搜档网
当前位置:搜档网 › 小学六年级数学典型例题专项训练

小学六年级数学典型例题专项训练

小学六年级数学典型例题专项训练
小学六年级数学典型例题专项训练

1、一根圆柱形的木料长2米,截成相等的3段,表面积增加24平方厘米,原来的木料的体积是多少立方厘米?

2、一个圆锥形麦堆的底面周长12.56 米,高1.2 米,如果每立方米小麦重500千克。这堆小麦重多少吨?

3、一个长方形的长8厘米,宽4.56厘米,与这个长方形周长相等的圆的面积是多少?

4、一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?

5、一块白布是边长2米的正方形,剪成直角边是2分米的等腰直角三角形小三角巾,最多可以剪多少块?

6、用12.56分米长的铅丝分别围成一个正方形和圆,圆的面积比正方形面积多多少?

7、小红看一本故事书,3天看了54页,照这样计算,要看完162页的这本书,还需几天?(用比例解)

8、有一个等腰三角形,它的两个角的度数比是1:2,这个三角形按角分类可能是什么三角形?

9、织布厂加工完成一批布,甲乙合作16天完成,甲单独做20天完成,乙每天织600米,这批布共多少千米。

10、甲乙从同一地点向相反的方向行驶,甲下午6时出发每小时行40000米,乙第二天上午4时出发,经过10小时后两车相距1080千米。乙车的时速是多少千米?

11、机床厂制造某种机床,每台用钢材1.5吨,实际每台节约0.25吨。结果比原计划多制造10台。原计划造机床多少台?

12、小王按批发价买进一批牙刷,每枝0.35元,零售价每枝0.40元,当还剩下200

枝没卖时,小王计算扣除所有成本已获利200元。商店买来牙刷多少枝?

13、盐完全溶解在水中变成盐水,已知某种盐水中盐和水的重量比是1:10。 500

克盐要加水多少千克?

14、修一条公路,前5天修了它的20%,照这样计算,修完这条路一共要多少天?

15、一台洗衣机原价1450元,现降价20%出售,但售价仍比成本高1/9。这台洗衣机成本多少元?

16、要修建一条新路,实际投资了158.8万元,比原计划节约了21.2万元。节约了百分之几?

17、单独完成一项工程,甲队要10小时,乙队要15小时。现在甲队先独做2小时,余下的乙队在参加工作,还需要多少小时完成任务?

18、小林早晨7:30从家去学校,每分钟走50米。刚到学校门口发现数学书没有带,立即沿原路返回,每分钟走70米。到家正好是7:54。小林家离学校多少米?

19、一个长方体仓库从里面量约长9米。宽6米,高5米。如果放入棱长为2米的正方体木箱,至多可以放进多少只?

20、某厂会计发现现金多了273.6元,经查帐发现原来是有一笔支出款的小数点点错了一位。问这笔款是多少元?

21、某造纸厂开展增户节约运动,每天节约用煤1.44吨,如果3千克煤可供发电7.5度,每天节约的煤可供发电多少度?

22、某数的小数点向左移动一位,比原数少了41.4,原来这个数是多少?

23、一个三角形的面积是18平方厘米,它的底边是12厘米,高是多少厘米?

24、一箱肥皂分发给某车间工人,平均每人可分到12块。若只分给女工,平均每人可分到 20块;若只分给男工,平均每人可分到多少块?

25、一件商品,利润是成本的20%,如果把利润提高到30%,那么售价应提高百分之几?

26、有一油坊榨油,100千克的菜籽可榨油38千克,问榨1千克油需要菜籽多少千克?1千克菜籽可榨油多少千克?

27、把长48厘米的铁丝折成三条边的比为3∶4∶5的直角三角形,求这个直角三角形的面积。

28、小红家有一桶油连桶重8千克,用去一半后,连桶还重4.5千克,原有油多少千克?

29、修一条10千米的路,甲队单独修要8天,乙队单独修要12天。现在两队合修需要几天完成?

30、一个长方形花坛面积是6平方米,如果长增加1/3,宽增加1/4,现在的面积比原来增加多少平方米?

小学六年级(上册)数学总复习知识点及典型例题

小学六年级上册数学复习资料 第一单元:位置与方向(一) 用数对表示位置 如:第三列第二行 表示为(3,2)。一般情况下表示为(列,行) 位置与方向(二) 用方向和距离表示位置 同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。 也可以说成:小明在小华的 方向上,距离 。 相对位置:小明在小华的东偏北30°方向上,距离15米。 小华在小明的 方向上,距离 。 第二单元:分数乘法 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。 (如: 75×4表示4个75是多少或75 的4倍是多少。) 2、一个数乘分数的意义就是求这个数的几分之几是多少。 (如:6× 53表示6的53是多少; 65×52表示65的5 2 是多少。) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分) 4、 小于1的数,积小于这个数, 一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。 5、乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。 [典型练习题] (1)38 +38 +38 +3 8 =( )×( )=( ) (2)12个 56 是( );24的 2 3 是( )。 (3)边长 1 2 分米的正方形的周长是( )分米。 第三单元:分数除法 1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。 2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。 3、一个数除以真分数,商大于这个数(如:4÷ 2 1 ﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 2 3 ﹤3)。 4、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比 的前项除以后项所得的商,叫做比值。 比值通常用分数表示,也可以用小数或整数表示。根据分数与除法的关系,两 个数的比也可以写成分数形式。(如:3:2也可以写成 2 3 ,仍读作“3比2”) 5、比和除法、分数的关系:

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

六年级数学(上)经典题型

六年级数学(上)经典题型 姓名:得分:日期: 一、填空(每题1分,共15分)。 1、把5 6 米长的绳子,平均分成5段,每段是全长的(),每段长()米。 2、完成一项工程,甲队要8天,乙队要10天,甲队与乙队的时间比是(),他们的工效比是()。 3、一块正方形的钢板,周长是8 9 米,它的边长是()米,它的面积是() 平方米。 4、圆是()图形,它有()条对称轴。 5、某班男生人数占全班人数的5 8 ,女生人数与男生人数的比是()。 6、“白兔的只数的2 3 等于黑兔的只数”是把()的只数看作单位“1”,关系式 是()。 7、丙数是甲、乙两数平均数的5 6 ,甲、乙两数的和是108,丙数是()。 8、7 8 吨比 1 2 吨多()% ; 1 5 吨比 7 10 吨少()% 。 9、6 5 公顷的 3 4 是()公顷;()吨的 1 2 是 1 5 吨。 10、甲数是乙数的4 5 ,乙数与甲乙总数的比是(),两数的差相当于乙数的()。 11、为了迎接运动会,同学们做了25面黄旗,30面红旗,做的红旗比黄旗多()面,多()% 。 12、 2 3 5 千米=()千米()米; 2 3 =():15= () 24 =()÷9。 13、甲数的1 3 等于乙数的 1 4 ,甲数是乙数的()。 14、A圆和B圆的周长之比是3:4,它们的面积比是()。 二、判断(每题1分,共9分)。 1、一根长1m的钢管,截去了1 3 ,就是短了 1 3 m。() 2、一个数乘真分数,积一定小于这个数。() 3、1千克棉花的3 4 和3千克铁的 1 4 一样重。() 4、甲数除以乙数等于甲数乘以乙数的倒数。() 5、圆的周长是直径的3.14倍。()

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

小学六年级数学百分数典型练习题

《百分数》 六年级数学备课组 【知识分析】 同学们,在百分数应用题中,经常有一些比多比少的情况,一般,我们先算出多多少或者少多少,在除以标准量就可以了。 【例题解读】 【例1】一项工程,李师傅独做4天完成,王师傅独做5天完成,李师傅的工作效率比王师傅高百分之几? 【思路简析】我们将这项工程看做单位“1” ,那么李师傅每天完成41,王师傅每天完成5 1,要求李师傅的工作效率比王师傅高百分之几,就是求李师傅的工作效率比王师多的部分上是王师傅的工作效率的百分之几,所以 (41-51)÷5 1=25% 答:李师傅的工作效率比王师傅高25%。 【例2】长江水泥集团原计划每个月生产8000吨水泥,由于技术革新,10个月生产的水泥就超过了全年计划的5%,这个月平均每个月的产量比原计划超过百分之几? 【思路简析】 我们将原来每个月的产量看做单位“1”,实际10 个月的产量为1×12×(1+5%)=12.6 12.6÷10-1=26% 答:这10 个月平均每个月的产量比原计划超过26%。 【想一想】通过例1和例2的学习,你发现什么? 【结论】 【经典题型练习】 1、从石家庄到北京,甲车需要4小时,乙车需要3小时,甲车的速度比乙车慢百分之几?

2、一项工程,甲独做12天完成,乙独做15天完成。甲的工作效率比乙高百分之几? 3、某人年初买了一支股票,该股票当年下跌了20%,第二年应上涨多少才能保持原值? 第二课时 【知识分析】同学们,商品的打折可以转化成百分数应用题解决,主要的关系式有:定价=成本×(1+利润百分数),利润百分数=(卖价-成本)÷成本×100% 【例题解读】 【例1】把一套西装按50%的利润定价,然后打八八折卖出,可以获得利润480元。这套西装的成本是多少元? 【思路简析】我们不防把这套西装的成本看做单位“1”西装的定价就是成本的(1+50%),实际销售时打八八折卖出,因此西装的售价就是成本的(1+50%)×88%=132%,那么,获得的利润就相当于成本的132%-1=32%。所以(1+50%)×88%-1=32% 480÷32%=1500(元) 答:这套西装的成本是1500元。 【例2】一种折叠式自行车,甲商店比乙商店的进货价便宜5%,甲商店按20%的利润定价,乙商店按15%的利润定价,结果甲店比乙店便宜3元。乙店的进货价是多少元? 【思路简析】我们不防设乙店的进货价是“1”,则甲店的进货价是乙店的(1-5%),乙店的定价是1+15%,那么甲店的定价是(1-5%)×(1+20%),由甲、乙两店定价百分数的差便可以求出乙店的进货价,所以(1-5%)×(1+20%)=114%;1+15%=115%;3÷(115%-114%)=300(元) 【想一想】通过例1和例2的学习,你发现什么? 【结论】 【经典题型练习】

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

小学六年级数学解决问题典型例题

求一个数的几分之几(百分之几)的数是多少”应用题 1. 张大爷的果园里共种果树500棵,其中5 3 是苹果树,苹果树有多少棵? 2. 从甲地到乙地180千米,某人骑车从甲地到乙地去办事,行了全程的6 5 ,这时离乙地还有多少千 米? 3. 油菜籽的出油率是42%,200吨油菜籽可出油多少吨? 4. 制造一种机器,原来用钢1440千克,改进工艺后,每台比原来节约12 1 ,现在每台比原来节约多 少千克? 5. 2001年我国手机拥有量大约1.3亿户,根据“十五”规划,2002年我国手机拥有量将比2001年 增长20%,2002年我国手机拥有量大约达到多少亿户? 6. 某种产品原来售价1560元,现在降价15%出售,这种产品现在售价多少元? 7. 长乐公园计划栽树240棵,第一天栽了总棵树的31,第二天栽了总棵树的4 1 ,第一天比第二天多 栽树多少棵? 8. 华联超市以每枝8.5元购进120枝钢笔,加价20%后卖出,卖完后,可得到利润多少元? 9. 在一块1680平方米的空地上铺草坪,第一天铺了5 1 ,第二天铺了25%,余下的在第三天铺完, 第三天铺草坪多少平方米? 10. 甲班有男生25人,女生20人,乙班学生的人数比甲班的少9 1 ,乙班有学生多少人?

11. 小华有50元钱,买书用去15元后,用余下的7 1 买了一枝笔,这枝笔是多少元? 12. 张丽看一本书80页,第一天看了全书的41,第二天看了全书的5 1 ,两天共看书多少页? 13. 工地运来50吨黄沙,第一周用去52,第二周用去的相当于第一周的5 4 ,第二周用去多少吨? 14. 某机床厂计划一个月生产机床140台,结果 上半月完成了5 3 ,下半月完成的与上半月的同样多,这个月 生产的机床比原计划多多少台? 15. 某化肥厂四月份生产化肥800吨,如果以后每一个月都比前一个月增产10%,六月份生产化肥多少吨? 16. 某农民承包了一块长方形的地,长150米,宽100米,他准备用这块地的 5 2 种蔬菜,余下的栽果树,栽果树的面积是多少平方米? 17. 红旗小学五年级和六年级学生栽树,六年级学生栽260棵,五年级植的树比六年级的 13 12 多12棵,五年级学生栽树多少棵? 18. 一堆煤共150吨,甲车运了总数的52,乙车运了剩下的3 2 ,这堆煤还剩下多少吨? 19. 张超同学看一本240页的故事书,每天能看总页数的4 1 ,看了3天后还剩多少页? 20. 修一条公路,甲队有120人,把甲队人数的 6 1 调入乙队,这时两队人数相等。乙队原来有多少人?

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

小学六年级数学典型例题总结

六年级数学总复习习题设计 一、一组工人检查一批零件,上午查了这批零件的45%,下午比上午多查480个,正好查完。这批零件共多少个? 二、小英最爱看的动画片每晚播两集,每集十五分钟,中间插3分钟广告,她每晚看完后已是18:23,这部动画片是从()时()分开始播的。 三、林老师的儿子生病挂盐水用去316元,单位报销了40%的医药费。林老师要自费几元? 四、我国交通法规定:驾驶机动车超过规定时速50%的,处200元以下2000元以下罚款。在一条限速60千米的公路上,一辆汽车正在以每小时93千米的速度行驶,请问该车主会被罚款吗?请列式计算加以说明。 五、工程队在一个月内修完了一条公路的3/7,在后来的一周内又修了22千米,这时,修完的与未修的比是5:3,这条路共长几千米? 六、在东方大厦圣诞夜商品打折酬宾活动中,儿童服装满98元减40元,老师看中了两条原价分别为198元,188元的裤子,你觉得老师最后会选哪一条?没搞活动之前,这条裤子是打八折出售的,那么与平时相比,老师得到了多少元钱的优惠? 七、一种商品以比原价高20%的价格出售,但因销售情况不理想,又按这个价格降价20%,这时的价格与原价相比() ①提高了②降低了③没有变化。 八、把圆柱体沿高展开后得到一个()形和两个()形。如果展开后得到的长是 12.56厘米,高是4厘米,把它竖放在地上,它的占地面积是(),占的空间是()。 九、你能很快算出111×888+444×778的结果吗? 十、在一次单元测试中,第一大组6位男生的平均成绩93分,5位女生的平均成绩是82分,第一大组每个人的平均成绩为多少分?

习题说明及答案 第二题:答案:17时50分 第三题:答案:316×(1-40%)=189.6(元) 或316-316×40%=189.6(元) 第四题: 答案:会被罚款。(93-60)÷60×100%=55% 55%>50% 或60×(1+50%)=90(千米) 93千米>90千米 第五题: 方法一:解:设这条路共长×千米。方法二:= ×-×=22 = ×=112 22÷(35-24)=2(千米) 2×56=112(千米) 方法三:22÷(-)=112(千米) 第六题: 答案:①第一条:98×2=196(元) 198-40×2=118(元) 第二条:188-40=148 (元) 118(元) 〉148 (元)所以会选第一条。 ②198×80%-118=40.4(元) 第七题:答案:(②) 第八题:答案:12.56平方厘米,50.24立方厘米 第九题: 111×888+444×778 =111×(2×444) +444×778 =222×444+444×778 第十题:答案:(93×6+82×5)÷(5+6)=88(分)

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

六年级数学简便运算典型例题

简便运算典型例题 ★ 例1:1.24+0.78+8.76 ★ 例2:156+44+135 =(1.24+8.76)+0.78 =(156+44)+135 =10+0.78 =200+135 练习 :1、0.21+12.3+0.79+7.7 6、653+131+2.4+13 1 2、3.51+2.74+6.49+7.26 7、 74+91+73+198 3、271+98+29 8、1592+3698+408+302 4、142+29+271+358 5、96.8+1.29+3.2+3.71 ★例3: 933-157-43 ★ 例4:65-3.28-6.72 =933-(157+43) =65-(3.28+6.72) =933-200 =65-10 =733 =55 练习:1、896-246-554 6、9.5-2.36-5.64 2、2009-169-531-209 7、42-13 8135- 3、5600-564-436-129-371 8、15.9-11.7-8.3 4、98-12.6-57.4 9、98.6-7 473- 5、500-56.4-43.6-36.9-63.1 10、8.85-3.38-4.62+1.15 ★例9: 0.4×125×25×0.8 ★ 例10: 25×32×125

=(0.4×25)×(125×0.8) =(25×4)×(8×125) =10×100 =100×1000 =1000 =100000 练习: 1、21×14×72 2、41×32×8 5 3、64×1.25×2.5×5 4、2.5×3.2×12.5 5、125×0.32×2.5 6、2.5×32 7、2.5×24 8、0.25×320 9、1.25×16 10、1.25×32 ★例11: 1.25×(8+10) =1.25×8+1.25×10 =10+12.5 练习:1、27×(32+91) 6、36×(+-92654 1) 2、72×( 95+83121-) 7、(+-8516150.125)×16 3、(2183272-+)×42 8、(3 2127245-+)×48 4、(635212+)×9×14 9、(2+57)×14 5 5、(1371513-)×13×15 10、(8161+)×24×14 1 11、( 171+151)×17×15 12、24×(85+65)-25 ★例12: 9123-(123+9) =9123-123-9 =9000-9 =8991 练习:1、93.5-(3.5+5) 3、119.6-(19.6+25.5) 2、87.5-(7.5+16) 4、108.7-(8.7+25.8)

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

相关主题