搜档网
当前位置:搜档网 › 六、对流给热系数测定实验

六、对流给热系数测定实验

六、对流给热系数测定实验
六、对流给热系数测定实验

化工原理实验报告

实验名称:对流给热系数测定实验

学院:化学工程学院

专业:化学工程与工艺

班级:

姓名:学号:

指导教师:

日期:

一、实验目的

1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型;

2、测定空气(或水)在圆直管内强制对流给热系数αi;

3、应用线性回归分析方法,确定关联式Nu=ARemPr0.4中常数A、m的值。

4、掌握热电阻测温的方法。

二、实验原理

1、在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式:

VρC p (t 2 -t 1 )=αi A i (t w-t)m

式中:V—被加热流体体积流量,m3/s;

Cp—被加热流体平均比热,J/(kg.℃);

t1、t2—被加热流体进、出口温度,℃;

ρ—被加热流体密度,kg/m3;

A i—内管的外壁、内壁的传热面积,m2;

(t w-t)m—内壁与流体间的对数平均温度差,℃;

(T-T w)m=[(T1-T w1)- (T2-T w2)]/ ln[(T1-T w1)/ (T2-T w2)]

式中,T1、T2—蒸汽进、出口温度,℃;

(T-T w)m—水蒸气与外壁间的对数平均温度差,℃;

当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为

T w1 =t w1,T w2 =t w2 ,即为所测得的该点的壁温。

2、流传热系数准数关联式的实验确定

流体在管内作强制湍流,被加热状态,准数关联式的形式为:

Nu i=ARe i m Pr i n

其中:Nu i=α i*d i/λi Re i=ρi *d i *u i /μi Pr i= C P i*μi/λi

物性数据λi,C P i,ρi,μi可根据定性温度t m查得。对于管内被加热的空气,普兰特准数Pr i变化不大,可以认为为常数,则关联式的形式简化为:

Nu i=ARe i m Pr i0.4

通过实验确定不同流量下的Re i与Nu i,然后用回归方法确定A和m的值。这样,上式即变为单变量方程,在两边取对数,即得到直线方程:

ln(Nu/Pr0.4)=lnA + mlnRe

三、实验装置图与流程

1、实验装置及说明

该装置为套管换热器(见图1),空气走管内,蒸汽走环隙,外管11/2玻璃管,内管为φ25×2mm紫铜管,有效长度为1.2m。空气进出口温度和壁温分别由铂电阻测量,测壁温的两支铂电阻用导热绝缘胶固定在管外壁,孔板流量计的压差通过压力传感器转换为电信号由表头显示,其单位为kPa。孔板流量计的孔板d0=20mm。蒸汽发生器的加热功率为1500W(额定电压220V)。

2、设备及仪器规格

(1)、紫铜管规格:管径φ20×1.5mm,管长L 1000mm

(2)、外套玻璃管规格:管径φ100×5mm,管长L 1000mm

(3)、压力表规格:0~0.1Mpa

四、实验步骤

1、打开总电源空气开关,打开仪表及巡检仪电源开关,给仪表上电。

2、打开仪表台上的风机电源开关,让风机工作,同时打开冷流体入口阀门,让套管换热器里充有一定量的空气。

3、打开冷凝水出口阀,注意只开一定的开度,开的太大会让换热桶里的蒸汽跑掉,关的太小会使换热玻璃管里的蒸汽压力集聚而产生玻璃管炸裂。

4、在做实验前,应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。具体排除冷凝水的方法是:关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走。

5、刚开始通入蒸汽时,要仔细调节蒸汽进口阀门的开度,让蒸汽徐徐流入

换热器中,逐渐加热,由“冷态”转变为“热态”,不得少于10分钟,以防止玻璃管因突然受热、受压而爆裂。

6、当一切准备好后,打开蒸汽进口阀,蒸汽压力调到0.01Mpa ,并保持蒸汽压力不变。可通过调节排不凝性气体阀以及蒸汽进口阀来实现。

7、可通过调节空气的进口阀手动调节空气流流量,改变冷流体的流量到一定值,等稳定后记录实验数值;改变不同流量,记录不同流量下的实验数值。

8、记录6组实验数据,完成实验,关闭蒸汽进口阀与冷流体进口阀,关闭仪表电源和风机。

9、关闭蒸汽发生器。

五、注意事项

1、一定要在套管换热器内管输以一定量的冷流体后,方可开启蒸汽阀门,且必须在排除蒸汽管线上原先积存的凝结水后,方可把蒸汽通入套管换热器中。

2、刚开始通入蒸汽时,要仔细调节蒸汽的开度,让蒸汽徐徐流入换热器中,逐渐加热,由“冷态”转变为“热态”,不得少于10分钟,以防止玻璃管内因受热、受压而爆裂。

3、操作过程中,蒸汽压力一般控制在0.02MPa(表压)以下,否则造成玻璃管爆裂和填料损坏。

4、确定各参数时,必须要在稳定传热状态下,随时注意惰气的排空和压力表读数的调整。

六、实验的原始数据记录

已知:S=πdL=3.14×20×10-3×1000×10-3=0.0628m2

定性温度t=(t1 +t2)/2 壁温t w=(T1+ T2)/2

七、实验数据的处理

1、计算冷空气给热系数α

以第1组为例子:

Q=ρV C P(t2-t1)=1.135×(11/3600)×1005×(62.7-11.8)= 177.41 W △t m=[(t w-t1)-(t w-t2)]/[ln(t w-t1)/(t w-t2)]=55.83℃

则,α =Q/(A△t m)=177.41/(0.0628×55.83)=50.60W/(m2?℃)

同理可得出其他5组的给热系数α值,如下表:

2、计算冷空气的物理量Nu 、Pr 、u、Re

以第1组为例子:

Nu=αd/λ=50.60×0.02/0.02732=37.04

Pr=C Pμ/λ=1005×1.89×10-5/0.02732=0.695

u=V/(π*d2/4)=(11/3600)/[π×(0.02/2)2]=9.73m/s

Re=(duρ)/μ=0.02×9.73×1.135/(1.89*10-5)=11686.3

同理可得出其他5组的物理量,如下表:

3、求常数A、m

已知冷流体在管内作强制湍流,被加热状态,准数关联式的形式为:

Nu=ARe m Pr0.4

将其对数简化后的形式为:lnNu/Pr0.4=lnA+mlnRe

则根据表7-3的数据,以lnNu/Pr0.4为纵坐标,lnRe为横坐标,用软件线性拟合得出下图:

图一、lnRe-lnNu/Pr0.4关系图

拟合得一直线:lnNu/Pr0.4=-4.127+0.844lnRe

由此可知,该直线的斜率为0.905,截距为-4.127,

即m=0.844,lnA=-4.127,A=0.01613

八、实验讨论

本次实验使用套管换热器,观察水蒸气和冷空气在管内的逆流流动过程,记录不同流量下的实验数据来测定冷空气的对流给热系数α值。实验总体上操作简单,采用电脑读取数据就更加准确。

根据线性拟合得出的图7-1,图形基本上符合线性关系,但扔存在一定的误差。造成这些误差的主要因素包括:

(1)、实验读取的各条件下的温度示数显示有波动,不够准确就对△t m的计算有影响,实验时,每组间隔时间要保持5分钟,以保证温度处于较稳定的状态。

(2)、测第一组温度数据时,过于急读而使等待的时间短了,使得换热器内没有真正达到“热态”,就会影响后面5组的数据准确性。

(3)、采用线性回归的分析方式拟合获得常数A、m的值,在这个数据的处理过程中存在一些计算误差。

九、思考题

1、实验中冷流体和蒸汽的流向,对传热效果有何影响?

冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。

2、蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响,应采取什么措施?

不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。

3、实验过程中,冷凝水不及时排走,会产生什么影响,如何及时排走冷凝水?

冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。在外管最低处设置排水口,及时排走冷凝水。

4、实验中,所测得的壁温是靠近蒸气侧还是冷流体侧温度?为什么?

靠近蒸气温度;因为蒸气冷凝传热膜系数远大于空气膜系数。

5、如果采用不同压强的蒸汽进行实验,对α关联式有&影响?

基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t均增加,其它参数不变,故 (ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。

对流传热系数的测定实验报告

. . .. . . 浙江大学 化学实验报告 课程名称:过程工程原理实验甲 实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验容和原理 (2) 1.间壁式传热基本原理 (2) 2.空气流量的测定 (2) 3.空气在传热管对流传热系数的测定 (2) 3.1牛顿冷却定律法 (2) 3.2近似法 (2) 3.3简易Wilson图解法 (2) 4.拟合实验准数方程式 (2) 5.传热准数经验式 (2) 四、操作方法与实验步骤 (2) 五、实验数据处理 (2) 1.原始数据: (2) 2.数据处理 (2) 六、实验结果 (2) 七、实验思考 (2)

一、实验目的和要求 1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径; 2)把测得的数据整理成形式的准数方程,并与教材中公认 经验式进行比较; 3)了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验流程与装置 本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显 示仪表等构成。 空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3 和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。 注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者 必学统一。

传热系数与给热系数

传热系数K 和给热系数α的测定 一. 实验目的 1. 了解间壁式传热元件的研究和给热系数测定的实验组织方法; 2. 掌握借助于热电偶测量壁温的方法; 3. 学会给热系数测定的试验数据处理方法; 4. 了解影响给热系数的因素和强化传热的途径。 二. 基本原理 1.传热系数K 的理论研究 在工业生产和科学研究中经常采用间壁式换热装置 来达到物料的冷却和加热。这种传热过程系冷、热流 体通过固体壁面进行热量交换。它是由热流体对固体 壁面的 对流给热,固体壁面的热传导和固体对冷流体的对 流给热三个传热过程所组成。如图1所示。 由传热速率方程知,单位时间所传递的热量 Q=()t T KA - (1) 而对流给热所传递的热量,对于冷、热流体均可由牛顿冷却定律表示 Q=()1w h h t T A -α (2) 或 Q=()t t A w c c -2α (3) 对固体壁面由热传导所传递的热量,则由傅立叶定律表示为 Q ()21w w m t t A -?=δ λ (4) 由热量平衡和忽略热损失,可将(2)、(3)、(4)式写成如下等式 Q=KA t T A t t A t t A t T c c w m w w h h w 1 112211-=-=-=-αλδα (5)所以 c c m h h A A A K αλδα111 ++= (6) ()22222111111,,,,,,,,,,,,u c u c d f K p p λμρδλλμρ==()5,2,6f (7) 图1传热过程示意图

从上式可知,除固体的导热系数和壁厚对传热过程的传热性能有影响外,影响传热过程的参数还有12个,这不利于对传热过程作整体研究。根据因次分析方法和π定理,热量传递范畴基本因次有四个:[L],[M],[T],[t] ,壁面的导热热阻与对流给热热阻相比可以忽略 K ≈()21,ααf (8) 要研究上式的因果关系,尚有π=13-4=9个无因次数群,即由正交网络法每个水平变化10次,实验工作量将有108次实验,为了解决如此无法想象的实验工作量,过程分解和过程合成法由此诞生。该方法的基本处理过程是将(7)式研究的对象分解成两个子过程如(8)式所示,分别对21,αα进行研究,之后再将21,αα合并,总体分析对K 的影响,这有利于了解影响传热系数的因素和强化传热的途径。 当1α>>2α时,2α≈K ,反之当1α<<2α时,1α≈K 。欲提高K 设法强化给热系数小的一侧α,由于设备结构和流体已定,从(9)式可知,只要温度变化不大,1α只随1u 而变, ()1111111,,,,,λμραp c u d f = (9) 改变1u 的简单方法是改变阀门的开度,这就是实验研究的操作变量。同时它提示了欲提高K 只要强化α小的那侧流体的u 。而流体u 的提高有两种方法: (1)增加流体的流量; (2)在流体通道中设置绕流内构件,导致强化给热系数。 由(9)式,π定理告诉我们,π=7-4=3个无因次数群,即: ()1111111,,,,,λμραp c u d f = ? ???? ??=λμμ ρλαp c du f d , (10) 经无因次处理,得: c b o a Nu Pr Re = (11) 如果温度对流体特性影响不大的系统,并且温度变化范围不大,则式(11)可改写为:b a Nu Re = 式中:c o a a Pr =。 2.传热系数K 和α的实验测定

空气对流传热系数的测定

空气对流传热系数的测定 一、实验目的 1.测定空气在圆直管中强制对流时对流传热系数。 2.通过使实验掌握并确定对流传热系数准数关联式中的系数; 3.通过实验提高对准数的理解,并分析影响对流系数的因素,了解强化传热的措施; 4.掌握强制对流传热系数及传热系数的测定方法; 5.了解热电偶和电位差计的使用和仪表测温方法。 二、实验原理 1.本实验装置为套管式换热器,空气走管内水蒸汽走管间,两流体在换热器内进行热量交换,其传热基本方程式:Q=KA ?t m 其中:Q=Wc p (t 进-t 出) ?t m =(T-t 进)-(T-t 出)/Ln(T-t 进)/(T-t 出) 当测取Q 、A 后便可得到K 值。 i i m O O A 1A b A 1KA 1α+λ+α= 分析可知蒸汽的对流传热热阻、金属导热热阻都远小于空气对流热阻,则上式可近似写成 i i A 1KA 1α= 又 KA=O O i i A K A K = 当传热面积A i (内管内壁面积)时,由上述内容可得: m i i i t A Q K ?==α (1) 2.若从实验中通过热过热电偶,测取内管的外壁温度,由于金属管热阻很小可忽略其内外壁间的温差,于是αi 也可由牛顿冷却定律(对流传热速率方程)得出: m i i t A Q ?=α (2) (2)式与(1)式比较只是?'t m 与?t m 略有区别,?'t m 是以壁与空气之间的温度差的平均值。从热阻观点看(1)式忽略了蒸汽对流传热热阻和金属管壁导热热阻。而(2)式只忽略了金属导热热阻,因此用(2)得到的αi 应更好些。如用(1)计算αi 可认为用代替蒸汽温度,使

气汽对流传热系数的测定实验

《气-汽对流传热系数的测定》实验 一、仪器设备简介 流程如图,冷空气由风机13,经孔板流量计11计量后,进入换热器内管,并与套管环隙中蒸汽换热。空气被加热后,排入大气。空气的流量可用控制阀9调节。 1 、蒸汽发生器 2、蒸汽管 3、补水口 4、补水阀 5、排水阀 6、套管换热器 7、放气阀 8、冷凝水回流管 9、空气流量调节阀 10、压力传感器 11、孔板流量计 12、空气管 13、风机 二、试验目的、任务 1、掌握传热膜系数α及传热系数K 的测定方法。 2、通过实验掌握确定传热膜系数准数关联式中的系数A 和指数m 、n 的方法。 3、通过实验提高对α准数关联式的理解,并分析影响α的因素,了解工程上强化传热的措施。 三、实验原理及步骤 1、实验原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变式对流传热准数关联式的一般形式为: Nu=A·R e m ·P r n ·G r p 对于强制湍流而言,G r 准数可以忽略,故 Nu=A· R e m ·P r n 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。 用图解法对多变量方程进行关联时,要对不同变量R e m 和P r 分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,在两边取对数,既得到直线方程: lg(Nu/P r 0.4)=lgA+mlgR e 在双对数坐标中作图,找出直线斜率,即为方程的指数m 。在直线上任取一点的函数值带入方程式中,则可得到系数A ,即 A=Nu/(P r 0.4·R e m ) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联式。应用微机,对多变量方程进行一次回归,就能同时得到A 、m 、n 。 对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。其准数定义式分别为:

综合传热系数的测定实验

实验1综合传热系数的测定实验 一、实验目的 1.了解间壁式传热元件的结构。 2.了解观察水蒸气在水平管外壁上的冷凝现象,并判断冷凝类型。 3.通过对内管是光滑管的空气—水蒸气简单套管换热器的实验研究,掌握空气在圆形光滑直管中强制对流传热系数的测定的实验方法,加深对其概念和影响因素的理解。确定关联式Nu=Are m Pr0.4中常数A、m的值。 4.掌握传热系数测定的实验数据处理方法。 5.掌握孔板流量计的使用。 6.掌握DC-3A微音气泵的使用。 二、实验内容及基本原理 (一)实验内容 1.观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型。 2.测定不同流速下简单套管换热器的对流传热系数α。 3.对实验数据通过Excel进行处理,求关联式Nu=A·Re m Pr0.4中常数A、m的值;并绘制曲线。 4.实验原始记录 光滑管记录: 5.实验数据处理与分析 数据处理 光滑管:实验结果列表和作图:

(二)实验原理 1.准数方程 空气在圆形直管中作湍流流动的给热准数方程: ),,,d l Gr f Nu Pr (Re 1= (1-1) 式中 l —为管长,m ; d —为管径,m ; 强制对流时,G r 可忽略;对气体而言,原子数相同(如单原子、双原子…)的气体Pr 为一常数,当50>d l 其影响亦可忽略,故上式可写为: (Re)f N u = (1-2) 一般可写成 m u A N Re = (1-3) 其中A 为常数,λ αd Nu = , μρdu =Re 。 2.准数方程中各参数的测定和计算 (1)α值的计算:空气传热膜系数α可以通过测定总传热系数(K )进行测取。K 与α有下列关系: 2 1 11αλδα+ +=s K (1-4) 因管壁很薄,可将圆壁看成平壁。 这里因是空气,故不计污垢热阻,上式中s λδ为黄铜管壁热传导的热阻,壁厚0.001米, 黄铜导热系数λs =377(W/m·k), 故δ/λs =2.7×10-6 ;1/α2为蒸气冷凝膜的热阻,α2=2×104 ,故 1/α2=5×10-5,空气传热膜系数α在100上下,热阻1/α=1×10-2 ,对比之下,上述两项热阻均可忽略,即K ≈α。 其测定方法可用牛顿冷却定律进行: m t S K Q ???= (1-5) ()进出t t c V Q p s -ρ= (1-6) m p s t S t t c V K ??= ≈) -(进出ρα (1-7) 式中:V s —空气体积流量,m 3/s (由流量计测取) ρ—流经流量计处的空气密度,kg/m 3;

对流传热系数的测定实验报告

浙江大学化学实验报告 课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师: 专业班级: 姓名: 学号: 同组学生: 实验日期: 实验地点:

目录 一、实验目的和要求 (2) 二、实验流程与装置 (2) 三、实验内容和原理 (4) 1.间壁式传热基本原理 (4) 2.空气流量的测定 (6) 3.空气在传热管内对流传热系数的测定 (6) 3.1牛顿冷却定律法 (6) 3.2近似法 (7) 3.3简易Wilson图解法 (8) 4.拟合实验准数方程式 (8) 5.传热准数经验式 (9) 四、操作方法与实验步骤 (10) 五、实验数据处理 (11) 1.原始数据: (11) 2.数据处理 (11) 六、实验结果 (14) 七、实验思考 (15)

一、实验目的和要求 二、1)掌握空气在传热管内对流传热系数的 测定方法,了解影响传热系数的 三、因素和强化传热的途径; 四、2)把测得的数据整理成形 式的准数方程,并与教材中公认 五、经验式进行比较; 六、3)了解温度、加热功率、空气流量的自 动控制原理和使用方法。 七、实验流程与装置 八、本实验流程图(横管)如下图1所示, 实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。 九、空气-水蒸气换热流程:来自蒸汽发 生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器内管,热交换后从风机出口排出。 十、注意:普通管和强化管的选取:在 实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切 换,电脑界面上通过鼠标选择,三者必学统一。 十一、 十二、 十三、 十四、

对流传热系数的测定

01 对流传热系数的测定 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握空气在普通和强化传热管内的对流传热系数的测定方法,了解影响传热系数的因素和强化传热 的径。 2.把测得的数据整理成B Re n Nu=?形式的准数方程式,并与教材中相应公式进行比较。 3.了解温度、加热功率、空气流量的自动控制原理和使用方法。 二、实验内容和原理 在实际生产中,大量情况采用的是间壁式换热方式进行换热,就是冷、热流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,不直接接触,通过固体壁面进行热量交换。 本实验主要研究汽—气综合换热,包括普通管和强化管。其中,水蒸气和空气通过紫铜管间接换热,空气走紫铜管内,水蒸气走紫铜管外,采用逆流换热。所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。 1. 空气在普通和强化传热管内对流传热系数的测定 间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。

T t Figure 1间壁式传热过程示意图 间壁式传热元件,在传热过程达到稳态后,有 ()()()()111222211122--α-α-Δp p W W m M m Q m c T T m c t t A T T A t t KA t =====(1) 式中:Q ——传热量,s J /; 1m 、2m ——分别为热流体、冷流体的质量流量,s kg /; 1p c 、2p c ——分别为定性温度下热流体、冷流体的比热,()C kg J °?/; 1T 、2T ——分别为热流体的进、出口温度,C °; 1t 、2t ——分别为冷流体的进、出口温度,C °; 1α、2α——分别为热流体、冷流体与固体壁面的对流传热系数,()2/W m C ??; 1A 、2A ——分别为热流体、冷流体测的传热面积,2m ; ()W M T T -、()w m t t -——分别为热流体、冷流体与固体壁面的对数平均温差,C °; K ——以传热面积A 为基准的总传热系数,( )C m W °?2/; A ——传热面积,2m ; m t Δ——冷、热流体的对数平均温差,C °。 热流体与固体壁面的对数平均温差可由式(2)计算: ()()()112211 22 ----ln -W W W m W W T T T T T T T T T T -= (2) 式中:1W T 、2W T ——分别为热流体进、出口处热流体侧的壁面温度,C ?。 冷流体与固体壁面的对数平均温差可由式(3)计算:

对流传热系数测定实验

对流传热系数测定实验 一、实验目的 a)测定空气在传热管的对流传热系数,掌握空气在传热管的对流传热系数的测定方法。 b)把测得的实验数据整理成Nu=BRe n形式的准数方程式,并与教材中相应公式进行比较。 c)通过实验提高对准数方程式的理解,了解影响传热系数的因素和强化传热的途径。 二、实验装置 实验装置如图1所示,由蒸汽发生器、风机、套管换热器、流量调节阀及不锈钢进、出口管道、温度测量和流量测量装置等组成。 1. 风机 F1. 旁路阀 2. 孔板流量计 3. 空气压力变送器 4. 蒸汽放空口 5. 冷凝液排放口 6. 玻璃视镜 7. 套管换热器 F2. 空气流量调节阀 F3. 蒸汽流量调节阀 8. 加水装置F4. 进水阀 13. 蒸汽发生器 T. 蒸汽温度 t1、t2 . 空气进、出口温度 T w1、T w2. 空气出口和进口侧的管壁温度 图1 空气-水蒸气传热实验装置示意图 三、对流传热及参数测取 空气从漩涡风机吸入,经孔板流量计计量后进入套管换热器的管(紫铜管),与来自蒸汽发生器的饱和水蒸汽在套管换热器进行换热。被空气冷凝下来的冷凝水经冷凝液排放口排入蒸汽发生器的加水装置。进入套管换热器的空气进、出口温度t1、t2分别由铜—康铜热电偶测出。换热管两端管壁温度T w1、T w2同样也分别由埋在管(紫铜管)外壁上的铜—康铜热电偶测出。蒸汽温度T由蒸汽发生器根据管路的实际状况实现自动控制,T由热电阻PT100测得。空气流量通过F2、F2的组合调节来改变或通过变频器改变,由孔板流量计测量,并通过压力变送器测出空气的压力。套管换热器管(紫铜管)的规格为:φ20×2 mm,换热管

12固体小球对流传热系数的测定讲解

固体小球对流传热系数的测定 A 实验目的 工程上经常遇到凭藉流体宏观运动将热量传给壁面或者由壁面将热量传给流体的过程,此过程通称为对流传热(或对流给热)。显然流体的物性以及流体的流动状态还有周围的环境都会影响对流传热。了解与测定各种环境下的对流传热系数具有重要的实际意义。 通过本实验可达到下列目的: (1) 测定不同环境与小钢球之间的对流传热系数,并对所得结果进行比较。 (2) 了解非定常态导热的特点以及毕奥准数(Bi )的物理意义。 (3) 熟悉流化床和固定床的操作特点。 B 实验原理 自然界和工程上,热量传递的机理有传导、对流和辐射。传热时可能有几种机理同时存在,也可能以某种机理为主,不同的机理对应不同的传热方式或规律。 当物体中有温差存在时,热量将由高温处向低温处传递,物质的导热性主要是分子传递现象的表现。 通过对导热的研究,傅立叶提出: dy dT A Q q y y λ-== (1) 式中: dy dT - y 方向上的温度梯度[]m K / 上式称为傅立叶定律,表明导热通量与温度梯度成正比。负号表明,导热方向与温度梯度的方向相反。 金属的导热系数比非金属大得多,大致在50~415[]K m W ?/范围。纯金属的导热系数随温度升高而减小,合金却相反,但纯金属的导热系数通常高于由其所组成的合金。本实验中,小球材料的选取对实验结果有重要影响。 热对流是流体相对于固体表面作宏观运动时,引起的微团尺度上的热量传递过程。事实上,它必然伴随有流体微团间以及与固体壁面间的接触导热,因而是微观分子热传导和宏观微团热对流两者的综合过程。具有宏观尺度上的运动是热对流的实质。流动状态(层流和湍

换热器传热系数测定汇总

化 工 实 验 报 告 姓名: 学号: 报告成绩: 课程名称 化工原理实验 实验名称 换热器传热系数的测定实验 班级名称 组 长 同组者 指导教师 实验日期 教师对报告的校正意见 一、 实验目的 1、了解传气—汽对流热的基本理论,掌握套管换热器的操作方法。 2、掌握对流传热系数 α i 测定方法,加深对其概念和影响因素的理解。 3、应用线性回归分析方法,确定关联式 4 .0Pr Re i m A Nu = 中常数 A 、m 的值。 4、了解强化换热的基本方式,确定传热强化比 0/Nu Nu 。 二、 实验内容与要求 1、测定不同空气流速下普通套管换热器的对流传热系数 α i 。 2、不同空气流速下强化套管换热器的对流传热系数 α i 。 3、分别求普通管、强化管换热器准数关联式4 .0Pr Re i m A Nu =中常数 A 、m 的值。 4、根据准数关联式4 .0Pr Re i m A Nu =,计算同一流量下的传热强化比 0/Nu Nu 。 5、分别求取普通套管换热器、强化套管换热器的总传热系数 0K 。 三、 实验原理 1 、对流传热系数i α的测定: i m i i S t Q ?= α (5-1) 式中:i α—管内流体对流传热系数,w/(m 2·℃); Q i —管内传热速率,w ; 3600 t C V Q m p m i ????= ρ (5-2) 式中:V —空气流过测量段上平均体积,m 3/h ; m P —测量段上空气的平均密度,kg/m ; i S —管内传热面积, m ; 1 页

Re Pr 4 .0-Nu m Cp —测量段上空气的平均比热,J/(kg.g ); m t ?—管内流体空气与管内壁面的平均温度差,℃。 ()() 2 121m ln t t T t T t T t T S S w w -----= ? (5-3) 当 2>1t ? / 2t ? >0.5 时,可简化为 2 2 1t t T t W m +- =? (5-4) 式中:1t ,2t —冷流体(空气)的入口、出口温度,℃; Tw — 壁面平均温度,℃。 2、对流传热系数准数关联式的实验确定: 流体在管内作强制对流时,处于被加热状态,准数关联式的形式为: n i m i A Nu Pr Re = (5-5) 其中,传热准数:i i i i d Nu λ α= (5-6) 雷诺准数: i i i i i u d μ ρ= Re (5-7) 其中:u-测量段上空气的平均流速:3600?= F V u (5-8) 普朗特准数: i i pi i c λ μ= Pr (5-9) 对于管内被加热的空气,普朗特准数i Pr 变化不大,可认为是常数,关联式简化为: 4.0Pr Re i m i A Nu i = (5-10) 通过实验确定不同流量下的i Re 与i Nu 。 3、关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 的确定: 以 4 .0Pr Nu 纵坐标,Re 为横坐标,在对数坐标上绘 关系,作图、回归得到准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 同理得到强化管准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 4、强化比的确定 2 页

对流给热系数的测定(数据处理)

实验三 对流给热系数的测定 一、实验目的 1、观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2、测定空气(或水)在圆直管内强制对流给热系数i α; 3、应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 4、掌握热电阻测温的方法。 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气或水,水蒸气冷凝放热以加热空气或水,在传热过程达到稳定后,有如下关系式: V ρC P (t 2-t 1)=αi A i (t w -t)m (1-1) 式中: V ——被加热流体体积流量,m3/s ; Ρ——被加热流体密度,kg/m3; C P ——被加热流体平均比热,J/(kg ·℃); αi ——流体对内管内壁的对流给热系数,W/(m2·℃); t 1、t 2——被加热流体进、出口温度,℃; A i ——内管的外壁、内壁的传热面积,m2; (T -T W )m ——水蒸气与外壁间的对数平均温度差,℃; 2 2112211ln )()()(w w w w m T T T T T T T T Tw T -----= - (1-2) (t w -t)m ——内壁与流体间的对数平均温度差,℃; 2 211 2211ln )()()(t t t t t t t t t t w w w w m w -----= - (1-3) 式中:T 1、T 2——蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2——外壁和内壁上进、出口温度,℃。 当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。 由式(1-3)可得: m w P i t t A t t C V )() (012--= ρα (1-4) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1-4)算得实测的流体在管内的(平均)对流给热系数αi 。 流体在直管内强制对流时的给热系数,可按下列半经验公式求得: 湍流时: 4.08.0Pr Re 023 .0i i d λ α= (1-5) 式中:αi —— 流体在直管内强制对流时的给热系数,W/ (m 2·℃); λ—— 流体的导热系数,W/(m 2·℃); d i —— 内管内径,m ; Re —— 流体在管内的雷诺数,无因次; Pr —— 流体的普朗特数,无因次。 上式中,定性温度均为流体的平均温度,即t f = (t 1 + t 2) / 2。 过渡流时: αi ’=φαi (1-6)

对流给热系数测定实验报告

实验名称:对流给热系数测定实验 一、实验目的 1. 测定水蒸汽在圆直水平管外冷凝给热系数α0及冷流体(空气或水)在圆直水平管内的强制对流给热系数αi。 2. 观察水蒸汽在圆直水平管外壁上的冷凝状况。 3 掌握热电阻测温方法。 4 掌握计算机自动控制调节流量的方法。 5 了解涡轮流量传感器和智能流量积算仪的工作原理和使用方法。 6 了解电动调节阀压力传感器和变频器的工作原理和使用方法。 7 掌握化工原理实验软件库的使用。 二、实验装置流程示意图及实验流程简述 水蒸汽自蒸汽发生器○2途经阀○6、阀○7由蒸汽分布管进入套管换热器的环隙通道,冷凝水由阀○9、阀○8排入水沟。 冷流体水或来自由变频器○12控制的旋涡气泵产生的空气依次经过阀○4或电动调节阀○5、 10进入套管换热器的内管,被加热后排入下水道或放空。涡轮流量计○13、水或空气流量调节阀○

三、简述实验操作步骤及安全注意事项 空气~水蒸汽系统 1. 开启电源。依次打开控制面板上的总电源、仪表电源。 2. 启动旋涡气泵○1, 调节手动调节阀○10使风量最大。 3.排蒸汽管道的冷凝水。打开阀○9、阀○8,排除套管环隙中积存的冷凝水,然后适当关小阀○8,注意阀○8不能开得太大,否则蒸气泄漏严重。 4. 调节蒸汽压力。打开阀○6,蒸汽从蒸汽发生器○2沿保温管路流至阀○7;慢慢打开阀○7,蒸汽开始流入套管环隙并对内管的外表面加热,控制蒸汽压力稳定在0.02MPa, 不要超过0.05MPa,否则蒸汽不够用。 5. 分别测定不同流量下所对应的温度。当控制面板上的巡检仪显示的11个温度、压力数据及智能流量积算仪上显示的空气流量稳定后,记录下最大空气流量下的全部的温度、压力、流量数据。然后再调节阀○6,分别取最大空气流量的1/2及1/3,分别记录下相应流量下的稳定的温度和压力数据,这样总共有3个实验点。 6. 实验结束后,关闭蒸汽阀○7和阀○6,关闭仪表电源及总电源。 水~水蒸汽系统 操作步骤、方法基本上同空气~水蒸汽体系一样,只是冷流体由空气改为冷水,实验点仍然取3个。 注意事项 1 一定要在套管换热器内管输入以一定量的水或空气,方可开启蒸汽阀门,且必须在排除蒸汽管线上原积存的冷凝水后,才可把蒸汽通入套管换热器中。 2 操作过程中,压力一般控制在0.05Mpa以下。 3 开始通入蒸汽时,要缓慢通入换热器中,由‘冷态’变为‘热态’不得少于20分钟。 四、实验装置的主要设备仪器一览表

总传热系数的测定 附最全思考题

聊城大学实验报告 课题名称:化工原理实验 实验名称:总传热系数的测定 姓名:元险成绩: 学号:1989 班级: 实验日期:2011-9-18 实验内容:测定套管换热器中水—水物系在常用流速范围内的总传热系数K,分析强化传热效果的途径。

总传热系数的测定 一、实验目的 1.了解换热器的结构,掌握换热器的操作方法。 2.掌握换热器总传热系数K 的测定方法。 3.了解流体的流量和流向不同对总传热系数的影响 二、基本原理 在工业生产中,要完成加热或冷却任务,一般是通过换热器来实现的,即换热器必须在单位时间内完成传送一定的热量以满足工艺要求。换热器性能指标之一是传热系数K 。通过对这一指标的实际测定,可对换热器操作、选用、及改进提供依据。 传热系数K 值的测定可根据热量恒算式及传热速率方程式联立求解。 传热速率方程式: Q =kS ?t m (1) 通过换热器所传递的热量可由热量恒算式计算,即 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1)+Q 损 (2) 若实验设备保温良好,Q 损可忽略不计,所以 Q =W h C ph (T 1-T 2)=W c C pc (t 2-t 1) (3) 式中,Q 为单位时间的传热量,W ;K 为总传热系数,W/(m 2·℃);?t m 为传热对数平均温度差,℃;S 为传热面积(这里基于外表面积),m 2;W h ,W c 为热、冷流体的质量流量,kg/s ;C ph ,C pc 为热、冷流体的平均定压比热,J/(kg ·℃);T 1,T 2为热流体的进出口温度,℃;t 1,t 2为冷流体的进出口温度,℃。 ?tm 为换热器两端温度差的对数平均值,即 12 1 2ln t t t t t m ???-?=? (4) 当212≤??t t 时,可以用算术平均温度差(2 12t t ?+?)代替对数平均温度差。由上式所计算出口的传热系数K 为测量值K 测。 传热系数的计算值K 计可用下式进行计算: ∑+++=S i R K λδαα11 10计 (5) 式中,α0为换热器管外侧流体对流传热系数,W/(m 2·℃);αi 为换热器管内侧流体对流传热系数,W/(m 2·℃);δ为管壁厚度,m ;λ——管壁的导热系数,W/(m 2·℃);R S 为污垢热阻,m 2·℃/W 。 当管壁和垢层的热阻可以忽略不计时,上式可简化成:

实验8 空气横掠单管强迫对流换热系数测定实验

实验8 空气横掠单管强迫对流换热系数测定实验 一、实验目的 1. 测算空气横掠单管时的平均换热系数h 。 2. 测算空气横掠单管时的实验准则方程式13 Re Pr n Nu C =??。 3. 学习对流换热实验的测量方法。 二、实验原理 1对流换热的定义 对流换热是指在温差存在时,流动的流体与固体壁面之间的热量传递过程。 2、牛顿冷却公式 根据牛顿冷却公式可以测算出平均换热系数h 。 即:h= )(f W t t A Q -Q A t =?? w/m 2·K (8-1) 式中: Q — 空气横掠单管时总的换热量, W ; A — 空气横掠单管时单管的表面积,m 2 ; w t — 空气横掠单管时单管壁温 ℃; f t — 空气横掠单管时来流空气温度 ℃; t ?— 壁面温度与来流空气温度平均温差,℃; 3、影响h 的因素 1).对流的方式: 对流的方式有两种; (1)自然对流 (2)强迫对流 2).流动的情况: 流动方式有两种;一种为雷诺数Re<2200的层流,另一种为Re>10000的紊流。

Re — 雷诺数, Re v ud = , 雷诺数Re 的物理定义是在流体运动中惯性力对黏滞力比值的无量纲数。 上述公式中,d —外管径(m ),u —流体在实验测试段中的流速(m/s ),v —流体的运动粘度(㎡/s )。 3).物体的物理性质: Pr — 普朗特数,Pr= α ν = cpμ/k 其中α为热扩散率, v 为运动粘度, μ为动力粘度;cp 为等压比热容;k 为热导率; 普朗特数的定义是:运动粘度与导温系数之比 4).换面的形状和位置 5).流体集体的改变 相变换热 :凝结与沸腾 4、对流换热方程的一般表达方式 强制对流:由外力(如:泵、风机、水压头)作用所产生的流动 强迫对流公式为(Re,Pr)Nu f = 自然对流:流体因各部分温度不同而引起的密度差异所产生的流动。 自然对流公式为Nu=f (Gr ,Pr ) 1).Re=v ul = 雷诺数Re 的定义是在流体运动中惯性力对黏滞力比值的无量纲数Re=UL/ν 。其中U 为速度特征尺度,L 为长度特征尺度,ν为运动学黏性系数。 2).Pr= α ν 定义:流体运动学黏性系数γ与导温系数κ比值的无量纲数 3).Nu=λ hd (努谢尔数) 4).Gr= 2 3 ν t gad ? 式中a 为流体膨胀系数,v 为流体可运动系数。 格拉晓夫数 ,自然对流浮力和粘性力之比 ,控制长度和自然对流边界层厚度之比 。 5、对流换热的机理 热边界层 热边界层的定义是:黏性流体流动在壁面附近形成的以热焓(或温度)剧变为 特征的流体薄层 热边界层内存在较大的温度梯度,主流区温度梯度为零。

化工原理实验(四)空气-蒸汽对流给热系数测定

化工原理实验(四)空气-蒸汽对流给热系 数测定 一、实验目的 1、 了解间壁式传热元件,掌握给热系数测定的实验方法。 2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途 径。 二、基本原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热 量交 换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()() ()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) T t 图4-1间壁式传热过程示意图

式中:Q - 传热量,J / s ; m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ?℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ?℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃; α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 1 - 热流体侧的对流传热面积,m 2; ()m W T T -- 热流体与固体壁面的对数平均温差,℃; α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ?℃); A 2 - 冷流体侧的对流传热面积,m 2; ()m W t t - - 固体壁面与冷流体的对数平均温差,℃; K - 以传热面积A 为基准的总给热系数,W / (m 2 ?℃); m t ?- 冷热流体的对数平均温差,℃; 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4 -2) 式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃; T W 2 - 热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, ()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4 -3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃; t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。

总传热系数的测定实验报告

实验二:总传热系数的测定 一、实验目的 1、了解换热器的结构与用途; 2、学习换热器的操作方法; 3、掌握传热系数k计算方法; 4、测定所给换热器的逆流传热系数k。 二、实验原理 在工业生产过程中冷热流体通过固体壁面(传热元件)进行热量传递,称为间壁式换热。间壁式换热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三部分组成。本实验热流体采用饱和蒸汽走壳程,冷流体为空气走管程。 当传热达到稳定时,总传热速率与冷流体的传热速率相等时, 而即为, 综上可得,其中。 T --- 热流体; t --- 冷流体; V --- 冷流体进口处流量计读数; ---冷流体平均温度下的对应的定压比热容; ρ --- 冷流体进出口平均温度下对应的密度. 三、实验设备及流程 1、实验设备

传热单元实验装置(换热器、风机、蒸汽发生器) ,整套实验装置的核心是一个套管式换热器,它的外管是一根不锈钢管,内管是一根紫铜管。根据紫铜管形状的不同,我们的实验装置配有两组换热器,一种是普通传热管换热器,另一种是强化传热管换热器,本实验以普通传热管换热器为例,介绍总传热系数的测定。 2、实验流程 来自蒸汽发生器的水蒸气从换热器的右侧进入换热器的不锈钢管。而来自风机的冷空气从换热器的左侧进入换热器的紫铜管,冷热流体通过紫铜管的壁面进行传热。冷空气温度升高而水蒸汽温度降低,不凝气体和冷凝水通过疏水阀排出系统,而冷空气通过风机的右侧排出装置。 四、实验步骤 需测量水蒸气进口温度,出口温度,冷空气进口温度,出口温度,冷空气的体积流量以及紫铜管的长度及管径。前四项通过仪表读数可获得,冷空气进口温度可以由另外一块仪表盘读数计算可获得。紫铜

总传热系数的测定.doc(实验)

总传热系数测定实验 一、实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; 2. 测定饱和水蒸气在圆形管外壁上的冷凝给热系数; 二、基本原理 在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下公式: V ρC P (t 2-t 1)=K A m t ? 其中: V :空气体积流量,m 3/s A :内管的外壁的传热面积,m 2 ρ:空气密度,kg/m 3 C P :空气平均比热,J/(kg ℃) t 1、t 2:空气进、出口温度,℃ T 1、T 2:蒸汽进、出口温度,℃ m t ?:对数平均温差,℃ 1 2211221ln ) ()(t T t T t T t T t m -----= ? 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 以及水蒸气温度T 1、T 2,即可计算实测的水蒸气(平均)冷凝给热系数。 三、实验装置与流程 实验装置如下图

水蒸气~空气换热流程图 来自蒸汽发生器的水蒸气进入玻璃套管换热器,与来自风机的风进行热交换,冷凝水经疏水器排入地沟。冷空气经孔板(转子)流量计进入套管换热器内管(紫铜管),热交换后排出装置外。 2.设备与仪表规格 (1)紫铜管规格:直径φ21×2.8mm,长度L=1000mm (2)外套玻璃管规格:直径φ100×5mm,长度L=1000mm (3)压力表规格:0~0.1MPa 四、实验步骤与注意事项 1.打开总电源空气开关,打开仪表及巡检仪电源开关,给仪表上电。 2.打开仪表台上的风机电源开关,让风机工作,同时打开冷流体入口阀门,让套管换热器里冲有一定量的空气。 3.打开冷凝水出口阀,注意只开一定的开度,开的太大会让换热桶里的蒸汽跑掉,关的太小会使换热玻璃管里的蒸汽压力集聚而产生玻璃管炸裂。 4.在做实验前,应将蒸汽发生器到实验装置之间管道中的冷凝水排除,否则夹带冷凝水的蒸汽会损坏压力表及压力变送器。关闭蒸汽进口阀门,打开装置下面的排冷凝水阀门,让蒸汽压力把管道中的冷凝水带走,当听到蒸汽响时关闭冷凝水排除阀。 5.刚开始通入蒸汽时,要仔细调节蒸汽进口阀门的开度,让蒸汽徐徐通入换热器中,

空气 水蒸气对流给热系数测定实验报告

一.实验课程名称 化工原理 二.实验项目名称 空气-蒸汽对流给热系数测定 三、实验目的和要求 1、了解间壁式传热元件,掌握给热系数测定的实验方法。 2、掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。 3、学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。 四.实验内容和原理 实验内容:测定不同空气流量下进出口端的相关温度,计算?,关联出相关系数。 实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 达到传热稳定时,有 ()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ?=-=-=-=-=221112222111αα (4-1) 热流体与固体壁面的对数平均温差可由式(4—2)计算, ()()() 2 211 2211ln W W W W m W T T T T T T T T T T -----= - (4-2) 式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。 固体壁面与冷流体的对数平均温差可由式(4—3)计算,

()()() 2 21 12211ln t t t t t t t t t t W W W W m W -----= - (4-3) 式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。 热、冷流体间的对数平均温差可由式(4—4)计算, ()() 1 221 1221m t T t T ln t T t T t -----= ? (4-4) 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数, ()()M W p t t A t t c m --= 212222α (4-5) 实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算?2。 然而,直接测量固体壁面的温度,尤其管内壁的温度,实验技术难度大,而且所测得的数据准确性差,带来较大的实验误差。因此,通过测量相对较易测定的冷热流体温度来间接推算流体与固体壁面间的对流给热系数就成为人们广泛采用的一种实验研究手段。 由式(4-1)得, ()m p t A t t c m K ?-= 1222 (4-6) 实验测定2m 、2121T T t t 、、、、并查取()212 1 t t t += 平均下冷流体对应的2p c 、换热面积

三空气-水对流给热系数测定

实验三 空气-水对流给热系数测定 一、 实验目的 1. 测定套管换热器中空气 一水系统的传热系数; 2. 测定不同的热空气流量时, Nu 与Re 之间的关系,并得到准数方程式; 二、 基本原理 1.测定传热系数K 根据传热速率方程式 Q 二竺 K=-^- 实验时,若能测定或确定 Q 、t m 和A ,则可测定K 。 (1) 传热速率 在不考虑热损失的条件下 (3) 式中::;一空气的质量流量,kg/s , ; 为空气的容积流量,m 3/s , p 为空气的密度,kg/m 3; [:—空气的定压比热,J/(kg K); .〔二一空气的进、出口温度,C 。 (2) 传热推动力t m (4) In — 込 式中:-- [ I ,[—冷却水出口温度,c = - ?[,「一 冷却水进口温度,c (3) 传热面积 A 二 TidL 式中:L —传热管长度,m ; d —传热管内径,m 。 2.求Nu 与Re 的定量关系式 由因次分析法可知,空气在圆形直管中强制湍流时的传热膜系数符合下列准数关联式: ——=A —空气的流速,m/s, > , 厂空气的粘度,kg/(m s >; 住一管壁对空气的传热膜系数,W/(m 2 K)。 在水一空气换热系统中,若忽略管壁与污垢的热阻, 则总传热系数K 与传热膜系数 二的 关系为: 1 1 1 —m — + — K % 禺 式中:[—管壁对水的传热膜系数,W/(m 2 K) [—管 壁对空气的传热系数,W/(m 2 K) (1) (2) (5) (6) 式中:A , n —待定系数及指数; :—定性温度下空气的导热系数, W/(m -K); %

相关主题