究方法,发展探索自然的兴趣与热情,培养实验探究能力和交流协作能力。 二、学情分析 1.通过前面的学习,学生已经知道了单摆的概念,单摆的回复力等知识。也了解了单摆做简谐运动的条件。 2.高二学生已有一定的物理学科方法,如观察实验,控制实验,假说方法,从现象归纳规律等,可以实现教材渗透的方法教育意图 3.可能存在的困难:学生对实验的数据处理。 三、教学目标 1.知识与技能目标 (1)知道单摆周期与哪些因素有关。 (2)知道单摆的周期公式。 (3)能运用单摆的周期公式解答有关实际问题。 2.过程与方法目标 (1)通过单摆振动周期规律探究,培养学生猜想能力,实验设计能力,数据处理能力,交流协作能力。 (2)通过单摆周期公式的应用,培养学生运用物理知识解答实际问题的能力。 3.情感态度与价值观目标 (1)结合物理学史介绍物理学家对单摆的研究,法展学生对自然的好奇性,激发学生乐于探究自然的奥秘。 (2)在单摆周期规律的探究中,培养学生的交流协作精神,使学生体验科学探究的艰辛和喜悦。 四、教学重点和教学难点 1.教学重点:自足探究单摆的周期与哪些因素有关。 2.教学难点:定量实验,得出单摆的周期T与L的关系并对数据的处理。 五、教学方法和教学手段 1.教学方法:运用物理“科学探究”教学模式实施教学。 2.教学手段:学生实验与演示实验结合。 六、教学用具: 铁架台小钢球小木球长1m左右的细线秒表各25套

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

物理常见公式的推导

(x 为伸长量或压缩量;k 为劲度系数,只与弹簧的原长、粗 细和材料有关 ) (g 随离地面高度、纬度、地质结构而变化;重力约等于地 面上物体受到的地球引力 ) 3、 求F 1 > F 2两个共点力的合力:利用平行四边形定则。 注意:(1)力的合成和分解都均遵从平行四边行法则。 (2)两个力的合力范围: F i — F 2 F F I + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、 两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体, 所受合外力为 零。 F 合 =0 或 :F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零. (只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力:f= F N 说明:①F N 为接触面间的弹力,可以大于 G;也可以等于G;也可以小于G ② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢 以及正压力 N 无关. 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解, 不与正压力成正比 大小范围:O f 静f m (f m 为最大静摩擦力,与正压力有关 ) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b 、摩擦力可以做正功,也可以做负功,还可以不做功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= gV (注意单位) 7、 万有引力: F=G 口呼 2 r (1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体) 。 (2) G 为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3) 在天体上的应用:(M--天体质量,n —卫星质量,R--天体半径,g--天体表面重力加 速度,h —卫星到天体表 面的高度) 高中物理公式 、力胡克定律: F = kx 1、 重力: G = mg

单摆周期原理及公式推导

关于单摆的回复力 ①在研究摆球沿圆弧的运动情况时,要以不考虑与摆球运动方向垂 直的力,而只考虑沿摆球运动方向的力,如图所示. ②因为F′垂直于v,所以,我们可将重力G 分解到速度v的方向 及垂直于v的方向.且G1=Gsin θ=mg sin θG2=G cos θ=mg cos θ ③说明:正是沿运动方向的合力G1=mg sin θ提供了摆球摆动的回 复力. 单摆做简谐运动的条件 ①推导:在摆角很小时,sin θ=l x 又回复力F=mg sin θ F=mg ·l x (x 表示摆球偏离平衡位置的位移,l表示单摆的摆长) ②在摆角θ很小时,回复力的方向与摆球偏离平衡位置的位移方向相 反,大小成正比,单摆做简谐运动. ③简谐运动的图象是正弦(或余弦曲线),那么在摆角很小的情况下,既然单摆做的是简谐运动,它振动的图象也是正弦或余弦曲线. 单摆周期公式推导 设摆线与垂直线的夹角为θ, 在正下方处时θ=0,逆时针方向为正,反之为负。 则 摆的角速度为θ’( 角度θ对时间t 的一次导数), 角加速度为θ’’( 角度θ对时间t 的二次导数)。对摆进行力学分析, 由牛顿第二运动定律,有 (m)*(l)* θ’’ = - mg*sin θ 即θ’’+ (g/l )*sin θ = 0 令 ω = (g/l)1/2 ,有 θ’’ + (ω2)*sin θ = 0 当 θ很小时, sin θ ≈ θ (这就是考虑单摆运动时通常强调“微”摆的原因) 这时, 有 θ’’ + (ω^2)*θ ≈ 0 该方程的解为 θ = A*sin(ωt+φ) 这是个正弦函数,其周期为 T = 2π/ω = 2π*√(l/g)

物理常见公式的推导

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 1、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体, 所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π

实验:探究单摆的摆长和周期的关系 (2)

实验十四 探究单摆的摆长与周期的关系 1.实验原理 当偏角很小时,单摆做简谐运动,其运动周期为T =2π l g ,它与偏角的大小及摆球的质量无关,由此得到g =4π2l T 2.因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度 g 的值. 2.实验器材 带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1 m)、秒表、毫米刻度尺和游标卡尺. 3.实验步骤 (1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆. (2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图1所示. 图1 (3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r . (4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =t N (N 为全振动的次数),反复测3次, 再算出周期的平均值T =T 1+T 2+T 3 3 .

(5)根据单摆周期公式T =2π l g ,计算当地的重力加速度g =4π2l T 2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值. (7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因. 1.注意事项 (1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°. (2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放. (3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大. ②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次. (4)本实验可以采用图象法来处理数据.即用纵轴表示摆长l ,用横轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =g 4π2.这是在众多的实验中经常采 用的科学处理数据的重要方法. 2.数据处理 处理数据有两种方法: (1)公式法:测出30次或50次全振动的时间t ,利用T =t N 求出周期;不改变摆长,反复测量 三次,算出三次测得的周期的平均值T ,然后利用公式g =4π2l T 2求重力加速度. (2)图象法:由单摆周期公式不难推出:l =g 4π2T 2,因此,分别测出一系列摆长l 对应的周期T , 作l -T 2的图象,图象应是一条通过原点的直线,如图2所示,求出图线的斜率k =Δl ΔT 2,即 可利用g =4π2k 求重力加速度. 图2

单摆周期公式的推导

单摆周期公式的推导 2010-12-16 14:50 来源:文字大小:【大】【中】【小】 平动非惯性参考系中单摆的周期问题在一些竞赛题中经常考到,学生们多是运用等效的物理思想,求得等效重力加速度,代替惯性参考系中在只有重力和摆线张力作用下的单 摆的周期公式中的重力加速度值,从而得到答案。这里的加速度是指除摆线的张力外,摆球所受其他力的合力所产生的加速度。下面举两个例子试说明之: 例以加速度向上加速的电梯顶上挂一摆线长为的单摆,摆球质量为,则单摆的周期为? 图 解:摆球所受的除摆线张力之外的力只有竖直向下的重力和竖直向下的惯性力 ,如图1所示,这两个力的合力所产生的加速度即为等效重力加速度,为, 代替上式中的,即得此单摆的周期。 例以加速度向右加速运动的小车顶上挂一摆长为的单摆,摆球质量为,则单摆的周期为? 图 解:摆球所受的除摆线张力之外的力只有竖直向下的重力和水平向左的惯性力 ,如图所示,这两个力的合力所产生的加速度即为等效重力加速度,为, 代替上式中的,即得此单摆的周期。 上述两例均是从等效原理出发,找到等效重力加速度代入公式即得。但很多时候学生往往不能接受这种等效处理方式,认为有些牵强。而且这种做法也的确是机械的代公式求答案,对学生思维能力的提高并没有提供很好的帮助。

笔者在给竞赛班学生上课时给出了平动非惯性参考系中单摆周期公式的一般性推导,其过程如下: 如图所示,为惯性参考系,为相对于系以加速度 运动的非惯性平动参考系,其中为在惯性参考系中的坐标。在 系中,摆球受重力,摆线张力及惯性力三个力的作用。 如图,设摆球在平衡位置时偏离竖直方向角,摆球在平衡位置时切向力为零 则有方程 又因为 解得 如图所示,在系中,假设摆球任一时刻相对于平衡位置的摆角为 摆球受重力,摆线张力及惯性力三个力的作用。切向力与角位移反号,促使小球返回平衡位置。设为摆角角加速度,则沿摆球运动切向有方程

物理常见公式的推导

物理常见公式的推导 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 1 、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F1-F2 F F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物 体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O f静 f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= gV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π

单摆的周期实验报告

深圳大学实验报告课程名称:大学物理实验(三) 课程编号: 实验名称:基础设计性实验2 单摆的运动周期 学院: 组号指导教师: 报告人:学号:班级: 实验地点实验时间: 实验报告提交时间:

一、实验设计方案 、实验目的 测量单摆的周期 研究摆线长短、摆线粗细、摆球质量或摆球体积对周期的影响 、实验设计 1.由实验原理可知,单摆运动的本质是简谐运动。它的回复力是右重力的分力提供,一般来说,单摆运动的摆动角度范围是:α<5°。 测量单摆周期 思路:单摆运动的本质是简谐运动,因此它的运动具有周期性,往返时间相同。选择一个线长,摆球质量都一定的摆锤(L=75cm m=15g),测摆锤往返N次的时间T,则此单摆的周期为:t=T/N. 但实验室中的光电门传感器记录的数据是单摆往返一个周期所用的时间,因此可以利用测量多个周期,求平均周期。 单摆的周期。 要研究单摆的周期跟某一变量是否有关系,必须使其他变量或因素不变,因此须采取控制变量法。 单摆的周期是否与摆线长度有关? 思路:让摆球的质量(m=10g)、体积不变,摆动的幅度不变,摆线的粗细不变,取3根相同材料、长度不同(L1=47cm, L2=64cm, L3=75cm)的摆线和摆球分别从某一高度释放,α<5°,利用传感器和Datastudio获得三次摆动的周期,进行比较。 单摆的周期是否与摆球的质量有关? 思路:众可能制约因素不变,取摆长相同(l=75cm)、质量不同(m1=5g, m2=10g, m3=15g)的摆球从同一高度释放。利用传感器和Datastudio获得单摆周期,进行比较。 单摆周期是否与摆线粗细有关? 思路:众可能制约因素不变,取摆长相同、质量相同、摆线粗细不同(1-6根线)的摆球从同一高度释放,利用传感器和Datastudio获得单摆周期,进行比较 选用仪器 仪器名称型号主要参数用途 750接口CI7650阻抗1 MΩ。最大的有效输入电压范围±10 V数据采集处理 计算机和DataStudio CI6874——数据采集平台、

单摆周期公式理解及应用专题

单摆周期公式理解及的应用专题 1、准确把握摆长的概念。 2014-11-9(2特优) 如图1所示,摆球运动的轨迹是一个圆弧,所以单摆做的是一个非完整的圆周运动,而摆长则为该圆周运动的轨道半径。即:“L”为质点到圆心的距离。 【例1】一个在夏天走时很准的钟,若到冬天,则走时是变慢还是变快? 【例2】【例2】在以下三个问题中均不计空气阻力: (1)如图2所示,长为L的轻绳一端固定于天花板上的O点,另一端系一小球(可看成质点),在悬点的正下方L/3处有一钉子,今将小球拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 (2)如图3所示,两根长为L的轻绳一端分别固定于天花板上的A点和B点,另一端共同系一小球(可看成质点),平衡时,两绳与水平的夹角均为θ。今将小球沿垂直纸面向外拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 (3)如图4所示,三绳长均为L,上面两绳一端固定在天花板上,拉直时与水平成θ角,今将小球沿垂直纸面向外拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 【例3】在光滑的水平导轨上有一个滚轮A,质量为2m,轴上系一根长为L的轻质细线,下端悬一质量为m的摆球B,A、B的直径均远小于L,如图5所示。今将B球稍微拉离竖直位置后释放,摆球作小幅度的振动,不计空气阻力,求其振动周期。 2、准确把握重力加速度的概念。 根据公式 2 T=可知,单摆的周期与重力加速度有关,同时在教学中,我们也带领学生通过实验测定了本地的重力加速度的数值,然而不同地点的重力加速度值是有差异的,所以即使是同一个完全相同的单摆,在不同的地点摆动时,周期也存在差异。 【例4】一个在广州走时很准的摆钟,若到了莫斯科,则走时是变慢还是变快? 【例5】一个在山脚下走时很准的摆钟,若到山顶上,则走时是变慢还是变快? 【例6】一个在地球表面上走时很准的摆钟,若到了月球表面上,则走时是变慢还是变快? 3、单摆周期公式等效思想在单摆和类单摆问题中的应用。 3.1 平动非惯性参考系中单摆周期公式的一般性推导 如图所示,K xoy -为惯性参考系,K x o y '''' -为相对于K系以加速度 a。=a x + a y 运动的非惯性平动参考系,其中00 (,) x y为o'在惯性参考系中的坐标。在K'系中, 摆球受重力mg,摆线张力 T F及惯性力三个力的作用。

单摆周期公式的一般性推导

单摆周期公式的一般性推导 平动非惯性参考系中单摆的周期问题在一些竞赛题中经常考到,学生们多是运用等效的物理思想,求得等效重力加速度a',代替惯性参考系中在只有重力和摆线张力作用下的单 摆的周期公式2 T=中的重力加速度值g,从而得到答案。这里的加速度a'是指除摆 线的张力外,摆球所受其他力的合力所产生的加速度。下面举两个例子试说明之: 例1以加速度a向上加速的电梯顶上挂一摆线长为l的单摆,摆球质量为m,则单摆的周期为? 图1 解:摆球所受的除摆线张力之外的力只有竖直向下的重力mg和竖直向下的惯性力ma,如图1所示,这两个力的合力所产生的加速度即为等效重力加速度,为a g a '=+,代替上 式中的g ,即得此单摆的周期2 T=。 例2以加速度a向右加速运动的小车顶上挂一摆长为l的单摆,摆球质量为m,则单摆的周期为? 图2 解:摆球所受的除摆线张力之外的力只有竖直向下的重力mg和水平向左的惯性力ma, 如图2 所示,这两个力的合力所产生的加速度即为等效重力加速度,为a'= a a a a

替上式中的g ,即得此单摆的周期2T = 上述两例均是从等效原理出发,找到等效重力加速度代入公式即得。但很多时候学生往往不能接受这种等效处理方式,认为有些牵强。而且这种做法也的确是机械的代公式求答案,对学生思维能力的提高并没有提供很好的帮助。 笔者在给竞赛班学生上课时给出了平动非惯性参考系中单摆周期公式的一般性推导,其过程如下: 如图3所示,K x o y -为惯性参考系,K x o y ''''-为 相对于K 系以加速度000()a x i y j =+ 运动的非惯性平动参考系,其中00(,)x y 为o '在惯性参考系中的坐标。在K '系中,摆球受重力mg ,摆线张力T F 及惯性力00()f m x i y j =-+ 惯三个力的作用。 如图3,设摆球在平衡位置时偏离竖直方向0θ角,摆球在平衡位置时切向力为零 则有方程 0000()sin cos (1)mg my mx θθ+= 又因为 2 200sin cos 1 (2)θθ+= 解(1)(2)得 0sin θ= 0cos (4)θ= x y x ' 图3

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

高中物理单摆周期公式的理解和应用专题辅导

单摆周期公式的理解和应用 河南 黄正平 单摆是一种理想的物理模型,它由理想化的摆球和摆线组成.摆线由质量不计、不可伸缩的细线提供;摆球密度较大,而且球的半径比摆线的长度小得多,这样才可以将摆球看做质点,由摆线和摆球构成单摆.在满足偏角α<10°的条件下,单摆的周期g l 2T π=.从公式中可看出,单摆周期与振幅和摆球质量无关.从受力角度分析,单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大,回复力越大,加速度(gsin α)越大,在相等时间内走过的弧长也越大,所以周期与振幅、质量无关,只与摆长l 和重力加速度g 有关.在有些振动系统中l 不一定是绳长,g 也不一定为9.8m/s 2,因此出现了等效摆长和等效重力加速度的问题. 物理上有些问题与单摆类似,经过一些等效可以套用单摆的周期公式,这类问题称为“等效单摆”.等效单摆在生活中比较常见.除等效单摆外,单摆模型在其他问题中也有应用. 一、等效单摆 等效单摆分等效摆长单摆、等效重力加速度单摆,以及摆长、重力加速度双重等效单摆.等效单摆的周期公式为g L 2T ' 'π=. 1、等效摆长单摆.等效摆长不再是悬点到摆球球心的距离,但g ′=g .摆长L ′是指摆动圆弧的圆心到摆球重心的距离,摆动圆弧的圆心即为等效单摆的悬点. 例1 双线摆由两根长为L 的细线下端拴一质量为m 的小球构成,两线夹角为2α,如图1所示,今使摆球在垂直纸面的平面内做小幅度摆动,求其周期. 解析:当双线摆在垂直纸面的平面内做小幅度摆动时可以等效为以AB 的中心为悬点,OO ′长为摆长的单摆,其等效摆长α='cos L L ,故此摆周期g cos L 2T απ=。 2、等效重力加速度单摆.该类单摆的等效重力加速度g ′≠g ,但摆长仍为悬点到球心的距离.等效重力加速度g ′与单摆所在的空间位置、单摆系统的运动状态和单摆所处的物理环境有关. (1)公式中的g ′由单摆所在的空间位置决定,由2R M G g ' ='知,g ′随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值g ′代入公式,即g 不一定等于9.8m/s 2. (2)g ′由单摆系统的运动状态决定,等效重力加速度等于摆球处于平衡位置不振动时,等效摆长“绳子”上拉力对摆球产生的加速度.具体求法为等效重力加速度g ′等于摆 球相对系统静止在平衡位置时摆线的张力(视重)T 与摆球质量m 的比值,即m T g ='.

《探究影响单摆周期的因素实验》实验装置的改进

《探究影响单摆周期的因素实验》实验装置的改进 原演示装置的缺点与不足: 传统的单摆实验演示装置由一个铁架台的横杆上系一个细绳,下面吊一个小钢球组成,实验仪器组成虽然简单,但直观性差,测量误差较大,一是摆角不能定量的显示,二是单摆是否在同一竖直平面运动不容易判断,三是平衡位置不好确定,四是摆长调整比较费事。改进后的实验原理: 改进后的装置很好的解决了以上问题:把一个较大的木板固定在铁架台的立杆上,木板上固定上白纸,将一个刻度清晰的量角器挂在铁架台的横杆上,在白纸的正中间画一条竖直向下的直线,使量角器的900的位置刚好和画的直线重合,在竖直线的两边各取10度角画出摆角限制线。将装置竖直放置,然后将系有小球的单摆的摆线一端穿过横杆的小孔夹在固定在铁架台上的夹子上,使小球静止时摆线与在白纸上画的直线重合。根据量角器上的度数我们可以将小球拉离平衡位置10度,或8度等来进行实验。同时还可以通过观察小球在摆动过程中离木板的距离来确定它是否在同一竖直面内运动,还可以准确的定位小球每次通过平衡位置就是在过量角器的90度的竖直线的位置,通过夹子的控制使摆长的调整更为方便。用改进后的装置来探究影响单摆周期的因素和利用单摆测当地的重力加速度都是很实用的。 改进实验后能解决的问题是: 1、以往在课堂上老师给学生演示单摆做简谐运动是摆角小于10度,不是很准确,我这样改进后,老师在做实验时很容易准确的确定摆角,不但直观而且准确。 2、在课堂上演该实验时,小球往往会做圆锥摆运动,我们又不易观察到,这样会影响到实验效果,我这样改进后可以很容易确定小球是否在一个竖直平面内运动,从而避免了由于小球做圆锥摆运动而影响到实验结论。 3、在实验中可以准确的定位小球每次通过平衡位置就是在过量角器的90度的竖直线上。 4、老师在演示该实验时往往会把细线的一端系在铁架台上,当要改变摆长时,很费事也费时,所以我这样改进后可以通过调节夹子夹住细线的位置不同很容易来改变摆长也便于摆长的测量。

相关主题