搜档网
当前位置:搜档网 › 《过程控制系统》智能流量测量课程设计

《过程控制系统》智能流量测量课程设计

《过程控制系统》智能流量测量课程设计
《过程控制系统》智能流量测量课程设计

东北大学秦皇岛分校控制工程学院《过程控制系统》课程设计

设计题目:智能化流量测量仪设计

学生:杨光

专业:测控技术与仪器

班级学号:5091021

指导教师:宋爱娟

设计时间:2012.6.18-2012.7.01

1、前言 (3)

1.1研究意义与目的 (3)

1.2研究内容 (3)

2、主体部分 (4)

2.1系统总体设计 (4)

2.1.1控制系统的基本功能 (4)

2.1.2系统工作原理 (4)

2.2元器件的选择 (5)

2.2.1AT89S52单片机 (5)

2.2.2电磁流量计 (6)

2.2.3电动调节阀 (6)

2.2.4 PCF8591 A/D、D/A转换器 (7)

2.3硬件设计 (8)

2.3.1 总体概述 (8)

2.3.2 矩阵键盘 (10)

2.3.3 电磁流量计电路 (10)

2.4软件设计 (13)

2.4.1总体设计 (13)

2.4.2 主程序部分 (15)

2.4.3子程序 (15)

3、参考文献 (16)

4、结束语 (16)

1、前言

1.1研究意义与目的

在石油、化工等生产过程中,对管道内液体和气体的流量进行测量和控制是实现生产过程自动化的重要组成部分。可以说,应用流量仪表测量流量值是提高企业科学管理水平、极大的发挥经济效益和社会效益的有力措施。

实际应用系统中,最为常见的是双流按比例控制的问题, 一旦比例失调, 就会影响生产, 造成产品质量下降, 甚至引发事故, 例如啤酒厂要求原液与净水按固定比例混合, 造纸厂要求纸浆和水按固定比例混合等。

1.2研究内容

本文介绍应用89S52单片机设计的流量计;主要研究内容是对流量进行检测,主要由流量传感器采集流量信息,然后经过AD转换器将模拟信号转化为数字信号后传给单片机,单片机在软件系统的控制下,根据预先的设置、温度影响以及预期的控制要求,通过单片机的输出,进行D/A转化后来精确控制阀门的开度,实现对流量的精确控制。其中,在硬件电路部分,采用AT89S52单片机构成单片机控制系统的主体部分。通过PCF8591P将传感器采集的流量信号进行AD转换输入单片机,单片机输出的控制信号同样通过PCF8591P进行DA转换来控制阀门的开度。一些其他的功能,如设定值输入通过键盘显示电路采用8279方案,矩阵键盘实现;数码管显示则通过LCD1602完成。系统软件设计部分,分别对键盘设定值输入,AD/DA转换控制,温度

影响等程序进行了设计,并且设计了主程序和流量控制PID程序。

1、主体部分

2.1系统总体设计

2.1.1控制系统的基本功能

流量显示功能

a 复位、启动显示功能

b PID参数显示功能

c 输入、输出值显示功能

d 温度显示功能

d 显示精度均保留到小数点后两位

2.1.2系统工作原理

流量传感器将采集到的流量信息,通过变换器转化为电信号,A/D转换器将模拟电信号转化为数字信号,传给单片机。单片机软件

系统根据事先的设定值对采集的信息进行处理,输出控制信号。转换器将数字控制信号转化为模拟电量。通过模拟电量来控制阀门的动作,从而调节流量,实现流量的精确控制。系统原理框图如图1所示:

图1 系统原理框图

其中,电磁流量计作为流量传感器,采集流量信息送到A/D转换器。A/D转换器将连续的模拟量转化为单片机能接受的离散的数字量,单片机收到流量信号后并结合当前温度的影响,在控制系统软件的作用下,控制器参数由按键输入,发出相应的执行命令给电动调节阀,阀门动作对流体流量进行控制。

2.2元器件的选择

2.2.1 AT89S52单片机

AT89S52单片机拥有灵巧的8位CPU和在系统可编程Flash,晶

片内部具有始终振荡器(传统最高工作频率可至12MHz),内部存储器(ROM)为8KB,数据存储器(RAM)为256B,比标准51多128B;拥有32个可编程I/O口线,8个中断向量源,三个16位定时器/计数器,比51多一个定时器;三级加密程序存储器以及全双工UART串行通道。在市场中容易买到,资料众多,编程与51兼容,最适合学生或者初学者使用;同时支持ISP下载,使用方便;FLASHROM可下载10000次以上,可靠性非常高。

2.2.2电磁流量计

电磁流量计是利用法拉第法则检测管内流动流体的流量。它有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。其主要优点是变送器结构简单,没有任何阻碍流体流动的节流部件,所以当流体通过时不会引起任何附加的压力损失;同时它不会引起诸如磨损,堵塞等问题,特别适用于测量带有固体颗粒的矿浆,污水等液固两相流体,以及各种粘性较大的浆液等,也可应用腐蚀性流体。

电磁流量计是—种体积流量测量仪表,在测量过程中,它不受被测介质的温度、粘度、密度、压力以及电导率(在一定范围内)的影响。因此,电磁流量计只需经水标定以后,就可以用来测量其它导电性液体的流量,而不需要附加其它修正;而且它的测量量程范围极宽,同一台电磁流量计的量程比可达1:100。此外,电磁流量计只与被测介质的平均流速成正比,而与轴对称分布下的流动状态(层流或紊流)无关。它无机械惯性,反应灵敏,可以测量瞬时脉动流量,而且

线性好。因此,可将测置信号直接用转换器线性地转换成标准信号输出,可就地指示,也可远距离传送。

2.2.3电动控制阀

电动调节阀通过接收工业自动化控制系统的信号(4~20mA或0~10V)来驱动阀门改变阀芯和阀座之间的截面积大小控制管道介质的流量、温度、压力等工艺参数,实现自动化调节功能。电动调节阀是工业自动化过程控制中的重要执行单元仪表,与传统的气动调节阀相比具有明显的优点:一般传统气动阀,免不了要有配管、电磁阀及压缩机等才能匹配,而电动阀是以马达驱动,安装简易省事;且电动阀安装配合工厂原有的自控线路即可,可节省其他成本支出;

2.2.4 PCF8591 A/D D/A转换器

PCF8591P是8位A/D及D/A转换器。4路A/D转化输入AIN0~AIN3,1路D/A模拟输出AOUT。

2.2.5 LCD1602液晶显示模块

1602液晶也叫1602字符型液晶它是一种专门用来显示字母、数字、符号等的点阵型液晶模块;液晶显示模块具有体积小、功耗低、显示内容丰富、超薄轻巧等优点,因此在袖珍仪表和低功耗仪表应用系统中得到越来越广泛的应用;现在字符型液晶显示模块已经是单片机应用设计中最常用的信息显示器件了。1602液晶显示模块可以显示两行,每行16个字符,采用5V电压供电,对比度可调;外围电路配置简单,价格便宜,并且提供各种控制命令,例如:清屏、字符闪烁、光标闪烁、显示移位等,具有很高的性价比。

2.2.6 DS18B20温度传感器

DS18B20温度传感器是数字式温度传感器,相对于传统温度传感器精度高、稳定性好、电路简单、控制方便

2.3硬件设计

2.3.1 总体概述

本系统主要温度传感器、流量传感器、电动阀门、显示模块和单片机控制系统以及液体管线和控制线等组成。系统结构图如下图。

2.3.2 矩阵键盘

在键盘中当按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图3所示。在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,下图中,行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。这样,当按键没有按下时,所有的列输入端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。

图 3 键盘矩阵电路图

2.3.3 电磁流量计电路

电磁流量计的工作原理是基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁场。当有导电介质流过时,则会产生感应电压(工作原理如下图所示)。管道内部的两个电极测量产生的

感应电压。测量管道通过不导电的内衬(橡胶特氟隆等)实现与流体和测量电极的电磁隔离。

图 4

2.3.4 DS18B20与单片机的接口电路

DS18B20可以采用两种方式供电:一种是寄生电源供电方式;另一张是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,与单片机3脚接电源。当DS18B20处于写存储器操作和温度A/D转化操作时,总线上必须有上拉电阻,上拉开启时间最大为10us。与单片机的接口电路如下图所示:

2.3.5 PCB8591电路结构图

PCB8591既可以作为A/D转换器,又可以作为D/A转换器。 AIN0~AIN3:模拟信号输入端。A0~A2:引脚地址端。VDD、VSS:电源端(2.5~6V)。SDA、SCL:总线的数据线、时钟线。OSC:外部时钟输入端,内部时钟输出端。EXT:内部、外部时钟选择线,使用外部内部时钟是EXT接地。AGND:模拟信号地。AOUT:DA转换输出端。V(REF):基准电源端。外部引脚图如图5所示:

图 5

2.3.6 LCD1602

VSS:接地。VDD:接5V电源正极。V0:液晶显示器对比度调整端;接正电源时对比度最弱;接地时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。RS:为寄存器选择;高电平时,选择数据寄存器;低电平时选,择指令寄存器.RW:为读写信号线;高电平时,进行读操作;低电平时,进行写操作。E(或EN):使能端。D0~D7:8位双向数据端.BG VCC/BG GND:空脚/背灯电源。结构图如图6:

图 6

2.4软件设计

2.4.1总体设计

该控制系统的程序主要分为三部分:主程序、流量控制程序和各种中断子程序。主程序完成系统的系统初始化、显示屏幕初始化和各子程序的调用。流量控制程序通过PID控制算法,实现系统的数字化控制。各子程序完成相应的各功能。

系统的总体设计框图,如下图所示。

图7 主程序流程图

软件设计是本控制系统设计的核心,在完成了系统硬件的搭接之后,剩下来的主要任务接是系统软件的设计。该控制系统的软件设计可以分为三部分:主程序部分、流量控制程序、各子程序。下面分为三个部分分别介绍。

2.4.2 主程序部分

该部分完成存储器分区、数据定义和系统的初始化等,以及调用各个子程序,完成主要的控制功能。主程序见附录;程序框图如下:

2.4.3子程序

流量控制子程序:在流量测试的基础上,把流量设定值、温度影响作用以及实际测试得到的瞬时流量进行比较计算出误差,采用数字PID调节算法,计算输出到8591。程序见附录。

其余各种子程序包括:显示温度、LCD显示、AD/DA转换以及键盘输入程序等均见附录。

2、参考文献

【1】李厚勋.流量检测控制系统

【2】冯博琴,吴宁主编. 微型计算机系统原理及应用. 清华大学出版社

【3】何立民主编. MCS-51系列单片机应用系统设计系统配置与接口技术.北京航空航天大学出版社

【4】张振荣,晋明武,王毅平. MCS-51单片机原理及应用技术. 北京:人民邮电出版社

【5】马淑华,王凤文,单片机原理与接口技术. 北京邮电大学出版社

3、结束语

此次课程设计是基于《过程控制系统》的综合课设,要求通过对工业过程量流量的测量方法,信号处理技术和控制系统的设计,掌握测控对象参数检测方法,变送器的功能,测控通道技术和调节阀的功能,过程控制仪表的 PID 控制参数的整定方法。我拿到题目和要求,明确本次的重点是一个控制“系统”的设计,要实现流量的控制,分析流量。

怎么测,怎么控.就是要完成从信号采集→偏差控制→执行器→对象输出整个的设计。所以我先分模块进行设计,粗略的构思了一个单回路控制系统:即信号采集、信号处理、驱动阀门开度变化。接下

来就是具体模块的具体设计实现,信号采集模块我就面临了选择,是选择并行AD转换芯片还是串行AD芯片,每前进一步都是问题,这时就借鉴别人怎么做的,他们的效果是不是比自己的好,这样不断的比较和思考,解决了很多问题。最大的体会就是设计过程是解决问题的过程,自己也对设计控制系统积累了一定的经验.通过设计后面的控制器模块,A/D、D/A转化模块以及显示模块,我使用了PID理论等,并通过大量的查阅资料,在以前纯理论的基础上有很大提高。这次课设使我对过程控制系统有了更深的理解,同时对模块设计有了自己的思考和思路,对以后自己设计开发控制系统有很好的铺垫作用。

课程设计-自动化生产线监控系统

摘要 (2) 一:概述 (3) 二:自动化生产线监控系统的方案设计 (3) 2.1、研究的目的、意义 (3) 2.2、自动化监控系统的控制要求 (4) 三、自动化生产线监控系统电路设计 (4) 3.1、设备选型 (4) 3.1.1、命令输入设备选型 (4) 3.1.2、传感器设备选型 (4) 3.1.3、计算机选型 (4) 3.1.4、I/O选型 (4) 3.2、系统方框图 (5) 3.3、FX2N-48MR 的I/O分配表: (5) 3.4、系统接线图 (5) 3.5、系统软件选型 (6) 四、系统软件的设计与调试 (6) 4.1、建立工程 (6) 4.2、定义变量 (9) 4.2.1变量的分配 (9) 4.2.2变量定义的步骤 (9) 4.3画面的设计与编辑 (12) 4.4 动画连接和调试 (15) 4.5 控制程序的编写 (16) 4.5.1 事件命令语言程序的编制 (16) 4.5.2应用程序命令语言程序的编制 (17) 五、程序的模拟运行遇调试 (18) 5.1 配置画面 (18) 5.2程序的模拟调试 (19) 六、软硬件联调。 (19) 6.1 系统的电路连接 (19) 6.2 FX2N-48MR 型PLC通信参数设置 (19) 6.3 在组态王中进行三菱FX2N-48MR型设备配置 (19) 6.3.2 将I/O变量与设备进行连接 (21) 6.3.3 系统软、硬件的联调 (21) 七、结论 (21) 八、致谢:..................................................................................错误!未定义书签。参考文献. (22) 附录: (23)

智能仪器课程设计说明书智能温度测量仪表方案设计

前言 (2) 第一章智能温度测量仪表方案设计与论证 (3) 功能与要求 (3) 方案的论证与比较 (3) 方案的确定 (5) 1.3.1数据采集通道的理论计算 (5) 1.3.2温度值粗测理论推导 (6) D的理论推导 (6) 1.3.3 根据T1确定差分部分AV 第二章智能温度测量仪表的硬件设计 (7) 系统硬件框图 (7) 系统的输入通道设计 (7) 单片机最小系统 (8) 人机接口电路 (8) 2.5串口电路 (9) 执行电路 (9) 第三章软件设计 (10) 下位机软件的设计 (10) 3.1.1下位机主程序设计 (10) 3.1.2 CH451中断子程序设计 (11) 3.1.3数字滤波函数和ADC0809读函数设计 (12) 3.1.4快速测量温度粗值函数设计 (13) 3.2上位机软件设计 (13) 第四章智能温度测量系统的安装与调试 (15) 硬件调试 (15) 软件调试 (15) 4.3整机调试过程 (16) 第五章设计体会与小结 (17) 参考文献 (18) 附录 (19)

前言 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于AT89C51单片机的测温系统,描述了利用温度传感器PT100测温系统的过程,对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度采集和显示,灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

各种流量计的原理

一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。 (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1. 容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量

智能家居控制系统课程设计报告20

XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统) 学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX 指导教师XXXXXXXXXXXX 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书

目录 前言 (1) 1 硬件设计 (1) 1.1 ADC转换 (3) 1.2 SSI控制数码管显示 (3) 1.3 按键和LED模块 (5) 1.4 PWM驱动蜂鸣器 (6) 2 软件设计 (7) 2.1 ADC模块 (7) 2.1.1 ADC模块原理描述 (7) 2.1.2 ADC模块程序设计流程图 (8) 2.2 SSI 模块 (8) 2.2.1 SSI模块原理描述 (9) 2.2.2 SSI模块程序设计流程图 (10) 2.3 定时器模块 (10) 2.3.1 定时器模块原理描述 (10) 2.3.2 定时器模块流程图 (11) 2.4 DS18B20模块 (11) 2.4.1 DS18B20模块原理描述 (11) 2.4.2 DS18B20模块程序设计流程图 (12) 2.5 按键模块 (13) 2.5.1 按键模块原理描述 (13) 2.5.2 按键模块程序设计流程图 (13) 2.6 PWM模块 (13) 2.6.1 PWM模块原理描述 (14) 2.6.2 PWM模块程序设计流程图 (14) 2.6 主函数模块 (14) 2.6.1 主函数模块原理描述 (14) 2.6.2主函数模块程序设计流程图 (15)

智能仪器设计课程设计

智能仪器设计课程设计 8. 试设计智能仪表 实现智能数字显示仪表。要求8位数码管显示(4位显示测量值,4位显示设定值),4输入按钮(功能选择、数码管选择、数字增加、数字减少),可设定上下限报警(蜂鸣器报警)。适配Cu100热电阻,测温范围为0℃~150℃。采用位式(两位、三位,具有滞环)控制、并用晶闸管过零驱动1000W电加热器(电源电压为AC220V)。 《智能仪器设计基础课程设计》----40题目 教学说明: 如下设计题目应该在课程开始时布置,并在教学中安排时间,以产品设计案例教学方式讲授如何理解题目以及如何实现题目,并补充完成题目所需要的相关知识。 如下的智能仪表课程设计题目,都是小型智能仪表产品开发方面的题目。涉及智能仪表硬件与软件设计。智能仪器课程设计是智能仪器课程教学的重要环节,根据设计智能仪表产品的课程改革目的,特选择一些小型智能仪表产品作为课设题目,满足教学需求。课程题目小,学生容易学,上手快,可以在短时间走完智能仪表设计的全过程,学会产品设计步骤。 1.设计基本要求 (1)正确理解设计题目,经过查阅资料,给出正确设计方案,画出详细仪表原理框图(各个功能部分用方框表示,各块之间用实际信号线连接)。 在互连网上收集题目中所用到的器件资料,例如传感器(热偶分度表等)、信号调理电路、AD转换器、单片机、继电器、电源、显示器件等。 在互连网上收集相关单片机的显示、AD转换、显示、控制算法等程序。 在充分研究这些资料基础之上,给出设计方案(选择信号调理电路、单片机、显示、按键输入、继电器驱动、电源等,简要说明选择的理由) (2)用Protel99SE软件设计仪表详细原理图。 要求正确标记元件序号、元件数值、封装名。 (3)设计PCB图 在画PCB前应该购买元件,因为有了元件才知道封装尺寸,但也可以不购买元件,只到元件商店测量实际元件尺寸后,画封装图。 (4)熟悉单片机内部资源,学会ADC、SPI接口、定时器、中断、串口、I/O引脚等模块的编程。 (5)采用C语言开发所设计仪表的程序。 按照题目要求,确定仪表需要完成的任务(功能),然后分别编制各任务的程序。程序应该有说明,并有详细注释。 说明:若是不安装实验板或是最小系统板,就只能用Atmel公司的A VR Studio软件或是Keil软件(随意下载)仿真,则学习效果将大打折扣。 2.设计(考试)说明书 说明书内容: (1)封面内容: 《智能仪器设计基础》考试题 题目号:

(推荐)管道流量测量方法

管道流量测量方法 [技术摘要]一种管道流量称及测量方法,属流量测量技术领域。用于解决测量管道内混合流体的质量流量及质量浓度的技术问题。其特别之处是:构成中包括换能器、超声波流量计、压力变送器、称量传感器、智能显示仪和称量管,称量管至少配置一个称量传感器,在称量管的两端各设有一段波纹管与其形成挠性连接,两波纹管的另一端分别连通前后固定管,前后固定管分别连通流体输送管道,前后固定管固定在基础支架上,所述压力变送器和换能器均设置在流体输送管道上,各测量元件连接智能显示仪。本发明所提供的管道流量称及测量方法,解决了管道中高温介质、粘稠液体、煤粉、水煤浆等混合流体质量流量与质量浓度的测量难题,其理论依据可靠、测量值准确、结构合理、易于实现。 气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计 [技术摘要]本发明涉及一种气体质量流量上下游温度分布二次差动测量方法、传感器、及流量计。包括加温元件,对称设置在加温元件两侧的温度检测元件,即上游温度检测元件和下游温度检测元件,其特征在于所述的加温元件与恒功率源激励相连,上

游温度检测元件和下游温度检测元件分别与差动运算电路的两个信号输入端相连,所述的差动运算电路的输出端连接有中央处理单元。具有如下优点:通过对上下游温度变化差值进行二次差动运算,保证对低速段线性度影响较小;气体质量流量的流速和输出电压的关系曲线的饱和点往后推,量程扩大,提高了量程范围和线性度;测量精度高,灵敏度高;采用MEMS技术实现了低功耗、高频响,大幅降低芯片的热惯性。

[9-BG95212]联合式湿蒸汽流量、干度测量装置及其测量方法 [技术摘要]本发明公开了一种联合式湿蒸汽流量、干度测量装置及其测量方法,该装置由经过标定的标准孔板、经典文丘利管作为一次测量元件,高精度压力传感器、智能型差压变送器转换并传输标准信号,标准4~20mA信号经I/V转换成1~5V电压信号,进入高速数据采集卡,最后在中央处理器中根据压力信号调用汽、水性质的IAPWS-IF97计算公式模块计算出饱和水、饱和蒸汽的密度及比焓、汽化潜热,从而算出湿蒸汽的干度、质量流量、载热量,同时对质量流量、载热量进行累积运算,重要参数适时存储于数据库,作为历史数据以备后期调用,系统通过D/A通道输出干度、累积流量,供中央处理器使用,本发明与以往的IF-67计算公式相比计算精度提高10倍以上,且重复计算精度高,而运算速度提高4~12倍。

智能控制课程设计(报告)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

智能测量仪表课程设计报告

课程设计报告 课程:智能测量仪表 题目:智能测量仪表 学生姓名: 专业年级:自动化 指导教师: 信息与计算科学系 2013年3月23日

智能测量仪表 本次课程设计中智能温度测量仪表所采用的温度传感器为LM35DZ。其输出电压与摄氏温度成线性比例关系,无需外部校准,在0℃~100℃温度范围内精度为0.4℃~±0.75℃。,输出电压与摄氏温度对应,使用极为方便。灵敏度为10.0mV/℃,重复性好,输出阻抗低,电路接口简单和方便,可单电源和正负电源工作。是一种得到广泛使用的温度传感器。 本次课程设计的主要目的在于让学生把所学到的单片机原理、电子线路设计、传感器技术与原理、过程控制、智能仪器仪表、总线技术、面向对象的程序设计等相关专业课程的内容系统的总结,并能有效的使用到项目研发中来,做到学以致用。课程设计的内容主要分为三个部分,即使用所学编程语言(C或者汇编)完成单片机方面的程序编写、使用VB或VC语言完成PC机人机界面设计(也可以用C+API实现)、按照课程设计规范完成课程设计报告。

目录 1.课程设计任务和要求 (3) 1.1 设计任务 (3) 2.2 设计要求 (3) 2.系统硬件设计 (3) 2.1 STC12C5A60S2单片机A/D转换简介 (3) 2.2 LM35DZ简介 (7) 2.3 硬件原理图设计 (7) 3.系统软件设计 (10) 3.1 设计任务 (10) 3.2 程序代码 (10) 3.3 系统软件设计调试 (17) 4.系统上位机设计 (18) 4.1 设计任务 (18) 4.2 程序代码 (18) 4.3 系统上位机软件设计调试 (21) 5.系统调试与改善 (22) 5.1 系统调试 (22) 5.2 系统改善 (22) 6.系统设计时常见问题举例与解决办法 (24) 7.总结 (25)

皮托管流量测量装置使用说明书

皮托管流量测量装置安装使用说明书 C M (06)渝制00000331 重庆渝润仪表有限公司

2 一、概述 本公司生产的S 形皮托管主要用于气体流量的测量,特别是如焦炉煤气、高炉煤气、水炉煤气、各种烟气等赃污介质流量的连续测量。 二、性能特点 本公司采用独特并且专业的技术,生产的S 形皮托管流量测量系统的测量精度经过有关部门实流检测,误差为±0.46%,达到0.5级精度;同时,独特设计的感压孔,长期使用不会堵塞。主要有以下特点: ▲长期运行精度高、稳定性好。 ▲无可可动部件与易损部件,使用寿命长。 三、主要技术参数 ▲测量精度: 0.5级 ▲管道覆盖面:100~5000mm 。 四、测量原理 1、 测量系统组成 流量测量系统由皮托管、差压变送器、压力变送器、温度传感器、流量积算控制仪等组成,如图一所示:

3 图一 图一是在线带温度压力补偿的流量测量,如果现场的温度压力参数比较稳定,变化不大,也可以定点设定温度压力补偿方式进行流量测量。 2、流量测量计算公式 流量测量计算公式根据国标GB 5468-91确定,具体如下: 2.1密度的计算 测试工况下湿气体密度γs 按式(1)计算; 式 中: N ——标准状态下湿气体密度,kg /Nm 3 , ts ——测量断面内气体平均温度,℃ Ps ——测量断面内气体静压,Pa ; Ba ——大气压力,Pa 。 2.2 管道内气体流速及流量的计算 气体流速按照式(2)计算: 式中:Vs i ——测定点流速,m /s ; Kp ——皮托管修正系数; γs ——管道内湿气密度,kg /m 3; Pdi ——测定点气体动压,Pa 。 2.3 在测定点工况下气体流量按式(3)计算: Q=3600×F×Vs (3)

智能控制课程设计报告书

《智能控制》课程设计报告题目:采用BP网络进行模式识别院系: 专业: 姓名: 学号: 指导老师: 日期:年月日

目录 1、课程设计的目的和要求 (3) 2、问题描述 (3) 3、源程序 (3) 4、运行结果 (6) 5、总结 (7)

课程设计的目的和要求 目的:1、通过本次课程设计进一步了解BP网络模式识别的基本原理,掌握BP网络的学习算法 2、熟悉matlab语言在智能控制中的运用,并提高学生有关智能控制系统的程序设计能力 要求:充分理解设计容,并独立完成实验和课程设计报告 问题描述 采用BP网络进行模式识别。训练样本为3对两输入单输出样本,见表7-3。是采用BP网络对训练样本进行训练,并针对一组实际样本进行测试。用于测试的3组样本输入分别为1,0.1;0.5,0.5和 0.1,0.1。 表7-3 训练样本 说明:该BP网络可看做2-6-1结构,设权值wij,wjl的初始值取【-1,+1】之间的随机值,学习参数η=0.5,α=0.05.取网络训练的最终指标E=10^(-20),在仿真程序中用w1,w2代表wij,wjl,用Iout代表 x'j。 源程序 %网络训练程序

clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1); w2_1=w2;w2_2=w2; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; k=0; E=1.0; NS=3; while E>=1e-020 k=k+1; times(k)=k; for s=1:1:NS xs=[1,0; 0,0; 0,1]; ys=[1,0,-1]'; x=xs(s,:); for j=1:1:6 I(j)=x*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end y1=w2'*Iout;

远程监控课程设计

远程监控技术课程设计报告 专业:电气工程及其自动化 班级:电气1203 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2015年7月22日

1设计内容及要求 1.1具体题目 依据给出的牵引供电的典型控制对象—纽结型开闭所主接线如图1.1所示。要求每位同学设计时对所有开关器件进行编号,一般为8位二进制编码,模拟量对采集节点进行编号,一般为电流、电压及功率,然后根据各自选择不同的节点进行设计。 TV1TV2 TV3TV4 QS1 QS4 QF1 QF2 QF3 QF4 QF5 QF6 QS3 QS6 QS2 QS7 QS8 QS9 QS5 QS10 TA1 TA2 TA3 TA4 TA5 TA7 TA6 TA8 TA9 TA10 TA11 TA12 图1.1 纽结型开闭所主接线 设计内容包含:8路遥信量采集和一路功率量和一类常用电参量测量。数据采集点编号如表1所示。 数据采集 Q Q Q Q Q Q Q Q 1H2H3H4H5H6H7H8H 2硬件系统设计

2.1遥测量采集系统设计 2.1.1采集系统框图设计 遥测信息是表征系统运行状况的连续变化量,分为电量和非电量两种。电量指的是一次系统中母线电压、支路电流、支路有功和无功等,非电量指的是发电机定子和转子的温度、水库的水位等。不论是电量还是非电量都需要转换成计算机能够处理的弱电信号,如0~5V或-5~+5V的直流模拟电压。由于电力系统中的电量均为强电信号,因此这些量必须先经过电压互感器TV和电流互感器TA,再经过相应的变送器,转换成弱电信号。这些弱电直流模拟信号受多路开关控制分时接入模/数(A/D)转换电路,经A/D转换电路后转换成一组二进制代码。遥测量的转换过程如图2.1所示。 图2.1 遥测量的采集框图 2.2遥信量采集系统设计 遥信信息是二元状态量,在电力系统中,遥信信息可以表示设备的启停、断路器的投切、隔离开关的开合、告警信号的有无、保护动作与否等 (1) 遥信对象状态的采集 遥信信息通常由电力设备的辅助接点提供,辅助接点的开合直 接反应出该设备的工作状态。提供给远动装置的辅助接点大多为无源接点,即空接点,这种节点无论是在“开”状态还是“合”状态下,接点两端均无电位差。断路器和隔离开关提供的就是这一类辅助接点。另一种辅助接点则是有源节点,有源节点在“开”状态时两端有一个直流电压,是由系统蓄电池提供的110V或220V直流电压。一些保护提供此类接点,遥信量采集如图2.2所示。 无论无源还是有源触点,由于他们来自强大系统,直接进入远动装置将会干扰甚至损坏远动设备,因此必须加入信号隔离措施。通常采用继电器和光电耦合器作为遥信信息的隔离器件,如图2.3所示。

流量检测-装置系统设计课程设计

专业综合课程设计 课题:流量计检测装置设计 学院:城南学院 班级:机电0701班 指导老师:陈书涵 学号:2007 学生:邹娟 一检测系统背景介绍 流量计广泛应用于工业生产和人民生活当中,但大都存在体积大、精度低、价格贵等缺点.本文设计的电子巴(靶式)智能流量计,于六十年代开始应用于工业流量测量,主要用于解决高粘度、低雷诺数流体的流量测量,先后经历了气动表和电动表两大发展阶段,SBL系列智能靶式流量计是在原有应变片式靶式流量计测量原理的基础上,采用了最新型电容力传感器作为测量和敏感传递元件,同时利用了现代数字智能处理技术而研制的一种新式流量计量仪 表。其主要由测量管、受力元件(靶片)、感应元件(电容式力传感器,压力传感器,温度传感器)、传递部件、微控制器及其显示和输出部分组成.由于采用了压力工作温度补偿,大大提高了测量精度。

二检测系统设计方案 本作品是一款基于C8051F系列单片机为核心的流量计,给出了硬件组成和软件设计.设计以C8051F单片机为控制模块,选用电子靶式流量传感器,信号调理电路、通信电路、LCD显示等电路.在软件上进行了压力和温度补偿.设计的流量计精度高,抗干扰能力强,使用方便. 三检测系统硬件结构 系统的硬件电路以C8051F206单片机为控制核心,主要有信号的输入通道、微控制器及外围电路、红外通信接口和RS一485通信接口和人机交互界面等部分组成,如图1所示. 图1 以C8051F206单片机为核心的硬件框图 ① C8051F206的A/D转换模块 C8051F206的A/D转换模块是利用C8051F206的片内12位分 辨率的ADC转换模块和可编程增益放大器.当工作在100ksps 的最大采样速率时,提供真正的12位精度和±2 L SB的模数

智能控制系统课程设计

目录 有害气体的检测、报警、抽排.................. . (2) 1 意义与要求 (2) 1.1 意义 (2) 1.2 设计要求 (2) 2 设计总体方案 (2) 2.1 设计思路 (2) 2.2 总体设计方框图 2.3 完整原理图 (4) 2.4 PCB制图 (5) 3设计原理分析 (6) 3.1 气敏传感器工作原理 (7) 3.2 声光报警控制电路 (7) 3.3 排气电路工作原理 (8) 3.4 整体工作原理说明 (9) 4 所用芯片及其他器件说明 (10) 4.1 IC555定时器构成多谐振荡电路图 (11) 5 附表一:有害气体的检测、报警、抽排电路所用元件 (12) 6.设计体会和小结 (13)

有害气体的检测、报警、抽排 1 意义与要求 1.1.1 意义 日常生活中经常发生煤气或者其他有毒气体泄漏的事故,给人们的生命财产安全带来了极大的危害。因此,及时检测出人们生活环境中存在的有害气体并将其排除是保障人们正常生活的关键。本人运用所学的电子技术知识,联系实际,设计出一套有毒气体的检测电路,可以在有毒气体超标时及时抽排出有害气体,使人们的生命健康有一个保障。 1.2 设计要求 当检测到有毒气体意外排时,发出警笛报警声和灯光间歇闪烁的光报警提示。当有毒气体浓度超标时能自行启动抽排系统,排出有毒气体,更换空气以保障人们的生命财产安全。抽排完毕后,系统自动回到实时检测状态。 2 设计总体方案 2.1 设计思路 利用QM—N5气敏传感器检测有毒气体,根据其工作原理构成一种气敏控制自动排气电路。电路由气体检测电路、电子开关电路、报警电路、和气体排放电路构成。当有害气体达到一定浓度时,QM—N5检测到有毒气体,元件两极电阻变的很小,继电器开关闭合,使得555芯片组成的多谐电路产生方波信号,驱动发光二极管间歇发光;同时LC179工作,驱使蜂鸣器间断发出声音;此时排气系统会开始抽排有毒气体。当气体被排出,浓度低于气敏传感器所能感应的范围时,电路回复到自动检测状态。

智能控制课程设计(报告)(DOC)

HUNAN UNIVERSITY 智能控制课程设计(报告) 课程设计题目:基于模糊控制光伏并网发电系 统的研究 学生姓名: 学生学号: 专业班级: 学院名称: 指导老师: 2017年5月30 日

目录 第1章绪论 (1) 第2章光伏并网发电系统MPPT的研究进展 (2) 2.1 光伏发电系统最大功率跟踪控制 (2) 2.2 几种最大功率点跟踪方法的比较 (3) 第3章光伏并网发电系统MPPT模糊控制器 (7) 3.1 模糊化 (7) 3.2 模糊控制规则库的建立 (7) 3.3 解模糊 (7) 第4章 MPPT模糊控制器设计 (8) 4.1选择观测量和控制量 (8) 4.2 输入量和输出量的模糊化 (8) 4.3 制定模糊规则 (9) 4.4 求解模糊关系 (9) 4.5进行模糊决策 (10) 4.6 控制量的反模糊化 (10) 第5章模糊控制光伏并网发电系统仿真 (11) 附录 (15)

第1章绪论 在应对全球能源危机和保护环境的双重要求下,开发利用清洁可再生的太阳能越来越受到人们的关注。伴随着太阳能光电转换技术的不断发展,大规模的利用太阳能成为可能。光伏并网发电系统将成为太阳能利用的主要形式。目前,转换效率低是光伏并网发电系统面临的主要问题,这成为阻碍光伏并网发电系统广泛应用的一个重点问题。智能控制是这门新兴的理论和技术,它是传统控制发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制。智能控制包括专家系统、神经网络和模糊控制,而模糊控制是目前在控制领域中所采用的三种智能控制方法中最具实际意义的一种方法。在光伏系统MPPT控制中,由于外界光照强度和温度变化的不确定性以及并网逆变器的非线性特性,则使用模糊逻辑的MPPT控制方法进行控制,有望获得理想的控制效果。 随着近年智能控制的不断发展和完善,模糊控制技术也日趋成熟,被人们广泛接受。模糊控制的优点很多,例如:模糊控制器设计简单,不需要依赖被控对象的精确数学模型;模糊规则用自然语言表述,易于被操作人员接受;模糊控制规则可以转换成数学函数,易与其他物理规律结合,便于用计算机软件实现;模糊控制抗干扰能力强,且响应快,对复杂的被控对象能有效控制,鲁棒性和适应性都易达到要求。模糊控制以其适应面广泛和易于普及等特点,成为智能控制领域最重要,最活跃和最实用的分支之一。目前,模糊控制已经在工业控制领域、经济系统、人文系统以及医学系统中解决了传统控制方法难以解决甚至无法解决的实际控制问题。本文正是基于光伏发电系统存在的处理复杂,外界不确定因素多等特点,将模糊控制理论应用于光伏发电最大功率跟踪系统中,跟踪系统最大功率工作点,提高光电转换效率,充分利用太阳能资源。 本文以光伏并网发电系统最大功率点跟踪为研究对象,将模糊控制理论应用于光伏并网系统最大功率跟踪控制中,从光伏阵列的原理和特性、光伏并网系统的结构设计、最大功率点跟踪的原理和模糊控制理论等方面进行详细的分析和探讨。本设计报告比较多种最大功率点跟踪控制技术,实现光伏并网发电系统的研究,根据其不同的优缺点,然后选用模糊控制方法来实现最大功率跟踪。通过对模糊论域、隶属度函数计算,制定处模糊规则,设计出模糊控制器。最后建立光伏并网发电系统仿真模型,并对仿真结果进行了分析。

监控技术课程设计_第三次作业

监控技术及课程设计_第三次作业 14.调度端由哪些设备构成?各完成什么功能?你想象中调度端是什么样子? 答: 调度端由服务器,WEB服务器,调度员工作站,维护工作站,分析员工作站, 通信前置机及打印机,模拟屏(大屏幕显示器)等外设组成,其结构图如下图所示。 服务器:网络服务、数据处理、设备监管、定时服务、进程监管 调度员工作站:网络通信、上行实时信息处理、操作管理 通信前置机:网络通信、查询RTU、上下行信息转发、信道监视 维护工作站:用于生成、维护、修改、管理系统的实时数据库、历史数据库及用户画面,并定义、修改系统运行参数等 模拟屏:系统状态同步显示 打印机:打印报表或记录等 不停电电源UPS系统:保证在停电状保持运行30分钟(60分钟) GPS系统:保证调度端与执行端及的一致性,便于故障分析和判断 15.简述调度端软件的结构、功能。 答: 远动系统调度软件是指对在调度端系统运行的所有程序总称,一般分为系统软件、应用软件和数据库软件。结构图如下图所示:

系统软件:计算机中所使用的操作系统,面向计算机本身,不针对特定用户,具有一般性。 支持软件:开发支持环境和数据库管理系统(DBMS)。 应用软件:在远动监控系统中特指为实现调度自动化功能设计的应用程序,面向用户,具有针对性。实现五遥、数据报表统计、记录事件分析等调度自动化管理各项功能。 16.被控站置于何处?由哪些设备构成?有哪些功能模块? 答: 被控站是置于变电所、开闭所、分区亭用以采集和发送实时运行参数,接收并执行调度中心控制与调节命令的终端设备。 其硬件结构包括:主处理器CPU,只读存储器ROM,随机存储器RAM,定时器,中断管理及串、并接口和外围电路等。 其功能模板包括:CPU板,系统支持板,键盘显示板,开关量输入板,A/D板,通信板,控制输出板。 17.什么是事件顺序记录?什么是事件分辨率? 答: 事件顺序记录是记录变位信号的位置和发生时间,便于对相关事件进行分析;

智能仪表课程设计

《智能仪器设计》课程设计报告书 学院:信息工程学院 班级:自动化0705 学号:07001193 姓名:孙少秋

摘要 单片微型计算机是随着超大规模集成电路技术的发展而诞生的,由于它具有体积小、功能强、性价比高等特点,所以广泛应用于电子仪表、家用电器、节能装置、军事装置、机器人、工业控制等诸多领域,使产品小型化、智能温度控制仪表化,既提高了产品的功能和质量,又降低了成本,简化了设计。本文主要介绍单片机在温度控制中的应用。 Abstart Single-chip micro-computer, with the ultra-large scale integrated circuit technology, the development of the birth, and because of its small size, strong function and high cost performance, it is widely used in electronic equipment, household appliances, energy-saving devices, military devices, robots, industrial control and many other areas to make product miniaturization, intelligent temperature control instrumentation, both to improve the product's features and quality, but also reduce the cost and simplify design. This paper introduces the MCU to the temperature control applications.

流量检测装置说明书

流量检测装置设计说明书 一、装置需求: 1. 100点流量差压信号的采集。用键盘输入流量系数,输入时可显 示; 2.范围0-1000l/min,采集周期0.5s,信号4-20mA,分辨力0.1%; 3.要求运用数字滤波(方法自选); 4.计算瞬时流量(l/min)、累计流量(m3/h),并显示; 5.操作人员可随时修改流量系数和切换显示内容(瞬时/累计流量)。 二、设计说明书要求: 1.系统构成框图及构成说明,包括主要部件的选型及依据; 2.DSP与A/D转换芯片连接的电原理图; 3.程序框图,包括主要流程; 4.采集、数字滤波、流量计算程序清单。 三、差压式流量计基本理论 1.节流装置工作原理 差压式流量计是根据伯努力方程和流体连续性原理用差压法测量流量的,其节流装置工作原理如图1所示,在横截面H处:流体的平均流速是v 1 ,密度是 ρ 1,横截面积是A 1 ;在横截面L处:流体的平均流速是v 2 ,密度是ρ 2 ,横截面 积是A 2 。

图1 差压流量计工作原理图 根据流体流动连续性原理有如下关系式: v 1·A 1·ρ1=v 2·A 2·ρ2 (1) 如果流体是液体,可认为在收缩前、后其密度不变: ρ1=ρ2=ρ (2) 根据瞬时流量的定义,即单位时间内流体流经管道或明渠某横截面的数量,所以液体的体积瞬时流量: 2211A v A v q v ?=?= (3) 根据伯努利方程(能量守恒定律),在水平管道上Z1=Z2,则有如下关系式: 2 2 2 2 222 111v P v P ρρ+ =+ (4) 应用伯努利方程和流动连续性原理,在两个横截面上压力差则有如下关系式: )(2 212 221v v P P P -= -=?ρ (5) 将(3)代入(5)式,并整理,则得: 2 221 2])( 1[2 v A A P -= ?ρ (6) 由于4 2 1D A ?= π, 4 2 2d A ?= π, 定义直径比D d = β, 其中d 为工作状况下节流件的等效开孔直径,D 为管道直径,则得到: 222 4 )1(2A q P v βρ -=? (7)

基于组态软件的中央空调监控系统的仿真课程设计报告书

目录 一.课程设计题目 (2) 二.设计目的及意义 (2) 三.系统设计的基本要求 (2) 四.空调系统组成 (2) 五.主界面的设计 (2) 六.组态王的运行 (8) 七.心得与总结 (13) 八.参考文献 (14)

一、课程设计题目: 基于组态软件的中央空调监控系统的仿真 二、设计目的及意义: 本次课程设计对于提高智能楼宇空调监控系统系统的安全运行具有重要的 意义。通过本次课程设计,使学生能够了解空调的物理模型,同时针对空调监控系统进行控制,该系统具有报警和查询功能。通过课程设计,学生用组态软件进行主界面的设计、编程以及仿真,使学生的分析问题、解决问题的能力得到提高,为学生今后从事楼宇智能方面的相关工作奠定良好的基础。 三、系统设计的基本要求: 中央空调的自动监控系统可以实现以下几个功能: (1)室温度和湿度的监测; (2)设备的启停自动控制; (3)根据室温度的高低实现冷热源控制系统和加湿器控制系统的全面自动调节与控制; 四、空调系统组成: 中央空调系统主要包括通风管道、回风机控制系统、新风机控制系统、加热盘管控制系统、加湿器控制系统、制冷控制系统、控制按钮等。 五、主界面的设计: 1、构建组态画面 本次设计的中央空调系统主要针对水系统的制冷系统、加热系统及加湿系统的监控,故组态画面由空调监控主画面、温度指示、湿度指示、阀门指示组成。主画面如图1所示。

图1 主画面 2、组态王与现场的I/O设备直接进行通讯 I/O设备的输入提供现场的信息,例如:产品的位置、机器的转速、炉温等等。I/O设备的输出通常用于对现场的控制,例如启动电动机、改变转速、控制阀门和指示灯等等。有些I/O设备,其本身的程序完成对现场的控制,程序根据输入决定各输出值。 输入输出的数值存放在I/O设备的寄存器中,寄存器通过其他地址进行引用。大多数I/O设备提供与其他设备或计算机进行通讯的通讯端口或数据通道,组态王通过这些通讯通道读写I/O设备的寄存器,采集到的数据可用于进一步的监控。不需要读写I/O设备的寄存器,组态王提供一个数据定义方法,定义了I/O变量后,可直接使用变量名用于系统控制、操作显示、趋势分析、数据记录和报警显示。 在本次设计过程中现场的I/O设备主要采用的是亚控仿真PLC。 3、组态王与PLC连接 (1)组态王与仿真设备连接 将仿真软件与组态王软件连接,在组态王设备定义里定义设备为亚控—仿真PLC。如图2,图3所示,

智能仪器课程设计

测控系统课程设计指导 电子信息与自动化学院检测与控制实验中心万文略、彭小峰 电子信息与自动化学院测控技术与仪器系杨泽林、杨继森、庄秋慧 课程设计目的 测控系统课程设计是在学生学习完智能仪器理论和实验课后安排的综合实践教学环节,要求学生在2周的时间内运用所学知识,在教师的指导下按照仪器设计的一般方法设计制作一个功能较为完整的仪器。并写出设计研究报告。通过课程设计使学生在实践上获得智能仪器设计的经验,掌握仪器设计的步骤、过程和方法。为毕业设计及今后从事智能仪器设计打下良好的基础。 课程设计题目:基于PN结传感器的温度测量仪设计 智能仪器的组成一般包括:传感器及信号调理电路、CPU及外围电路、模拟量输入通道、模拟量输出通道、开关量输入输出通道、人机接口电路(键盘、显示)、数据记录、转储(保存、打印)等 主要研究内容: 根据本次课程设计的题目要求,本次课程设计研究的主要内容为传感器及信号调理电路、CPU及其外围电路,AD转换电路,键盘和显示电路。本文对其中关键部分做简单介绍,以使学生能更容易地进行课程设计。 1.半导体二极管的温度特性 选择1N4007整流二极管,其正向偏置工作时PN结上的结电压满足 (式1-1) α,γ是由PN结参数决定的常数 Ugo:硅半导体在OK温度时禁带宽度与电子电荷q的比值。 由式1-1可以看出,PN结具有负的温度系数特性。 据文献记载,当温度变化一度时,结电压变化2mv左右。由式1-1可知,温度变化曲线为指数型非线性变化。其正向偏置电流应保持恒定。 2.放大电路设计 (1)选择放大器 PN结的结电压变化是一个微弱信号,结电压在温度每变化1度时大约变化2mv左右,所以需要进行放大后才能被后续电路处理。选择合适的集成运放来设计放大电路,选择运放时应考虑运放的温度系数,共模抑制比,输入失调电压,带宽等。 可供选择的运算放大器有OP07、LM324等。

智能控制课程设计报告书

《智能控制》课程设计报告 题目:采用BP网络进行模式识别院系: 专业: 姓名: 学号: 指导老师:

日期:年月日 目录 1、课程设计的目的和要求 (3) 2、问题描述 (3) 3、源程序 (3) 4、运行结果 (6) 5、总结 (7)

课程设计的目的和要求 目的:1、通过本次课程设计进一步了解BP网络模式识别的基本原理,掌握BP网络的学习算法 2、熟悉matlab语言在智能控制中的运用,并提高学生有关智能控制系统的程序设计能力 要求:充分理解设计内容,并独立完成实验和课程设计报告 问题描述 采用BP网络进行模式识别。训练样本为3对两输入单输出样本,见表7-3。是采用BP网络对训练样本进行训练,并针对一组实际样本进行测试。用于测试的3组样本输入分别为1,0.1;0.5,0.5和 0.1,0.1。 输入输出 1 0 1

0 0 0 0 1 -1 表7-3 训练样本 说明:该BP网络可看做2-6-1结构,设权值wij,wjl的初始值取【-1,+1】之间的随机值,学习参数η=0.5,α=0.05.取网络训练的最终指标E=10^(-20),在仿真程序中用w1,w2代表wij,wjl,用Iout代表 x'j。 源程序 %网络训练程序 clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1);

w2_1=w2;w2_2=w2; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; k=0; E=1.0; NS=3; while E>=1e-020 k=k+1; times(k)=k; for s=1:1:NS xs=[1,0;

相关主题