搜档网
当前位置:搜档网 › 植物发育生物学进展

植物发育生物学进展

植物发育生物学进展
植物发育生物学进展

植物发育生物学相关研究进展

学生:学号:导师:

摘要:发育生物学最早起源于胚胎学,植物界发育生物学的相关研究工作的开展较动物界要晚。植物的个体发育是受多基因精细调控的复杂过程,从胚胎发育开始到植株衰老死亡,每一步都包含了许多的发育事件,利用生物科学中其他学科的理论基础与先进生物学技术,从分子、细胞水平研究植物发育过程,将对人类深入了解并揭示植物界各个发育事件的发生机理提供更多信息,以用于生产实践。植物发育生物学主要内容涉及胚胎发育与基因调控、植物器官的发育、激素调控植物性别分化、植物的衰老、死亡等,我国植物发育生物学相关方面已取得不少成就,而随着生物技术的迅猛发展,植物发育生物学在已有进展的基础上必将收获更多具重大意义的发现。

关键词:发育生物学、植物发育生物学、植物胚胎发育、分子生物学、细胞生物学

意大利数学家兼天文学家Giovanni Amici早在1824年便率先发现马齿苋(Portulaca oleracea)的花粉在柱头上发芽,至1849年Hofmeister对19个属中的39种植物进行研究后,才得以明确胚并非在花粉管中发育,而是来源于胚囊内的。发育生物学自胚胎学相关研究展开,对植物界发育生物学的探索要晚于动物界,20世纪初“碳氮比”假说的提出才初次敲开植物开花机理的发现之门,1937年Chailakhyan提出“成花素”概念,研究人员经70多年不断探索最终确定“成花素”为一类叫做FT的可移动蛋白分子,而与此期间发现的生长素(Auxin)也在极大程度上促进了人们对植物形态建成的认识。随后因显微镜、电子显微镜等显微技术与离体组织培养、生物化学等科学技术的发展,就植物发育相关的研究已逐渐朝向实验性学科迈进,而分子、细胞生物学的加入又为植物发育生物学进展提供了更加先进的理论与方法。从发展历史来看,整个发育生物学是一门既古老又年轻的学科,八十年代起,因遗传学、细胞生物学、分子生物学等学科的发展,大量新研究方法使得其进展迅速,这门学科的研究内容延伸至配子的发生和形成,受精过程,细胞分化及形态形成(包括发育过程中不同细胞群如何按照一定时间顺序和空间关系有序地重新配置、特化,从而产生各种细胞类型以最终形成器官表型特征并建立特殊功能),基因于不同发育时期的表达、控制与调节,基因型和表型表达之间的因果关系,发育

过程中细胞核与细胞质的关系,细胞间的相互关系及外界因素对胚胎发育的影响等。其中细胞分化是发育生物学的核心问题。发育生物学作为生物学领域内最具挑战性的学科之一,从上世纪八九十年代迄今,其都与生物学领域的重大进展息息相关,或者,生物学诸多领域的发展都可视为发育生物学的进展。同样,植物发育生物学也于植物学研究具有重大意义,如对植物人工繁殖、遗传育种方面的探索,目前仍处在热潮阶段。

一、植物胚胎发育生物学的一些研究进展

植物胚胎发育指从受精卵(合子)发育为胚的过程,其要经历合子的激活、细胞分裂与分化、胚胎极性的建立、植株各部位器官的发生等重要过程。植物胚胎发育十分复杂,借助显微技术,高等植物胚胎发育的形态学研究已取得很大进展,但因早期胚胎小且被母体细胞包围而很难接近,加之植物体内各组织、细胞间存在相互作用彼此影响着,有关早期胚胎发生的分子和生化分析进展却相对较慢。

1. 合子胚与体胚

植物体细胞胚胎发生模式系统于极大程度上克服了早期胚胎发育过程中所存在的局限性,其不仅能重演合子胚发生的全过程,还可用以诠释细胞的全能型表达,故近年来就此方面研究的发展十分迅速。体细胞胚的发生(somatic embryogenesis)指在内、外因子如细胞内胚性基因、外源激素的表达等共同作用下,植物体细胞向胚胎发生途径进行转变从而形成再生植株的过程。最初关于体细胞胚胎的描述来自胡萝卜细胞培养的观察[1],后Dudits等成功利用紫花苜蓿微愈伤培养细胞来进行胚胎发育研究[2]。体胚与合子胚的发生过程非常类似,二者诱导出的球型胚均具有完整的组织发生潜力,但鱼雷期后,合子胚会进入子叶期,随后至成熟期[3]。在成熟期时,合子胚合成储藏蛋白,种子干燥和休眠准备完毕则合子胚开始脱水,进入静止期,接着才是后萌发期发育的起始,此过程中一个关键调控激素便是ABA,而相反,在体胚中因根、芽顶端分生组织活跃,其并没有明显的静止期,经研究发现,虽体胚缺乏干燥-休眠的过程,但它们却仍会合成并积累ABA,且同样表达一些被ABA诱导的基因[4],故在体胚的后子叶期阶段使用外援ABA处理也可诱导出一个静止状态,该状态与合子胚的休眠极为相似[5]。

2. 生长素等激素调控与胚胎发育

生长素对植物胚胎发育而言意义重大,目前已有研究就其合成、新陈代谢以及在胚胎中的转运展开[6-8],其极性运输是正常形态发生的首要条件[9,10],且在形态发生上,体胚与合子胚对生长素的依赖程度不同。在体胚中,胚胎若使用极性生长素运输抑制剂处理,其将会导致下阶段形态发生相关的障碍,如于心型胚期以抑制剂处理,体胚则不起始子叶发生而继续原有的极

性生长[9];但对合子胚用同一生长素抑制剂处理,该抑制剂对之影响却相对温和[10]。这种生长素就体胚、合子胚在发育上作用效果相异的机理目前还未研究透彻,可能合子胚会于生长素反应方面有着复杂的母体因素影响。

另外,植物性别的分化也由激素调控,在一些信号物质的诱导下,原始的两性花原基中的雄蕊或雌蕊发生选择性败育,使植物界中分化出许多种类的育性。大量研究表明植物激素可能作为植物性别分化的诱导信号之一而参与了花的性别分化进程,研究人员还就分子水平进行了相关基因的克隆与鉴定工作,目前已于许多植物种类中得到了调控性别表达的不同基因突变体。细胞分裂素(cytokinin,CTK)便是一种影响植物性别分化的激素,一般认为其能促进雌性的表达,如拟南芥(Arabidopsis thaliana)中花器官发育调控基因之一SUPERMAN(SUP),该基因可编码一种C2H2型具锌指结构的蛋白质,SUP 可抑制B功能基因(APETALA3和PISTILLATA)在雌蕊里表达,此于拟南芥第3轮和第4轮花器官边界的建立与胚珠发育有着相对重要的作用。研究发现,SUP可能通过影响CTK的信号转导途径来控制花雌性或雄性的发育。另外,乙烯在植物的性别决定过程中也有着重要意义,如Dong-Hui Wang 等人[11]提出乙烯经黄瓜雌花原始花药中器官特异诱导的DNA损伤来促进雌花发育的一种假设,其在后续试验里利用黄瓜的原生质体也证明乙烯是通过信号转导途径诱导了DNA损伤,并以乙烯信号转导途径中有代表性的组成基因作探针从而发现了一种乙烯的受体CsETR1,伴随着节点的增加在时空上抑制了黄瓜雌花第6阶段的雄蕊发育。就植物性别分化有一定程度效果的激素还包括脱落酸(abscisic acid, ABA)、赤霉素(GA)等,但这些激素对性别表达调控相关的研究工作多停留在探索其作用效果方面,而对之控制性别分化的分子机制了解得并不透彻。高等植物雌、雄生殖器官的发育是不同阶段特定基因表达的结果,那么深入分析激素与不同植物雌、雄花发育过程中核酸、蛋白质等变化的关系,从分子水平上研究高等植物雌、雄花的时空表达过程,对揭示其性别分化的激素调控机理将十分重要。

3. micRNA对植物发育的调控作用

近年来发现,mRNA能通过调节转录因子、信号蛋白、代谢中的酶等靶基因的表达,在植物细胞分裂、组织分化、器官分离、器官极性发育和器官的形态建成、激素分泌、信号转导、植物病害及对外界环境胁迫的应答能力等生物学过程中发挥重要作用[12-23]。植物miRNA相关方面的研究主要集中于叶片发育、根分化、茎尖形成、开花与性别分化等过程,但胚胎发育部分的miRNA研究却几乎空白,而胚胎又恰恰是复杂而重要的植物器官[24,25]。

植物mRNA基因在细胞核中首先由RNA聚合酶II转录为pri-mRNA,该转录前体被RnaseIII 核酸酶Drosha加工形成70-350 nt的茎环状中间体pre-miRNA;经Exportin5/RanGTP协助,前

体miRNA从细胞核内进入细胞质,并于Dicer酶和其辅因子TRBP共同作用下产生成熟mRNA;成熟mRNA和RNA诱导基因沉默复合物(RNA-induced silencing complex, RISC)结合后发挥效益。而miRNA主要是通过与靶基因互补配对,指导miRNA复合体对靶基因进行切割或翻译抑制,其互补程度便决定着该miRNA调控靶基因的方式,当mRNA同靶标近乎完全互补时则能切割mRNA,若不完全配对则可在一定程度上抑制mRNA的翻译[26]。除此之外,miRNA还具自我调节功能,或直接、间接调节其他miRNA的表达[27],且近年来的研究显示,miRNA抑制mRNA的翻译于某些条件下是可逆的[28]。

在植物发育过程中,miRNA就根分化、叶片发育、茎间形成、开花与性别分化等方面的作用已有较清晰的研究成果。近年来的实验探索还表明,植物胚胎发育也与miRNA密切相关,如:1)miR397在胚性愈伤组织中的表达与否直接影响了胚性愈伤组织是否进一步分化;2)miR156在胚性愈伤组织从未分化状态向分化状态转变的过程中,表达水平有明显提高,其加速了胚胎进一步发育。目前植物胚胎发育中相关miRNA的分离、鉴定主要采取直接克隆法,先构建小RNA文库从而分离得到植物胚胎发育中较关键的miRNA,并利用生物信息学对分离得到的miRNA进行预测、分析,由Northern Blot等方法作生物学验证,再利用实时荧光定量PCR 技术检测其在植物胚胎发育过程中的表达规律,但直接克隆法自身仍存在缺点,为完善植物胚胎发育中miRNA的鉴定工作,研究人员在还尝试着结合高通量测序技术[29-31]与生物信息法(利用基因组信息或EST文库等进行预测)等方法对miRNA作进一步探索。

二、结语

植物个体发育过程中的诸多问题经不断研究,在解决过程中又同时会延伸出更多更深入的未知领域,了解激素在信号转导时的作用、发育相关基因编码蛋白质之间的相互作用、调控不同发育阶段基因之间的相互作用,并构建整个发育体系调控网络等,均是当前具重要意义与难度的课题。这里主要谈到了植物胚胎发育中的相关进展,而植物发育生物学涉及知识远不止上述几点。相信随科技发展,科研人员会采取与时代接轨的先进技术来进行探索与发现,以获得更多相关方面重要的研究进展。

【参考文献】:

[1] Steward, F.C., Mapes, M.O., and Smlth, J. Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am. J. Bot, 1958, 45: 693-703.

[2] Dudlts, D, Bogre, L., and Gyorgyey, J. Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J. Cell Sci, 1991, 99: 475-484.

[3] Thomas, T.L. Gene expression during plant embryogenesis and germination: An overview. Plant Cell 5, 1993: 1401-1410.

[4] Hatzopoulos, R, Fong, F., and Sung, Z.R. Abscisic acid regulation of DC8, a carrot embryonic gene. Plant Physiol, 1990, a, 94 :690-695.

[5] Ammlrato, P.V, C.E. Green, D.A. Somers.. Organizational events during somatic embrycgenesis. In Plant Tissue and Cell Culture, 1987: 1021-1028.

[6] Schiavone, F.M., and Cooke, T.J. Unusual patterns of somatic embryogenesis in the domesticated carrot: Developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ, 1987, 21: 53-62.

[7] Michalczuk, L., Cooke, T.J., and Cohen, J.D. Auxin levels at different stages of carrot somatic embryogenesis. Phytochem, 1992, a, 31: 1097-1103.

[8] Michalczuk, L., Ribnicky, D.M., Cooke, T.J., et al.. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol, 1992, b, 100: 1346-1353.

[9] Schiavone, F.M., and Cooke, T.J. Unusual patterns of somatic embryogenesis in the domesticated carrot: Developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ, 1987, 21: 53-62.

[10] Llu, C.-m., Xu, 2.-h., and Chua, N.-H. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5, 1993, 621-630.Thomas, T.L.. Gene expression during plant embryogenesis and germination: An overview. Plant Cell 5, 1993: 1401-1410.

[11] Dong-Hui Wang, Feng Li, Qiao-Hong Duan et al. Ethylene perception is involved in female cucumber flower development. The Plant Journal, 2010, 61(5): 862-872.

[12] AraziT, Talmor-Neim anM, S tav R, et al. Cloning and characterization of microRNAs from moss. Plant J, 2005, 43(6): 837-848.

[13] Gu M, Xu K, Ch en A, et al. Expression analysis suggests potential roles of microRNAs for

phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant, 2010, 138(2): 226-237.

[14] Hsieh LC, Lin SI, Shih AC, et al. Uncovering sm all RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol, 2009, 151(4): 2120-2132.

[15] Khraiwesh B, Arif MA, Seum el G I, et al. Transcriptional control of gene expression by microRNAs. Cell, 2010, 140(1): 111-122.

[16] L i B, Y in W, X ia X. Identification of microRNAs and their targets from Populus euphratica. Biochemical and Biophysical Research Communications, 2009, 388: 272-277.

[17] Lu XY, Huang XL. Plant miRNAs and abiotic stress responses. Biochem Biophys Res Commun, 2008, 368(3): 458-462.

[18] Mica E, Gianfranceschi L, PeME. Characterization of five microRNA families in maize. JExp Bot, 2006, 57(11): 2601-2612.

[19] PangM, Wood ward AW, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetrap loid cotton (Gossypium hirsutum L.). Genome Biol, 2009, 10(11) : 122.

[20] Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell, 2005, 17 (5): 1397-1411.

[21] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16(8): 2001-2019.

[22] Trindade I, Capitao C, D alm ay T, et al. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 2010, 231(3): 705-716.

[23] Yao Y, Guo G, Ni Z, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007, 8(6): R96.

[24] Luo YC, Zhou H, L iY, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development FEBS Lett, 2006, 580(21): 5111-5116.

[25] Oh TJ, Wartell RM, Cairney J, Pullm an GS. Evidence for stage-specific modulation of specific microRNAs(miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine(Pinus taeda). New Phytol, 2008, 179(1): 67-80.

[26] Reinhart B J, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev, 2002, 16(13): 1616-1626.

[27] Johnston R J, HobertO. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 2003, 426(6968): 845-849.

[28] Bhattacharyya S, Habermacher R, Martine U, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 2006, 125: 1111-1124.

[29] Liu S, LiD, LiQ, et al. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics, 2010, 11: 148.

[30] Szittya G, Moxon S, Santos DM, et al. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 2008, 9: 593.

[31] MarsonA, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134(3): 521-533.

植物发育生物学资料

一、名词解释 1、花器官发生ABC模型:完全花器官由花萼(1轮)、花瓣(2轮)、雄蕊(3轮)、雌蕊(4轮)组成。A类(AP1、AP2)、B类(AP3/PI)、C类(AG)调控因子分别与SEP1、 2、3形成不同的聚合体,分别在1轮(A)、2轮(AB)、3轮(BC)、4轮(C)控制相应部位花器官的分化和形成。 2、春化作用:是植物需要经过一段时间的低温处理才能开花的现象。目前发现低温促进开花是由于三种蛋白VRN1、2、VIN3在低温下诱导表达,它们抑制开花负调控基因FLC的表达,从而促进开花。 3、光敏素(PHY):是一种N端感光区与线形四环吡咯发色团共价结合的蛋白质复合体,接收红光/远红光后,蛋白质的构象改变,C端激酶活化,通过磷酸化将光信号传导下去。 4、根边界细胞:是生长到一定长度的根尖处由根冠外围细胞脱离的、有组织的活细胞,其功能是防御和帮助植物吸收营养。环境因素和遗传因素控制边界细胞的释放。 5、近轴-远轴极性决定基因:近轴远轴特性是指以某器官中心轴为基准,近的是近轴,远的是远轴。例如 HD-ZIP III 类基因PHB、PHV、REV决定植物的近轴特性,抑制远轴特性。 KANl\2\3 类基因、YAB类的YAB3、FIL决定远轴特性,抑制近轴特性。 6、拟南芥生物钟分子结构:是由三个蛋白构成的一个光周期调控的反馈循环。这三个蛋白是 CCA1 、 LHY 、 TOC1 。前两者被磷酸化后抑制 TOC1 的表达,TOC1 转录翻译后促进 CCA1 、 LHY 的转录表达。光通过光受体促进 CCA1 、 LHY 的表达,抑制 TOC1 的表达。 7、隐花素:是吸收蓝光紫外光,在 N 端非共价结合 FAD 发色团,感受光能,并将能量传给 C 端激酶区域,使具备进行磷酸化催化反应的能力的光受体蛋白。植物中是 CRY 。 (趋光素:是吸收蓝光紫外光,在 N 端非共价结合 FMN 发色团,感受光能,并将能量传给 C 端激酶区域,使具备进行磷酸化催化反应的能力的光受体蛋白。)8、TPD1/EMS1:是花药发育中决定小孢子囊发生范围的一对信号肽 / 受体激酶 信号转导蛋白,它们的分布范围决定小孢子囊发生的范围。 9、近轴 - 远轴极性基因:是决定植物器官发生中近轴特性和远轴特性的基因。 近轴基因有 HD ZIP III 类基因 PHB 、 PHV 、 REV 等,远轴基因有KAN1\2\3 , YAB 类的 YAB3 、 FIL 等。 10、泛素蛋白质降解复合物:一种降解蛋白质的复合物,能在特定识别酶的 作用下,将目标蛋白标记上泛素后降解目标蛋白,是细胞内通过有目的降解的方式调控蛋白含量的方式。 11、植物发育生物学是从分子生物学、生物化学、细胞生物学、解剖学和 形态学等不同水平上,利用多种实验手段研究植物体的外部形态和内部结构的发生、发育和建成的细胞学和形态学过程及其细胞和分子生物学机理(调控机制)的科学。是研究植物生长发育及其遗传控制的科学。 12、增殖分裂:产生的两个子细胞的大小、形态和细胞器的分布等都相同。 如:顶端分生组织中央细胞的分裂。木栓形成层和维管形成层母细胞的垂周分裂分化分裂:产生的两个子细胞的命运不同,它们将发育成完全不同的细胞。 分化分裂是细胞分化的开始。如:受精卵的第一次分裂,形成气孔器母细胞的分裂,形成层细胞的平周分裂等。

发育生物学

发育生物学 发育生物学(developmentalbiology)是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体从精子和卵的发生、受精、发育、生长直至衰老死亡的过程及其机理。 简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 研究对象

生命的起源与进化教学提纲

生命的起源与进化

生命的起源与进化 姓名:蒋巍燃 学号:16444025 专业:工程管理 班级:建管161 生命的进化与人类的未来

摘要:早在很多年前人们就不断地探索生物的起源,也同时思考着他们如何进化,但终究没有得出统一的结果,生物的起源与进化一直都是未解之谜!但随着历史的发展和科学的进步,生物进化思想从早期的萌芽,到自然选择学说、新达尔文主义,从现代综合理论,到分子进化的中性学说,再到新灾变论和点断平衡论等。现代的进化生物学研究从宏观的表型到微观的分子,从群体遗传改变的微进化到成种事件以及地史上生物类群谱系演化的宏进化,从直接的化石证据到基于形态性状、分子证据和环境变迁的综合推理,从基于遗传基础的比较基因组学到演化机理的进化发育生物学等。可以说人类的文明进步是很快的,我们可以通过很多种方法来断定生物的进化方向,也给我们提出了很多具有参考价值的文献,给予了我们现代生物技术的飞速发展! 关键词:生物起源、生物进化、生物技术发展 正文: 一、生物进化理论的发展历史 生物的进化过程是十分令人感兴趣的,其中“进化论”是被誉为十九世纪自然科学的“三大发现”之一,是伟大的生物学家达尔文所提出的,是现在最具权威的理论,也是现在令大多数人信服的理论,达尔文进化论的创立使得人们对纷繁复杂的生物界的发生和发展有了一个系统的科学认识。让我们看看生物进化的研究历史吧: 1、拉马克的用进废退学说:拉马克在1809年发表了《动物哲学》这一书,详细的阐述了生物进化思想,他认为,自然界的生物都具有变异性,主张生物由进化而来,生物的进化是一个连续而缓慢的过程。 2、达尔文的自然选择学说:19世纪中期,达尔文发表了科学巨著《物种起源》一书,提出以自然选择为基础的进化学说。他的发表宣布了科学的生物进化理论的形成,成为现代生物进化研究的主要源泉理论。该学说指出了生物进化的主导力量是自然选择,与达尔文同时提出类似观点的还有著名的地质学家赖尔和自然科学家华莱士。 3、新达尔文主义:该学说的主要代表人是19世纪末的遗传学家孟德尔、魏斯曼、德福里斯和20世纪初的约翰森和摩尔根等人。其主要工作是通过对遗传物质的基本单位——基因的研究二推出了新的达尔文进化论。

(完整版)发育生物学考试复习要点

《发育生物学》期末复习重点 名词解释 1.MPF:促成熟因子。由孕酮产生并诱导卵母细胞恢复减数分裂的因子。 2.植物极:卵质中卵黄含量丰富的一极称为植物极。 3.细胞迁移:是指生物体细胞在生长过程、组织修复和对入侵病原作出免疫反应的过程中的运动。 4.减数分裂阻断:动物卵母细胞在减数分裂前期的双线期能停留长达几年之久,这种称为减数分裂阻断。 5.基因重排:细胞发生分化过程中基因重组发生基因组的改变,这种现象就叫基因重排。 6.基因扩增:在胚胎发育的某特定时期,某特殊基因被选择性复制出许多拷贝的现象。 7.染色体胀泡:指染色体上DNA解聚的特殊区域,是基因转录的活跃区。 8.灯刷染色体:卵母细胞染色体的松散DNA处可以看到染色体胀泡的类似物,这种结构就是灯刷染色体。 9.同源异型框基因:可导致同源异型突变的基因称为同源异型基因。同源异型基因都具有同源异型框序列,但是含有同源异型框的基因除了同源异型基因之外,还有一些不产生同源异型现象的基因统称为同源异型框基因。 10. hnRNA:异质性核RNA,也称细胞核内前体RNA。其特点是分子量比mRNA大,半衰期较短。 11.表型可塑性:个体在一种环境中表达一种表型,而在另一种环境中则表现另一种表型的能力。表型可塑性有两种,即非遗传多型性和反应规范。 12.反应规范:在一定环境条件范围内由一个基因型所表达的一系列连续表型称为反应规范。 13.发育的异时性:是指胚胎发生过程中,两个发育相对时间选择的改变。即一个模块的可以改变其相对于胚胎另一个模块的表达时间。 14.中期囊胚转换:在斑马鱼第十次卵裂期间,细胞分裂不再同步,新的基因开始表达,且获得运动性的现象。 15.体节:当原条退化,神经褶开始向胚胎合拢时,轴旁中胚层被分割成一团团细胞块,称作体节。 16. 形态发生决定子:也称成形素或胞质决定子,指由卵胞质中贮存的卵源性物质决定细胞的命运,这类物质称为形态发生决定子。 17. 初级胚胎诱导:脊索中胚层诱导外胚层细胞分化为神经组织这一关键的诱导作用称为初级胚胎诱导。 18. 调整型发育:Hans Driesch的实验表明,2-cell或4-cell时,分开的海胆胚胎裂球不是自我分化成胚胎的某一部分,而是通过调整发育成一个完整的有机体,该类型发育称为调整型发育。 19.母体效应基因:在卵子发生过程中表达,并在卵子发生及早期胚胎发育中具有特定功能的基因称为母体效应基因。 20.神经胚形成:胚胎由原肠胚预定外胚层细胞形成神经管的过程称为神经胚形成。 21.反应组织:在胚胎诱导相互作用的两种组织中,接受影响并改变分化方向的细胞或组织称为反应组织。 22.原肠作用:是胚胎细胞剧烈的高速运动过程,通过细胞运动实现囊胚细胞的重新组合。

发育生物学简介

1简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。 发育生物学是生物科学重要的基础分支学科之一,研究内容和许多学科内容相互渗透、相互联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。 用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 2研究范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。

它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。 发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 3研究对象 从研究对象看,实验胚胎学一般专指动物实验胚胎学。由于历史的原因,尤其是材料的不同,像动物实验胚胎学那样的植物实验胚胎学未曾发展起来。但动植物的发育原理,尤其是从分子生物学的角度考虑,有许多共同之处,所以发育生物学既研究动物的也研究植物的个体发育。 4研究内容 从胚胎学的角度,个体发育从受精开始,因为卵子受精之后才能发育,但发育生物学则应把个体发育追溯 宝宝感官的发育

中科院植物学历年真题

《植物学》考试大纲 一、考试科目基本要求及适用范围概述 本《植物学》考试大纲适用于中国科学院大学生态学、植物学和植物生理学 等专业的硕士研究生入学考试。主要内容包括植物的细胞与组织、植物体的形态 结构与发育、植物的繁殖、植物分类与系统发育、植物分子系统学、植物进化发 育生物学以及植物分子生物学七大部分。要求考生能熟练掌握有关基本概念,掌 握植物形态解剖特征,系统掌握植物分类与系统发育知识,并具有综合运用所学 知识分析问题和解决问题的能力。 二、考试形式和试卷结构 (一)考试形式 闭卷,笔试,考试时间180 分钟,总分150 分 (二)试卷结构 名词解释、填空题、简答题、论述题 三、考试内容 (一)植物的细胞与组织 1. 植物细胞的发现、基本形状、结构与功能;原核细胞与真核细胞的区 别。 2. 植物细胞分裂的方式;植物细胞的生长与分化。 3. 植物的组织类型及其作用;植物的组织系统。 (二)植物体的形态、结构和发育 1. 种子的结构与类型;种子萌发的条件、过程与幼苗的形成过程。 2. 根与根系类型;根的初生生长与初生结构;根的次生生长与次生结构。 3. 茎的形态特征和功能;芽的概念与类型;茎的生长习性与分枝类型; 茎的初生结构与次生结构。 4. 叶的形态、结构、功能与生态类型;叶的发育、脱落及其原因。 5. 营养器官间的相互联系。 6. 营养器官的变态。 (三)植物的繁殖 1. 植物繁殖的类型。 2. 花的组成与演化;无限花序与有限花序。 3. 花的形成和发育。 4. 花药的发育和花粉粒的形成。 5. 胚珠的发育和胚囊的形成。 6. 自花传粉和异花传粉;风媒花和虫媒花。 7. 被子植物的双受精及其生物学意义;无融合生殖和多胚现象。 8. 胚与胚乳的发育;果实的形成与类型。 9. 植物的生活史与世代交替。 (四)植物的分类与系统发育1. 植物分类的阶层系统与命名。 2. 植物界所包括的主要门类及主要演化趋势。 3. 藻类植物的分类和生活史。 4. 苔藓植物的形态特征、分类和演化。 5. 蕨类植物的形态特征、分类和演化。 6. 裸子植物的一般特征;松柏纲植物的生活史。 7. 被子植物的一般特征和分类原则。 8. 被子植物的分类系统;常见重要科属植物的分类特征。 9. 植物物种和物种的形成。 10. 植物的起源与演化;维管植物营养体的演化趋势;有性生殖的进化趋 势;植物对陆地生活的适应;生活史类型及其演化;个体发育与系统 发育;植物生态学的基本概念。 11. 被子植物的起源与系统演化。 (五)植物分子系统学 1. 分子系统学的概念。 2. 分子系统树的基本原理和方法。 3. 分子系统学研究的进展。 (六)植物进化发育生物学 1. 进化发育生物学的基本概念。 2. 植物进化发育生物学的发展简史。 3. 植物进化发育生物学的主要研究方法。 4. 植物进化发育生物学相关研究进展。 (七)植物分子生物学 1. 基因的基本概念、基因结构和基因表达调控。 2. 基因型、表型和环境的关系。 3. 简单的植物分子生物学研究方案设计。 四、考试要求 (一)植物的细胞与组织 1. 掌握植物细胞的结构组成;熟练掌握细胞器的种类和功能;理解并掌 握真核细胞与原核细胞的异同。 2. 了解植物细胞的生长与分化;理解并熟练掌握细胞的有丝分裂和减数 分裂。 3. 熟练掌握植物组织的分类及其结构与功能;掌握组织系统的概念和维 管植物的组织系统。 (二)植物体的形态、结构和发育 1. 理解种子萌发成幼苗的过程;掌握种子的结构与萌发的外界条件;掌 握种子休眠的概念及其原因;熟练掌握种子与幼苗的类型。 2. 了解根和根系的类型;掌握根尖的结构与发展;熟练掌握根的初生结 构;理解并掌握根的次生结构及次生生长。 3. 了解茎的形态特征与生长习性;理解芽的概念与分类;掌握分枝的类

生物进化论文

进化生物学论文 学院:生命科学与技术学院 姓名:赵永强 学号:2010041224 班级:10生科(2)班

生物进化研究 提要生物进化是自然科学的永恒之迷。随着历史的发展和科学的进步, 生物进化思想从早期的萌芽, 到自然选择学说、新达尔文主义, 从现代综合理论, 到分子进化的中性学说, 再到新灾变论和点断平衡论等。当前, 由于生物学各分支学科的飞速发展, 它们就各自的研究对象在宏观和微观上不断地拓展和深入, 并在不同的层次上形成了广泛的交叉、渗透和融合, 现代的进化生物学研究从宏观的表型到微观的分子, 从群体遗传改变的微进化到成种事件 以及地史上生物类群谱系演化的宏进化, 从直接的化石证据到基于形态性状、分子证据和环境变迁的综合推理, 从基于遗传基础的比较基因组学到演化机理的进化发育生物学等。可以预见, 在新的世纪里, 在哲学和具体方法论( 如系统论、控制论和信息论) 的指导下, 在生命科学、其他自然科学乃至社会科学工作者的通力合作下, 综合遗传、发育和进化等研究领域的各种理论成果, 生物进化理论即将出现也一定会出现的一个新的大综合和新的大统一。 关键词生物进化生物进化论大综合和大统一 “进化论是生命科学最大的和最统一的理论”。“在自然中, 再也没有什么比生命和生命演化更有意义和更令人感兴趣的了, 撇开了进化, 一切都无从谈起”。被誉为十九世纪自然科学的“三大发现”之一的达尔文进化论的创立, 使得人们对纷繁复杂的生物界的发生和发展有了一个系统的科学认识。今天, 当我们追溯进化学说发展的长达近二个世纪的历史进程,在感叹达尔文主义这一革命思潮带给我们的冲击和启迪的同时, 我们更多感受到的是这一领域中出现的新思潮、新观点以及它们所展示的新视角和引发的新思考。 进化理论的历史回顾 1 拉马克的用进废退学说法国学者拉马克于1809 年发表了《动物哲学》一书, 详细阐述了他的生物进化思想。他认为, 自然界的各种生物都具有变异的特性, 主张生物由进化而来, 生物的进化是一个连续而缓慢的过程。其观点大体包括三

植物发育生物学

一.侧根及不定根是如何发生的? 不论主根,侧根或不定根所产生的支根统称为侧根。当侧根开始发生时,中柱鞘的某些细胞开始分裂。最初的几次分裂是平周分裂,结果使细胞层数增加,因而新生的组织就产生向外的突起。以后的分裂,包括平周分裂和垂直分裂是多方向的,这就是使原有的突起继续生长,形成侧根的根原基的分裂,生长,逐渐分化出生长点和根冠。生长点的细胞继续分裂,增大和分化,并以根冠为先导向前推进,由于侧根不断的生长所产生的机械压力和根冠所分泌的物质能溶解皮层和表皮细胞,这样,就能使侧根较顺利无阻地依次穿越内皮层,皮层和表皮,而露出母根以外,进入土壤。由于侧根起源于母根的中柱鞘,也就是发生于根的内部组织,因此它的起源是内起源 不定根通常泛指植物的气生部分,地下茎以及较老的,特别是有次生生长的根部所形成的根。不定根的起源和发育像侧根一样,通常是内起源,发生在十分靠近维管组织的地方,其生长过程必须经过该部位以外的组织。 二.关于种子植物茎端结构和活动方式有哪些学说,其主要内容有哪些? (1)顶端细胞学说:1844年Nageli根据对大多数隐花维管植物的研究提出的。主要观点是最简单的顶端分生组织,结构上只有一个大的原始细胞-顶端细胞。 (2)组织原学说:1868年Hanstein根据种子植物的顶端分生结构特点提出的。顶端分生组织可划分为三个原始细胞区,即表皮原、皮层原和中柱原。这些细胞普遍地排列成行,最外面一层为表皮原分化为表皮层;其下为皮层原分化为皮层;中央是中柱层分化出维管组织和髓。 (3)原套-原体学说:1924年Schmidt 提出。该学说认为顶端分生组织的原始区域包括1:原套,只沿垂直于分生组织表面的方向进行分裂(垂周分裂)的一层或几层周围细胞;2:原体,包括原套下的基层细胞,其中的细胞向各个方向分裂,不断增加而使茎的顶端增大。 (4)细胞组织分区概念:1938年Forster 提出。 (5)等待分生组织学说:1955,1961年 Buvat根据对根端结构研究提出的。此学说 提出远轴细胞轴区是比较不活动的而真正发 生细胞分裂的区域是在周围和顶端下面的区 域,由此产生出茎的组织和叶原基,在胚胎 或后胚的生长顶端结构组成之后,远端的一 群细胞成为等待分生组织,它停留在不活动 状态,一直到生殖阶段,才在远端的细胞恢 复了分生组织活动。 (6)分生组织剩余学说:1965年 Newman提出。根据此理论把维管植物的顶 端分生组织分为三种类型:单层型;简层型; 复层型。 三.细胞周期有哪些主要阶段,各阶段 特点是什么? 一个细胞周期包括两个阶段:分裂间期 和分裂期, 分裂间期为分裂期进行活跃的物质准 备,完成DNA分子的复制和有关蛋白质的 合成,同时细胞有适度的生长 分裂期又分为分裂前期、分裂中期、分 裂后期和分裂末期。 前期:两个中心体分开,向两极移动。 染色质逐渐浓集形成染色体,核仁核膜解体 前中期:核膜消失,染色体随机排列在 细胞中间,纺锤体形成。 中期:染色质最大程度凝集,染色体以 着丝粒非随机的排列在纺锤体中央的赤道板 上。每条染色体纵裂为两条姐妹染色单体。 后期:姐妹染色单体分离并移向细胞的 两极 末期:子代细胞的核重新形成,胞质分 裂 四.植物生长发育与动物的生长发育不 同之处有哪些? (1)动物在胚胎发育中其组成细胞可移 动位置,植物的则不能移动,细胞间彼此联 结很紧密。 (2)动物细胞通常没有细胞壁,植物则 有,因此后者细胞死后仍保持一定的形态, 死细胞和活细胞共同组成植物体。 (3)植物细胞比动物细胞更容易表现出 全能性,容易在人工培养条件下发育形成新 的个体或器官。 (4)动物胚胎发育完成后几乎是全面地 生长,成熟动物体重不在特定部位保留干细 胞群,不再增加新的器官和组织。植物则是 在特定部位保留有分生组织细胞群,形成局 部生长,一生中不断形成新的器官和组织。 (5)动物在环境中是可以自由移动的, 因此它们就有一定逃避不良环境的能力,其 本身对环境的适应能力也就较差,而植物则 通常不能主动移动,无法逃避不良环境,因 此其内部结构和外部形态,甚至其生理活动 都较容易受环境的影响,随环境条件的变化 而发生一定的变化,以适应这些变化了的环 境而生存下来。 (6)动物的减数分裂发生于形成配子 时,只有二倍体的动物体,没有单倍体的动 物体,因此没有世代交替。而高等植物的减 数分裂则都发生于形成孢子时,既有二倍体 的植物体,也有单倍体的植物体,两种植物 体交互出现形成世代交替。种子植物的配子 体寄生在孢子体上,这就使得植物,特别是 高等植物的性别概念不同于动物,性别决定 问题也就更复杂。 五.植物生长调节剂在植物发育中有哪 些调节作用? 植物生长调节剂是在植物生长发育中起 着重要调节作用的一类化学物质,其中绝大 部分是植物体内自身产生、自身调节浓度, 作为调节生长发育过程的信号起作用的。已 发现具有调控植物生长和发育功能物质有生 长素、赤霉素、乙烯、细胞分裂素、脱落酸 等。 1、决定细胞分化的方向:按照位置效应 理论,细胞在植物体内所处的位置决定其分 化的命运。在所有的位置信息中,激素是最 重要的信息之一。(1)开启还没通过细胞分 化临界期细胞的脱分化过程。(2)改变细胞 分化的方向。 2、在形成层活动中的控制作用(1)控 制形成层活动周期;(2)维持形成层纺锤状 细胞的形态和排列方向(3)控制木质部分化 (4)控制韧皮部分化。 3、诱导器官建成(1)根的形成(2)芽 的形成(3)茎的伸长(4)胚的极性建立和

现代生物学进展资料

现代生物学进展资料 近代生物学发展的三个阶段: 一)、描述性生物学阶段: 19世纪30年代,德国植物学家施莱登和动物学家施旺提出细胞学说,指出细胞是一切动植物结构的基本单位,为研究生物的结构、生理、生殖和发育等奠定了基础。1859年,英国生物学家达尔文,出版了《物种起源》一书,科学地阐述了以自然选择学说为中心的生物进化理论,这是人类对生物界认识的伟大成就,给神创论和物种不变论以沉重的打击,在推动现代生物学的发展方面起了巨大作用。 二)、实验生物学阶段。 19世纪中后期,自然科学在物理学的带动下取得了较大的成就。物理和化学的实验方法和研究成果也逐渐引进到生物科学的研究领域。到1900年,随着孟德尔发现的遗传定律被重新提出,生物学迈进到第二阶段—实验生物学阶段。在这个阶段中,生物学家更多地用实验手段和理化技术来考察生命过程,由于生物化学、细胞遗传学等分支学科不断涌现,使生物科学研究逐渐集中到分析生命活动的基本规律上来。 三)、分子生物学阶段: 20世纪30年代以来,生物科学研究的主要目标是生物大分子——蛋白质和核酸上。 1944年,美国生物学家艾弗里用细菌作实验,第一次证明了DNA是遗传物质。 1953年,美国科学家沃森和英国科学家克里克共同提出了DNA分子双螺旋结构模型,这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新阶段——-分子生物学阶段。 21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球

发育生物学教学大纲(新、选)

《发育生物学》教学大纲 (供生物科学专业四年制本科使用) 一、课程性质、目的和任务 发育生物学被公认为是当今生命科学的前沿分支学科,是研究生物体发育过程及其调控机制的一门学科。发育生物学不同于传统的胚胎学,它是生物化学、分子生物学、细胞生物学、遗传学等学科与胚胎学相互渗透的基础上发展形成的一门新兴的学科,是胚胎学的继承和发扬。发育生物学是生物学各专业的限选课程,是在学习一定的专业基础课的基础上进一步学习的高级专业课程。根据本科教学加强基础、注重素质、整体优化的原则,使学生将所学习的专业基础课和专业课形成一个完整的知识体系。过本课程的学习,应对各种生物体的胚胎发育过程、发育规律、发育生物学的基本研究技术,以及发育生物学的研究进展有一定的了解。 二、课程基本要求 本课程分为掌握、熟悉、了解三种层次要求。掌握的内容要求理解透彻,能在本学科和相关学科的学习工作中熟练、灵活运用其基本理论和基本概念。熟悉的内容要求能熟知其相关内容的概念及有关理论,并能适当应用。了解的内容要求对其中的概念和相关内容有所了解。 通过本课程的学习,使学生掌握生物个体发育中生命过程发展的机制。在学习和掌握发育生物学知识的过程中,要求将所学过的其他相关学科,如分子生物学、细胞生物学、遗传学、生物化学、生理学、免疫学和进化生物学等的知识融会贯通,串联整合形成完整的知识体系,并结合当今的研究进展开拓学生的眼界。 考试内容中掌握的内容约占70%,熟悉、了解的内容约占25%,5%左右的大纲外内容。 本大纲的参考教材是面向21世纪教材《发育生物学》第二版(张红卫主编,北京,高等教育出版社,2006年)。 三、课程基本内容及学时分配 发育生物学教学总时数为72学时,其中理论为54学时,实验为18学时,共22章。本课程共分四篇,第一篇从第一到四章,主要内容为发育生物学基本原理,第二篇从第五章到第十一章,主要内容为动物胚胎的早期发育,第三篇从第十二章到第十八章,主要内容为动物胚胎的晚期发育,第四篇从第十九章到第二十二章,主要内容为发育生物学的新研究领域。 绪论(3学时) 【掌握】 1.发育生物学的概念。 2.发育生物学研究的内容与研究范围。 【熟悉】 1.发育生物学的发展与其他学科的关系。 2.发育生物学的展望与应用。 3.发育生物学的模式生物。 【了解】

发育生物学名词解释(张卫红)

1个体发育:多细胞生物从生殖细胞的发生、受精、胚胎发育、生长、衰老和死亡是一个缓慢和逐渐变化的过程,我们称这个过程为个体发育。 2系统发生:研究生物种群的发生发展以及进化的机制。 3诱导:诱导是指一类组织与另一类组织的相互作用,前者称为诱导者,后者称为反应组织。 4卵裂(cleavage):受精卵经过一系列的细胞分裂将体积极大的卵细胞质分割成许多较小的、有核的细胞,形成一个多细胞生物体的过程称为卵裂. 5原肠作用(gastrulation):是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。 6图式形成:胚胎细胞形成不同组织、器官,构成有序空间结构的过程称为图式形成 7生殖质(germ plasm):有些动物的卵细胞质中存在着具有一定形态结构、可识别的特殊细胞质。生殖质由蛋白质和RNA组成,定位于卵质的特殊区域。 8细胞分化(cell differentiation):从单个全能的受精卵产生各种类型细胞的发育过程叫细胞分化。 9定型(commitment):细胞在分化之前,会发生一些隐蔽的变化,使细胞朝特定方向发展,这一过程称为定型。 10 特化(specification):当一个细胞或者组织放在中性环境如培养皿中可以自主分化时,就可以说这个细胞或组织发育命运已经特化。11决定(determination):当一个细胞或组织放在胚胎另一个部位培养可以自主分化时,可以说这个细胞或组织已经决定 12 形态发生决定子:也称为成形素或胞质决定子,存在于卵细胞质中的特殊物质,能够制定细胞朝一定方向分化,形成特定组织结构。 13 胞质隔离(cytoplasmic segregation):形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时分配到特定的裂球中,决定裂球的发育命运。这一现象称为胞质定域。胞质定域也称为胞质隔离或胞质区域化或胞质重排。 14 自主特化(autonomous specification):卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细胞,细胞命运的决定与临近的细胞无关。这种定型方式称为自主特化。 15镶嵌型发育(mosaic development):以细胞自主特化为特点的胚胎发育模式称为镶嵌型发育,或自主性发育 16 渐进特化(progressive specification):在发育的初始阶段,细胞可能具有不止一种分化潜能,和邻近细胞或组织的相互作用逐渐限制了

不同林分林下植被的多样性特征及生物量研究

不同林分林下植被的多样性特征及生物量研究 摘要:对承德市山区土壤含水率与不同林分林下草本层植物生物量和物种多样性的相互关系进行了研究,结果表明,在5种森林群落类型中,土壤含水率的高低顺序为油松-落叶松混交林>落叶松中龄林>落叶松幼龄林>油松成熟林>油松幼龄林,其林下草本层的地上生物量表现为油松-落叶松混交林大于油松纯林、落叶松纯林,在纯林中也随着土壤含水率的增加生物量增大。对土壤含水率与林下草本植物物种多样性进行相关分析,结果表明,林下草本植被在林分处于幼龄林时期,土壤含水率对林下草本植物物种多样性的增加起到了促进作用;随着林分的成熟,土壤含水率虽然增加,但对林下草本植物物种多样性的促进作用逐渐丧失。在油松-落叶松混交林中土壤含水率虽然较高,但对林下草本植物物种多样性却产生了抑制作用。 关键词:林下植被;土壤含水率;生物量;多样性 abstract:therelationshipofsoilmoisturewithbiomassandspeciesdiversityofundergrowthvegetationinmountainousareaofchengdecitywasstudied.theresultsshowedthatthesoilmoistureinthe5forestst

andsrankedfromhightolowaslarixgmelinii(rupr.)rupr.-pinustabulaeformiscarr.mixedforest,middle-agedforestofl.gmelinii,youngforestofl.gmelinii,matureforestofp.tabulaeformis,youngforestofp.tabulaeformis.theabovegroundbiomassofunderstoryherbaceouslayerinl.gmellini-p.tabulaeformismixedforestwas greaterthanthatinpurep.tabulaeformisforestorl.gmelliniforest.thebiomassincreasedwiththeincreaseofsoilmoistureinpureforests.correlationanalysisonsoilmoistureandunderstoryherbaceousspeciesdiversityshowedthatsoilmoisturepromotetheincreaseofonunderstoryherbaceousspecie

103发育生物学论文题目汇总

10生本3班发育生物学论文题目汇总 301 梅娟中枢神经系统的发育机制 花花孕妇血清微量元素与胎儿宫内发育迟缓关系的探讨 惠愉人体胚胎发育概况与新进展——人精子和卵子的发生、成熟及受精李捷睾丸支持细胞对精原干细胞发育的调节 姚君昆虫滞育 邱玥微量元素锌在儿童生长发育中的作用 302 梁红:早产儿宫外发育迟缓研究近展 林珂珂:人工受精 吕小云:端粒酶与机体衰老 李瓒:胚胎卵裂速度异常对囊胚形成的影响 汉娇吸烟对胚胎的发育 晓燕胎膜与胎盘 303 小敏《铅对儿童发育行为的影响》 文静《女性生殖器官的发育异常》 秋虹《儿童生长发育及其障碍》 陈丹《先天性畸形与优生》 媛媛《动物生长发育规律》 秀杏《甲状腺素对大脑发育的影响》 304 吴橙丽:孤雌生殖 莫晓映:鱼类雌核发育的机制 朱嘉云:兔唇发育机理 麦妃丽:婴幼儿睡眠与认知发育 符汨:原肠作用及原理 彭瑞仪:发育生物学与我们的生活 305 谢海娃骨细胞的形成 翠玲维生素A对胚胎发育各器官发育的影响 美绮熊猫的繁殖与发育 丽娟羊水对胎儿的作用 丽敏人的循环系统内分泌系统 文君小鼠胚胎的极性形成

405 许月红瘦素对妊娠及胎儿发育的影响 莫小红探讨血小板源性生长因子与神经系统的发育李晓燕调控因子在胚胎发育中的研究进展 梁丽华脊椎动物的胚胎发育 王秋月男孩和女孩大脑发育的区别 小郭神经发育中基因调控研究进展 406 甘婵:动物细胞和细胞核的全能性及发展前景 韵红:试管婴儿 赖娜:瘦肉精猪的发育 翠娟:维生素E与人的生长发育 琪琪:孕妇营养对胎儿生长发育探释 余洁:茶多酚对神经干细胞保护作用 思思胚胎发育与大脑的起源 男生 华聪蛇的发育与生殖 泽渊体表毛发来源 正发甲醛对胎儿发育的影响 超雄家兔繁育技术 六一秀丽隐杆线虫的发育史 锦青哺乳动物早期胚胎体外发育因素探究 陈晓丰:早期胚胎发育与调控因子 钟颖影响卵泡发育的因素及信号传导 康富 贵昌 俊良 尚雅B705 钟巧萍:浅谈滋养层细胞在胚胎植入中的作用 廖丽华:泌尿生殖系统的发育过程及其先天畸形的相关基因蒋妙嫚:咖啡因致胎儿宫内发育迟缓机制的研究进展 陈康兰:男女人脑发育的比较 巧敏胚胎干细胞的研究与应用

进化与生态思考题

进化与生态思考题综合 第一讲: 一、进化论与创造论,各有什么道理? 创造的模式认为从原始到高级的各种生物都是由大能的神各按其类造出来的;生命只能源於生命,各种生命皆来自永生的神。但进化模式却认为生命是在漫长的进化过程中,由无机物变成有机物,由有机物演化出氨基酸、蛋白质,最後演化为最简单的单细胞生物,产生了生命。【米勒实验、寒武纪大爆炸】 二、生物学中哪些实例支持生命的共同祖先假说? 都遵循中心法则,复制都遵从碱基互补配对,都是三联体密码子。等等。。。 1.生物分类学的证据 为了直观显示各生物在分类上的关系,分类学家一直在尝试画出关系图表。关系图画得越多、越细,分支也就越多,最后就成为一棵树。我们看到一棵树,就知道它是由树根长出,不断生长、分支的;我们看到一株分类树,很自然就应该想到生物都是从同一祖先传下来,不断地进化,形成各个物种的。 2.比较解剖学的证据 贝伦发现人和鸟尽管在外形上极不相同,但骨骼组成却非常相似。这说明人和鸟是亲戚,都是一个祖先的后代。此外,脊椎动物的前肢,比如人的手、马蹄、鲸鱼的鳍等,它们的外形相差很大,功能也不相同,但它们的骨架却是如此的相似。对此最好的解释就是:他们来自同一祖先,由于适应环境的需要,改变了外形和功能,但实际的骨架却没有改变。 3.比较胚胎学的证据 如果把鱼、青蛙、鸡、猪、兔和人的各个时期的胚胎放在一起,我们就会发现它们存在不同程度的相似性。而且关系越密切,相似的程度越高。这说明这些生物来自共同的祖先,它们祖先的特征在胚胎发育过程中重演了。 4.比较免疫学的证据 每种动物的血清中都有一系类独特的蛋白质,若两种动物的亲缘关系越接近,则抗原——抗体反应就越强,反之则越弱。利用这种方法与古生物化石或形态比较绘出的亲缘关系树符合得很好,这也更加证明了生物来自共同的祖先。 5.分子生物学的证据 ①所有的生物都是由细胞组成的(病毒除外);②组成生物的大分子有核酸、蛋白质、多糖、和脂类四种,这些生物大分子的成分在所有生物中都是一致的:核酸都是由嘌呤和嘧啶组成,蛋白质都是由氨基酸组成,多糖都由单糖组成,脂类则是由甘油和脂肪酸组成;③所有的生物都只用20种氨基酸,几乎所有的生物都共享一套遗传密码。 三、中性进化理论与达尔文进化论矛盾吗? 否。因为达尔文注意到了变异的有害性和有利性,而中性突变进化学说注意到的是既无利也无害的所谓中性突变,应该说是从不同角度,不同层次看问题的结果,使达尔文学说得到了补充和发展。且中性说是始终以分子水平的结构来提问题的,而达尔文学说是从表型水平来说的,二者并不相矛盾。 四、谈谈你对进化生物学新发展方向的见解。 1、分子古生物学 答:化石DNA可直接了解其进化历程,为DNA重复序列、基因结构的起源进化,生物大分子的突变重排及遗传信息在发展过程中的传递提供线索。使了解承重作

发育生物学课程论文

行为 as the was given. was 1908年

贝尔奖获得者。在近代发育生物学研究领域中,果蝇的发生遗传学独领风骚。1995年,诺贝尔奖再次授予三位在果蝇研究中辛勤耕耘的科学家。果蝇为进一步阐明基因-神经(脑)-行为之间关系的研究提供了理想的动物模型。 专家认为,近一个世纪以来,果蝇遗传学在各个层次的研究中积累了十分丰富的资料。人们对它的遗传背景有着比其他生物更全面更深入的了解。作为经典的模式生物,果蝇在21世纪的遗传学研究中将发挥更加巨大而不可替代的作用。 2 以果蝇为实验模型所具有的诸多优势 基因、脑与行为的关系是脑与认知科学面临的重大战略性科学问题。不同物种的脑虽然在形态上迥然不同,但是在基因水平上却有很高的同源性,从而使脑具有相似的基本功能。在脑与认知科学中选择何种模式生物对于科研非常重要,有助于理解、预防和治疗相关性神经和精神疾病。诺贝尔奖得主坎德尔教授就曾选择海兔作为模式生物,成功地将各种行为包括将来的学习行为与突触的可塑性结合起来进行研究,确定了短时和长时记忆是如何储存在神经系统中的。而对于研究学习记忆所选择的主要模式生物就是本文要介绍的果蝇。这是为什么呢?作为一个重要的模式生物,果蝇是探索生命奥秘的万能钥匙,以果蝇为模型有诸多的优势。 第一,果蝇的生命周期短,繁殖力强。第二,果蝇具有清晰的遗传背景,在2000年果蝇测序工作已基本完成,果蝇基因组有13000~15000个基因,所有果蝇的遗传密码已经清楚。根据果蝇的遗传密码以及相关的信息,研究人员已经在互联网上建立了各种各样果蝇的相关数据库,而其相对简单的神经系统也很有助于对其进行研究。第三,果蝇也具有多种多样的行为,果蝇可以进行学习,有的非常“聪明”,当然也有“傻瓜”。果蝇也可以发生老年痴呆,还会饮“酒”、吸“毒”并表现出相应的行为。重要的是果蝇可以睡眠,甚至做梦,还可以唱情歌。因此,以果蝇为模型,通过基因突变和行为筛选可以确定与学习记忆相关的候选基因,进一步通过反向遗传学方法,可能在不同物种中确定候选基因的调控机制及其学习记忆等行为中的功能。 最近,实验研究发现果蝇中心脑区的扇形体结构参与了调节视觉图形识别过程,并证实视觉模式的记忆定位在中央复合体中扇形体的平行分层细胞结构。这是首次对果蝇视觉学习记忆功能区的精确描述,说明了果蝇的记忆痕迹并不存储在某一通用的记忆中心。科学家已经发现果蝇能够进行嗅觉的联想记忆,那么视觉记忆是储存在脑中什么样的地方呢?果蝇脑中有两个非常重要的结构。一个叫做蘑菇体,一个是中央复合体。后者包括脑桥、扇形体、小体等结构,周围是中央复合体的突触体,实验要看一下这些是不是对果蝇的视觉记忆产生影响。 通过研究发现,中央复合体可能与果蝇的视觉记忆的储存有密切关系,可在中央复合体的几个亚结构中究竟是哪个与此密切相关呢?经过大量的实验以及对果蝇进行大量的筛选,终于把视觉记忆功能部位确定为扇形体。我们知道,人类分辨不同的图形是根据图像之间的不同参数进行分辨,而果蝇进行图形的分辨同样也可以根据不同的参数,比如可以根据图像的高度、大小、颜色来分析不同的图形。果蝇的扇形体结构共分6层,每一层均由几十个神经元组成,并均赋予了非常特定的功能。比如有的层的神经元负责处理不同图形的高度区别,并且形成记忆,而另外层的神经元则对于大小、朝向等其他参数进行处理并负责记忆。这样,扇形体不同的结构分工负责不同的参数,最终形成视觉记忆。 3 果蝇的基因特征 果蝇具有二倍体的染色体组,并且只有四对染色体。第一对是性染色体,其它三对为常染色体。其中,第二、三两对常染色体,包含了近80 %的遗传信息。第四对常染色体很小,只包含近2 %的遗传信息。这样一套“小”而“全”的染色体组使实验更容易操作。果蝇具有大量影响神经系统和行为的单基因突变体。神经系统功能是由基因的调控和蛋白质的合成来实现的。大多数果蝇突变体是用物理、化学和分子生物学方法改变果蝇的基因结构获得的,由于基因的改变造成其调节失控或蛋白质产物的改变或缺失,进一步影响了特定的生理功能或行为。可以通过研究蛋白质在神经元及组织中的时空表达模式,来发现基因

相关主题