搜档网
当前位置:搜档网 › 最小二乘法曲线拟合原理及matlab实现

最小二乘法曲线拟合原理及matlab实现

最小二乘法曲线拟合原理及matlab实现
最小二乘法曲线拟合原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理:

给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。

常见的曲线拟合方法:

1.使偏差绝对值之和最小

2.使偏差绝对值最大的最小

3.使偏差平方和最小

最小二乘法:

按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:

1. 设拟合多项式为:

2. 各点到这条曲线的距离之和,即偏差平方和如下:

3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到

了:

.......

4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:

5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。

MATLAB实现:

MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。

调用格式:p=polyfit(x,y,n)

[p,s]= polyfit(x,y,n)

[p,s,mu]=polyfit(x,y,n)

x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。

[p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。

polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x)

[y,DELTA]=polyval(p,x,s)

y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。

[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。

如下给定数据的拟合曲线:

x=[,,,,,],

y=[,,,,,]。

解:MATLAB程序如下:

x=[,,,,,];

y=[,,,,,];

p=polyfit(x,y,2)

x1=::;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

运行结果如图1

计算结果为:

p =

即所得多项式为y=^2++

图1 最小二乘法曲线拟合示例

对比检验拟合的有效性:

例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。

在MATLAB中输入如下代码:

clear

x=0::pi;

y=sin(x);

[p,mu]=polyfit(x,y,9)

x1=0::2*pi;

y1=sin(x1);%实际曲线

y2=polyval(p,x1);%根据由区间0到pi上进行拟合得到的多项式计算0到2pi上的函数值,%需要注意的是polyval()返回的函数值在pi到2pi上并没有进行拟合

plot(x1,y2,'k*',x1,y1,'k-')

运行结果:

p =

mu =

R: [10x10 double]

df: 22

normr:

MATLAB的最优化工具箱还提供了lsqcurvefit()函数命令进行最小二乘曲线拟合(Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense)。

调用格式:

x = lsqcurvefit(fun,x0,xdata,ydata)

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)

x = lsqcurvefit(problem)

[x,resnorm] = lsqcurvefit(...)

[x,resnorm,residual] = lsqcurvefit(...)

[x,resnorm,residual,exitflag] = lsqcurvefit(...)

[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)

[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)

[x,resnorm,residual,exitflag,output,lambda,jacobian] =

x0为初始解向量;xdata,ydata为满足关系ydata=F(x, xdata)的数据;

lb、ub为解向量的下界和上界,若没有指定界,则lb=[ ],ub=[ ];

options为指定的优化参数;

fun为拟合函数,其定义方式为:x = lsqcurvefit(@myfun,x0,xdata,ydata),

其中myfun已定义为 function F = myfun(x,xdata)

F = … % 计算x处拟合函数值fun的用法与前面相同;

resnorm=sum ((fun(x,xdata)-ydata).^2),即在x处残差的平方和; residual=fun(x,xdata)-ydata,即在x处的残差;

exitflag为终止迭代的条件;

output为输出的优化信息;

lambda为解x处的Lagrange乘子;

jacobian为解x处拟合函数fun的jacobian矩阵。

例:lsqcurvefit()优化程序

Data = ...

[

];

t = Data(:,1);

y = Data(:,2);

% axis([0 2 6])

plot(t,y,'ro')

title('Data points')

%We would like to fit the function y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t) to the data

%The lsqcurvefit function solves this type of problem easily.

%To begin, define the parameters in terms of one variable x:

%x(1) = c(1)

%x(2) = lam(1)

%x(3) = c(2)

%x(4) = lam(2)

%Then define the curve as a function of the parameters x and the data t: F = @(x,xdata)x(1)*exp(-x(2)*xdata) + x(3)*exp(-x(4)*xdata);

x0 = [1 1 1 0];

[x,resnorm,~,exitflag,output] = lsqcurvefit(F,x0,t,y)

hold on

plot(t,F(x,t))

hold off

Fsumsquares = @(x)sum((F(x,t) - y).^2);

opts = optimset('LargeScale','off');

[xunc,ressquared,eflag,outputu] = ...

fminunc(Fsumsquares,x0,opts)

fprintf(['There were %d iterations using fminunc,' ...

' and %d using lsqcurvefit.\n'], ...

,

fprintf(['There were %d function evaluations using fminunc,' ...

' and %d using lsqcurvefit.'], ...

,

type fitvector

x02 = [1 0];

F2 = @(x,t) fitvector(x,t,y);

[x2,resnorm2,~,exitflag2,output2] = lsqcurvefit(F2,x02,t,y)

fprintf(['There were %d function evaluations using the 2-d ' ...

'formulation, and %d using the 4-d formulation.'], ...

,

x0bad = [5 1 1 0];

[xbad,resnormbad,~,exitflagbad,outputbad] = ...

lsqcurvefit(F,x0bad,t,y)

hold on

plot(t,F(xbad,t),'g')

legend('Data','Global fit','Bad local fit','Location','NE')

hold off

fprintf(['The residual norm at the good ending point is %f,' ...

' and the residual norm at the bad ending point is %f.'], ...

resnorm,resnormbad)

displayEndOfDemoMessage(mfilename)

拟合效果如下:

直线的最小二乘拟合:

y=a+bx

式中有两个待定参数,a代表截距,b代表斜率。对于等精度测量所得到的N组数据(xi,yi),i=1,2……,N,xi值被认为是准确的,所有的误差只联系着yi。下面利用最小二乘法把观测数据拟合为直线。

用最小二乘法估计参数时,要求观测值yi的偏差的加权平方和为最小。对于等精度观测值的直线拟合来说,可使下式的值最小:

上式分别对a、b求偏导得:

整理后得到方程组:

解上述方程组便可求得直线参数a和b的最佳估计值。

1、可看成是一阶多项式拟合,跟前面曲线拟合方法一样。

2、利用linefit()函数进行最小二乘的直线拟合

使用:

clear

x=[ 1 2 3];

y=[ 8 ];

[k,b]=linefit(x,y) %得到斜率k和常数b

y1=polyval([k,b],x);

plot(x,y1,’k-’,x,y,’k*’)

MATLAB一元到多元线性回归方程的计算和检验_百度文库

(研究生数理统计)多元线性回归及显着性检验Matlab程序(完美版)_百度文库

【VIP专享】MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合 2015.4.19 19:21 【目录】 1. 线性拟合函数:regress() 2. 多项式曲线拟合函数:polyfit( ) 3. 多项式曲线求值函数:polyval( ) 4. 多项式曲线拟合的评价和置信区间函数:polyconf( ) 5. 稳健回归函数:robustfit( ) §1曲线拟合 实例:温度曲线问题 气象部门观测到一天某些时刻的温度变化数据为: t 0 1 2 3 4 5 6 7 8 9 10 T 13 15 17 14 16 19 26 24 26 27 29 试描绘出温度变化曲线。 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型:y=Xβ+ε; β是p′1的参数向量;ε是服从标准正态分布的随机干扰的n′1的向量;y为n′1的向量;X为n′p矩阵。bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1)

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

最小二乘法的基本原理和多项式拟合

最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 = 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法 . 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) [ ] ∑ = = - m i i i y x p 0 2 min ) (

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

最小二乘法圆拟合

最小二乘法圆拟合 1.最小二乘法圆拟合原理 理论 最小二乘法(Least Square Method )是一种数学优化技术。它通过最小化误差的平方和找到一组数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 最小二乘圆拟合模型公式推导 在二维平面坐标系中,圆方程一般可表示为: ()22020)(r y y x x =-+- (1) 对于最小二乘法的圆拟合,其误差平方的优化目标函数为: [] 2 12020)()(∑=--+-=n i i i r y y x x S 式中:()i i y x ,n i ,...,2,1=为圆弧上特征点坐标;n 为参与拟合的特征点数。 在保持这优化目标函数特征的前提上,我们需要对其用一种稍微不同的改进方法来定义误差平方,且其避免了平方根,同时可得到一个最小化问题的直接解,定义如下: [] 2 122020)()(∑=--+-=n i i i r y y x x E (2) 则(2)式可改写为: ( )2 12 20 0220 02 22∑=-+-++-=n i i i i i r y y y y x x x x E (3) 令,02y B -=,02x A -=22020r y x C -+= 即(3)式可表示为:

() 2 22∑=++++=n i i i i i C By Ax y x E 由最小二乘法原理,参数A ,B ,C 应使E 取得极小值。根据极小值的求法,A ,B 和C 应满足 () 020 22=++++=??∑=i n i i i i i x C By Ax y x A E (4) () 020 22=++++=??∑=i n i i i i i y C By Ax y x B E (5) () 020 22=++++=??∑=n i i i i i C By Ax y x C E (6) 求解方程组,先消去参数C ,则 式()()∑=*-*n i i x n 064得 ( )0 02 202 030000002=+-++?? ? ??-+??? ??-∑∑∑∑∑∑∑∑∑∑==========n i i n i i i n i i i n i i n i n i i i n i i i n i n i i i n i i x y x y x n x n B y x y x n A x x x n (7) 式()()∑=*-*n i i y n 065得 ( )0 02 202 030002000=+-++?? ? ??-+??? ??-∑∑∑∑∑∑∑∑∑∑==========n i i n i i i n i i i n i i n i n i i i n i i n i n i i i n i i i y y x y x n y n B y y y n A y x y x n (8) 令 ??? ??-=∑∑∑===n i n i n i i i i x x x n M 000211(9) ?? ? ??-==∑∑∑===n i n i i i n i i i y x y x n M M 0002112(10) ?? ? ??-=∑∑∑===n i n i i i n i i y y y n M 000222(11)

基于MATLAB的数值计算_插值及曲线拟合

基于MATLAB的数值计算一插值及曲线拟合摘 要:本文基于MATLA的数值计算功能,重点介绍了插值及曲线拟合的应用及特点. 关键词:MATLAB;数值计算;插值及曲线拟合本文从MATLAB的功能特点出发,阐述了它在数值计算中的基本要素和相关函数,以工程计算中常用到的数据插值和曲线拟合为主旨,通过三个实例,验证、分析了用MATLAB进行数据的插值和曲线拟合的合理性、可靠性和 准确性。 1插值及曲线拟合 插值与拟合是来源于实际、又广泛应用于实际的两种重要方法.随着计算机的不断发展及计算水平的提高,它们在国民经济和科学研究等方面扮演着越来越重要的角色。 1 .1插 值 插值计算在数据拟合和数据平滑等方面应用普遍。插值计算的目的是通过离散的数据点来获得更为丰富的信息,它可以细分为一维插值和二维插值。一维插值是在线的方向上对数值点进行插值:二维插值则可以理解为在面的方向上进行插值。比较典型的例子就是在绘图过程中,当绘制二维曲线时,利用一维插值从少量数据中获得足够的信息进行描点;在绘制三维曲线时,则必须对两个方向的数据进行插值来获得其他点的信息。 1.2曲线拟合 很多的时候,在工程研究与计算中得到的原始数据往往只是在某些点上的离散值,它们所代表的函数关系不易得出一个容易表示的数学表达式;或者所得出的数据的函数表达式比较复杂,不易计算,这样在计算这些函数其他所需要的数值方面就带来了诸多不便.解决这个难题的方法之一就是利用一些性质相对“好”的简单函数,在某种规定和标准之下,去拟合或逼近这些“困难”函数,然后通过这些简单函数去获得所希望得到的结果。曲线拟合根据拟合方法的不同,有参数拟合和非参数拟合。参数拟合,曲线不通过所有点,采用最小二乘法:非参数拟合,曲线通过所有点,采用插值法。 2插值及曲线拟合应用实例 2. 1一维插值与拟合应用 一维插值是进行数据分析和曲线拟合的重要手段,interp 1函数使用多项式技术,用多项式函数拟合所提供的数据,计算目标插值点上的

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合 实际中,通常需要处理实验或测量得到的离散数据(点)。插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。 1.如果要求近似函数经过所已知的所有数据点,此时称为插值问 题(不需要函数表达式)。 2.如果不要求近似函数经过所有数据点,而是要求它能较好地反 映数据变化规律,称为数据拟合(必须有函数表达式)。 插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。【拟合】要求得到一个具体的近似函数的表达式。 因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值 根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值) (2)分段线性插值 (3)Hermite (4)三次样条插值 Matlab 插值函数实现: (1)interp1( ) 一维插值 (2)intep2( ) 二维插值 (3)interp3( ) 三维插值 (4)intern( ) n维插值 1.一维插值(自变量是1维数据) 语法:yi = interp1(x0, y0, xi, ‘method’) 其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。 注:(1)要求x0是单调的,xi不超过x0的范围; (2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

最小二乘法数据拟合

最小二乘法数据拟合 设给定数据),(i i f x ,),,2,1(m i = 在集合},,,{Span 10n ??? =Φ中找一个函数 )()(* 0** x a x S k n k k ?∑==,)(m n < (1) 其误差是 i i i f x S -=)(*δ,),,2,1(m i = (2) 使)(* x S 满足 2 1 )(2 *1 1 2 ])()[(min ])()[(i i m i i x S i i m i i m i i f x S x f x S x -=-=∑∑∑=Φ ∈==ωωδ (3) 0)(≥x ω是],[b a 上给定的权函数。上述求逼近函数)(*x S 的方法就称为曲线拟合的最小二 乘法。满足关系式(3)的函数)(* x S 称为上述最小二乘问题的最小二乘解。 并且有结论: 1)对于给定的函数表),(i i f x ,),,2,1(m i =,在函数类},,,{Span 10n ??? =Φ中存在唯一的函数)()(*0** x a x S k n k k ?∑== ,使得关系式(3)成立。 2)最小二乘解的系数* *1*0,,,n a a a 可以通过解法方程 ),(),(0 ???f a k n k j k =∑=,),,2,1,0(n j = (4) 作为曲线拟合的一种常用的情况,如果讨论的是代数多项式拟合,即取 },,,,1{},,,{210n n x x x =??? 那么相应的法方程(4)就是 ??????????????=???????????????????????? ??∑∑∑∑∑∑∑∑∑∑∑∑++i n i i i i i i i n n i i n i i n i i n i i i i i i n i i i i i f x f x f a a a x x x x x x x x ωωωωωωωωωωωω 102112 (5)

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

Matlab插值与拟合教程

MATLAB插值与拟合 §1曲线拟合 实例:温度曲线问题 曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。 曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。 1. 1.线性拟合函数:regress() 调用格式:b=regress(y,X) [b,bint,r,rint,stats]= regress(y,X) [b,bint,r,rint,stats]= regress(y,X,alpha) 说明:b=regress(y,X)返回X处y的最小二乘拟合值。该函数求解线性模型: y=Xβ+ε β是p?1的参数向量;ε是服从标准正态分布的随机干扰的n?1的向量;y为n?1的向量;X为n?p矩阵。 bint返回β的95%的置信区间。r中为形状残差,rint中返回每一个残差的95%置信区间。Stats向量包含R2统计量、回归的F值和p值。 例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。即y=10+x+ε;求线性拟合方程系数。 程序:x=[ones(10,1) (1:10)’] y=x*[10;1]+normrnd(0,0.1,10,1) [b,bint]=regress(y,x,0.05) 结果:x = 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 y = 10.9567 11.8334

13.0125 14.0288 14.8854 16.1191 17.1189 17.9962 19.0327 20.0175 b = 9.9213 1.0143 bint = 9.7889 10.0537 0.9930 1.0357 即回归方程为:y=9.9213+1.0143x 2. 2.多项式曲线拟合函数:polyfit( ) 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) 说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。矩阵s用于生成预测值的误差估计。(见下一函数polyval) 程序: x=0:.1:1; y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2] n=3; p=polyfit(x,y,n) xi=linspace(0,1,100); z=polyval(p,xi); %多项式求值 plot(x,y,’o’,xi,z,’k:’,x,y,’b’) legend(‘原始数据’,’3阶曲线’) 结果: p = 16.7832 -25.7459 10.9802 -0.0035 多项式为:16.7832x3-25.7459x2+10.9802x-0.0035 曲线拟合图形:

最小二乘法Matlab自编函数实现及示例.docx

、最小二乘拟合原理 x= xl x2 ... xn y= yl y2 ... yn 求m 次拟合 ?力* y 卅…I ZA ; A T A = ZX 茁 X x i - X x i +1 ,- ? ? ? [函Oi …备F =⑷矿丄? A T y 所以m 次拟合曲线为y = a 0 +勿?怎+吐■审+???? +如■牙皿 二、 Matlab 实现程序 function p=funLSM (x, y, m) %x z y 为序列长度相等的数据向量,m 为拟合多项式次数 format short; A=zeros(m+l,m+l); for i=0:m for j=0:m A(i + 1, j + 1)=sum(x.A (i+j)); end b(i+1)=sum(x.A i.*y); end a=A\b 1; p=fliplr (a'); 三、 作业 题1:给出如下数据,使用最小二乘法球一次和二次拟合多项式(取小数点后3位) X 1.36 1.49 1.73 1.81 1.95 2.16 2.28 2.48 Y 14.094 15.069 16.844 17.378 18.435 19.949 20.963 22.495 解:

? x=[1.36 1.49 1.73 1. 81 1. 95 2. 16 2. 28 2. 48]: ? y=[14.094 15.069 16.844 17. 378 18.435 19.949 20.963 22.495]; >> p=funLSM(x, y? 1) P = 7.4639 3.9161 >> p=funLSM(x, y? 2) P = 0.3004 6.3145 4.9763 一次拟合曲线为: y = 7.464x+ 3.91S 二次拟合曲线为: y = +6.315^4-4.976 一次拟合仿真图

最小二乘法的本原理和多项式拟合

第一节 最小二乘法的基本原理和多项式拟合 一 最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 的大小,常用的方法有以下三种:一是误差 i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=m i i r 0 ,即误差向量r 的1— 范数;三是误差平方和∑=m i i r 02 的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 0 2 =[]∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最 小的曲线)(x p y =(图6-1)。函数)(x p 称为拟合 函数或最小二乘解,求拟合函数)(x p 的方法称为曲线拟合的最小二乘法。 在曲线拟合中,函数类Φ可有不同的选取方法. 6—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0 )(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。

Matlab中的拟合与差值

您正在看的MATL AB是:曲线拟合与插值。 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.12阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

?x=[0.1.2.3.4.5.6.7.8.91]; ?y=[-.4471.9783.286.167.087.347.669.569.489.3011.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ?n=2;%polyno mial order ?p=poly fit(x, y, n) p = -9.810820.1293-0.0317 polyfit的输出是一个多项式系数的行向量。其解是y= -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ?xi=linspace(0, 1, 100);%x-axis data for plotting ?z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ?plot(x, y, ' o ' , x, y, xi, z, ': ') 画出了原始数据x和y,用'o'标出该数据点,在数据点之间,再用直线重画原始数据,并用点' : '线,画出多项式数据xi和z。 ?xlabel('x '), y label('y=f(x) '), title('Second Order Curv e Fitting ') 将图作标志。这些步骤的结果表示于前面的图11.1中。

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序 非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y. x=[1,2,3,4] y=[3,4,5,6] 通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算. polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形 回车打开polytool交互式界面 回车继续进行拟合 输入多项式拟合的阶数m = 4 Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72 In zxecf at 64 输出多项式的各项系数 a = 0.0200000000000001 a = -0.2000000000000008 a = 0.7000000000000022 a = 0.0000000000000000 a = 2.4799999999999973 输出多项式的有关信息 S R: [4x5 double] df: 0 normr: 2.3915e-015 Warning: Zero degrees of freedom implies infinite error bounds. > In polyval at 104 In polyconf at 92 In zxecf at 69 观测数据拟合数据 x y yh 1.0000 3.0000 3.0000 2.0000 4.0000 4.0000 3 5 5 4.0000 6.0000 6.0000 剩余平方和 Q = 0.000000 标准误差 Sigma = 0.000000 相关指数 RR = 1.000000 请输入你所需要拟合的数据点,若没有请按回车键结束程序. 输入插值点x0 = 3 输出插值点拟合函数值 y0 = 5.0000

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

相关主题