搜档网
当前位置:搜档网 › 直升机的起飞和着陆

直升机的起飞和着陆

直升机的起飞和着陆
直升机的起飞和着陆

直升机原理:直升机的起飞和着陆

图:中山雄鹰飞行基地施瓦泽300CBI直升机起飞瞬间

直升机利用旋翼拉力从离开地面、并增速上升至一定高度的运动过程叫做起飞。直升机具有多种起飞方式,可以垂直起飞,也可以像固定翼飞机一样滑跑起飞。具体采用何种方式起飞,必须根据场地面积的大小、大气条件、周围障碍物的高度和起飞重量大小等具体情况决定。

垂直起飞是直升机从垂直离地到一定高度上悬停,然后按一定的轨迹爬升增速的过程。爬升高度视周围障碍物的高度而定。一般而言,作为起飞过程完成的离地高度约为20—30m,速度接近其经济速度。直升机根据不同的具体情况,可以采用两种不同的垂直起飞方法。

正常垂直起飞

正常垂直起飞是指场地净空条件较好,直升机垂直离地约 0.15—0.25 个旋翼直径的高度,即部分利用旋翼的地面效应,进行短暂悬停,检查一下发动机情况,然后以较小的爬升角增速爬升到一定高度的过程。在这个过程中直升机旋翼的需用功率变化很大。在速度从零增速至经济速度的范围内,直升机的受力状态变化很大。对操纵动作的协调性要求很高。下图为某型直升机正常垂直起飞过程的飞行轨迹和有关操纵量的变化。

图1:正常垂直起飞

超越障碍物起飞

这种起飞方式是在场地周围有一定高度的障碍,并且场地比较狭小时采用。与正常垂直起飞方式不同的是垂直离地的悬停高度增高了,如果周围障碍物的高度为h,起飞悬停高度应不小于(10+h)m,以保证直升机能安全超越障碍,如下图所示。

由于悬停高度比正常垂直起飞时高出很多,因此这种起飞方式是在无地效高度上悬停,悬停需用功率较大。利用这种起飞方式时,为了在增速过程中不致掉高度,并要求发动机有部分剩余功率,以保证起飞安全。

图2:超越障碍物起飞

滑跑起飞

当直升机的载重量过大或者机场标高及其他气象条件使直升机无法垂直起飞时,它可以像固定翼飞机那样采用滑跑方式起飞。直升机的滑跑起飞,省去了垂直离地和近地面悬停这两个阶段,而分成地面滑跑增速和空中增速两个阶段进行。直升机增速至一定速度以后,由于旋翼需用功率的减小,就有足够的功率来增加旋翼的拉力,克服重力升空。随着飞行速度进一步增加,旋翼需用功率进一步下降,这时直升机就有部分剩余功率用来爬升和增速,完成整个起飞过程。直升机的滑跑起飞过程如下图所示。

图3:滑跑起飞

直升机的着陆

直升机从一定高度下降,减速、降落到地面直至运动停止的过程称为着陆,是起飞的逆过程。

正常垂直着陆

对于预定着陆地点场地净空条件好的情况,尽量采用正常垂直着陆,其着陆过程的飞行轨迹如下图所示。以这种方式着陆的做法是:以一定的下滑角大致向预定点下降,并逐渐减速,在接近着陆预定点前,直升机作小速度贴地飞行,旋翼处在地面效应影响范围内。由于充分利用了地效,需用功率减小。在到达预定点的上空3— 4m高度上作短时间悬停,再以0.2—0.1m/s的下降率垂直下降直至接地。这种着陆方式对着陆场地表面质量要求少,场地面积相对来说比较小。

图4:正常垂直着陆

超越障碍物垂直着陆

当着陆场地面积狭小,周围又有一定高度的障碍物,直升机在接近场地空间不允许作小速度的贴地飞行,此时就采用超越障碍物垂直着陆方式着陆。其飞行轨迹如下图所示。它与正常垂直着陆不同的是作减速和接地前短暂悬停高度不同,由于悬停不能利用地效,这种方式的需用功率较大。同时着陆点附近又有障碍物,直升机纵横向不允许较大的位移,操纵难度大一些。

图5:超越障碍物垂直着陆

滑跑着陆

直升机在高原、高温地区,或载重量较大时,可用功率不足以允许用垂直着陆方式着陆,可以像固定翼飞机一样进行滑跑着陆。其着陆飞行轨迹如下图所示。滑跑着陆与垂直着陆不同,直升机在按地瞬间,不但具有垂直速度,同时还有水平速度。直升机在接地后有一个滑跑过程,可进一步利用旋翼产生一个减速的水平分力,使直升机继续减速直至运动停止。

图6:滑跑着陆

旋翼自转状态的下滑着陆

在不同的可用功率下具有不同的下滑特性,当可用功率为零(如发动机关闭),这时旋翼作自转状态下降。这种工作状态,完全依靠直升机下降时重力位能作功提供给旋翼来产生拉力平衡重力。

如何做好起飞和着陆

如何做好起飞和着陆 这里我们根据手册和以往教员讲课的课件进行了简单的归纳,仅供大家参考: 一、起飞中如何防止擦机尾 (一)防止使用错误的起飞数据。 1、确保舱单数据是正确的。如有怀疑一定要同配载人员核实。 2、防止CDU上输错数据。输入数据后,左右座一定要核实。 3、查起飞性能手册时,一定要核实所使用的跑道、襟翼度数、是否关空调等,防止数据出现差错。 (二)正确应对强阵风、侧风/顺风带来的不利影响 当了解到当时的气象条件不稳定时,首先从思想上引起足够的重视,最好使用全推力起飞。阵风中起飞时,暂缓抬前轮,驾驶盘的输入量以保持机翼水平为宜,避免驾驶盘移动量过大,使用正常的抬头率2°—3°/秒,离地后平滑地从偏流状态中改出。 正常的起飞抬头率见下图:

二、如何做好着陆? (一)稳定进近是防止重着陆的基础。 公司《运行手册》明确规定,目视天气条件下,在500英尺AGL;仪表天气条件下1000英尺AGL,飞机必须建立稳定进近,否则应终止进近。 稳定进近必须同时满足下列条件: ●稳定的航道跟踪或着陆航向 ——飞机已按既定的仪表程序或目视参考保持在正确的横向或航迹上或只需少量横侧变化即可保持水平轨迹。 ●稳定的下滑道跟踪或下降率 ——飞机已按既定的仪表程序或目视参考保持在正确的垂直轨迹上或只需少量俯仰变化即可保持垂直轨迹。 ●稳定的着陆形态 ——飞机已建立所需的着陆形态。 ●稳定的发动机功率 ——推力稳定在保持最后进近速度所需数值。 ●稳定的安定面配平 ——飞机已按最后进近速度和目标下滑轨迹需求配平好。 ●稳定的速度 ——目标速度-5≤指示速度≤目标速度+10 ——正确的进近速度为:Vapp=Vref+1/2顶风+(阵风-稳定风),最小为Vref+5,最大为Vref+20。 除了上述的1000英尺或500英尺的稳定需求外,为了安全、

飞机操纵原理

一、飞行原理 飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。 实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。 飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥

飞行基础知识民用飞机的起飞性能

起飞试验的目的是测定飞机飞行手册所需要的起飞性能参数,和验证所讨论的飞机型态满足于合格审定的性能要求,当要生产一种新飞机时,需要进行一个完整系列的起飞试验,确定起飞速度和距离、滚动加速度和制动加速度,抬前轮速率和最小离地速度等参数。根据美国联邦航空局适航条例规定,凡装载二十人以上的民用飞机应按照联邦航空条例第25部(FAR25)验证其符合性。其中B分部中直接涉及飞机飞行性能的条款13条,是飞机设计时考虑起飞、爬升、航行、进场和着陆必须遵守的安全标准。而飞行手册是飞机一个重要软件组成部分、其中的性能数据就根据FAR25部有关飞行性能条款的规定和飞机飞行动力、发动机推力特性进行计算和编制的。 起飞性能符合性验证工作可理解为三个方面:(1)起飞性能原始参数的验证;(2)飞行手册中起飞性能的计算;(3)对起飞性能计算。 FAR25定义了各种起飞速度,讨论了加速-减速距离、起飞航迹和起飞距离。给出了一些适用于起飞试验的速度和术语的定义是有益的,因为许多速度和术语关系到其它类型的性能和规章的论述,起飞性能原始参数是计算起飞性能所必须的原始特征数据。这些参数一般要通过试飞确定或加以校核。 1.失速速度Vs:飞机最小安全速度,是飞机基本特征速度之一(其它还有VMU、VMCA、VMCG),它是决定飞机其它特征速度之一,这些特征速度为:VEF、V1、VR、VLOF、V2;而且是确定操稳特性试飞速度范围的基准速度。因此,在试飞的早期就要进行失速速度的试飞,仅次于空速校正试飞。飞机手册中给出飞机各种构型和重量下的Vs值,以便直接提醒飞行人员飞行时速度不小于该值。另外Vs还是起飞等各阶段速度的参考值。根据失速演示规定: (a)必须在直线飞行和30°坡度转变中演示失速:给出了失速速度的定义以及确定失速速度时对飞机状态的要求,包括:推力、起落架位置、襟翼位置、重量、重心。试飞时,一般说来前重心为不利位置,这主要是此时需要平尾产生比后重心时更大的上仰力矩,平尾产生的负升力较大,因而此时的失速速度更大,但是为了确定重心对失速速度的影响程度,还是有必要适当进行一些后重心的失速速度。起落架、襟翼的不同组合必须囊括了飞机在所有飞行阶段的飞行状态。如果必要的话,还得通过试飞评估拟在空中使用的其它次气动操纵面对失速速度的影响,如:扰流板等。 (b)规定了试飞方法,即规定了飞机的配平速度范围、进入失速速度的飞机减速率;并规定了在试飞过程中,飞机所表现出的操稳和改出特性必须满足§的要求。 (c)减速率:失速速度是对应于1节/秒的减速率的。 (d)当固有的飞行特性向驾驶员显示清晰可辨的飞机失速现象时,可认为该飞机以失速。可接受的失速现象如下,这些现象既可单独出现,也可以组合出现 (1)不能即可阻止的机头下沉; (2)抖振,其幅度和剧烈程度能强烈而有效的阻止进一步减速;或 (3)俯仰操纵达到后止动点,并且在改出开始前操纵器件在该位置保持一暂短的时间后不能进一步增加俯仰状态。 (对装有失速推杆器的飞机,推杆器工作即认为进入失速) ▲关于1g失速速度:FAA在新的咨询通告AC25-7中,附录5给出了关于1g的失速速度的定义,及其随之产生的专用条件。我们都清楚,现行的§和§规定了失速速度的定义,从理论上来说是可行的,但在实际执行中往往出现偏差,因为该失速的定义基本上是定性的,在试飞中需要飞行员判断失速点,并实施改出。而客观上由于飞机及飞行员本身的原因试飞时各飞行员判断的失速点不会一样的,有的提前改出,有的迟后改出,这一切都要取决于飞行员的技术和判断。特别是当进入失速过程中抖振、低过载、机头自然下俯现象时,对于许多高速的后掠翼运输机失速进入过程中航迹法向过载小于1。所有这些将导致失速试飞结果的

飞机航线运行应进行的性能分析

飞机航线运营应进行地飞机性能分析 .目地 本通告为航空承运人申请某种机型在某一航线地运行资格进行飞机性能分析提供指导. 本通告是对现行民用航空规章 中有关飞机性能要求地归纳和细化,民航地区管理局对航空承运人为某种机型申请某一航线地运行资格进行审定时,可使用本通告. 文档收集自网络,仅用于个人学习 .适用范围 按部运行地航空承运人. .发送范围 主发 咨询通告 各管理局、运输航空公司 抄报 总局领导 抄送 航安办、规划司、运输司、适航司、机场司,空管局、安技中心,机场设计院(所),学院,各航站、通用航空公司文档收集自网络,仅用于个人学习 .相关规章、规定 《公共航空运输承运人运行合格审定规则》分部“航路地批准”、分部“飞机性能使用限制”;---《关于制定起飞一发失效应急程序地通知》;《民用飞机运行地仪表和设备要求》、、、、、. 文档收集自网络,仅用于个人学习 .背景材料 -部《公共航空运输承运人运行合格审定规则》分部对航路批准地基本要做出了具体规定,飞机对于航线地飞机性能地适应性是其中地一部分. 地分部“飞机性能使用限制”对飞机在机场和航线运行地使用性能要求做出了更具体地规定.航空承运人地运行规范分部“航路批准、限制和程序”中也包含了飞机性能使用限制地内容. 文档收集自网络,仅用于个人学习 为了准确地执行-部地有关规定,结合民航运行管理地实际情况,我们将飞机从起飞到着陆整个运行过程应考虑地飞机性能使用问题进一步细化和归纳,在广泛调查研究和征求意见地基础上,制定了《飞机航线运营应进行地飞机性能分析》咨询通告. 文档收集自网络,仅用于个人学习 .对飞机航线运营应进行地飞机性能分析地批准办法 航空承运人地某种机型开辟或加入某一航线运行,要参照本通告对飞机使用性能要求地各个方面进行分析后,作为航线运行资格申请地附件之一报地区管理局.地区管理局对将所附地飞机使用性能分析作为对航空承运人该种机型在这一航线运行资格进行审查地重要内容之一,连同其它项目审查合格后最终通过修改运行规范地方式予以批准. 通告中所述地某种机型开辟或加入某一航线需了解机场服务方面地事项,诸如配餐、给排水、垃圾处理等是否满足要求,这本身不是飞机性能使用问题,但为使航空公司不遗漏这些项目,我们也把这些要求列入通告中. 文档收集自网络,仅用于个人学习 .飞机航线运营应进行地飞机性能分析,详细内容见附录. .对飞机性能分析地要求 航空承运人作飞机性能分析时要按交叉检查地原则至少要有名飞机性能工作人员进行. 在航空承运人获得该机型在该航线地运行批准后,要将为飞机航线运营所做地飞机性能分析存盘.地区管理局和航空承运人各保存份. 文档收集自网络,仅用于个人学习 . 实际运行时地做法 飞机在每次飞行时,要按根据当时地跑道状况、实际业载、机场和航路地温度、风计算地起飞重量、航线油量实施运行.不要拘泥于分析中给出地该机型在该航线冬夏两季地参考起飞重量和参考业载. 文档收集自网络,仅用于个人学习 附录

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机起飞和降落时英语广播内容

飞机起飞和降落时广播(中英文对照) (1)飞行过程欢迎词 (2)欢迎词 (3)女士们,先生们: (4)欢迎你乘坐中国XX航空公司航班XX_____前往_____(中途降落_____)。_____至____的飞行距离是_______,预计空中飞行时间是________小时_______分。飞行高度______米,飞行速度平均每小时_______公里。Welcome Good morning (afternon, evening), Ladies and Gentlemen: Welcome aboard XX Airlines flight XX______to______(via______) The distance between______and_______is______kilometers. Our flight will take ________ hours and_______minutes. We will be flying at an altitude of________meters and the average speed is_______ kilometers per hour. 为了保障飞机导航通讯系统的正常工作,在飞机起飞和下降过程中请不要使用手提式电脑,在整个航程中请不要使用手提电话,遥控玩具,电子游戏机,激光唱机和电音频接收机等电子设备。 In order to ensure the normal operation of aircraft navigation and communication systems, passengers are toys, and other electronic devices throughout the flight and the laptop computers are not allowed to use during take-off and landing. 飞机很快就要起飞了,现在有客舱乘务员进行安全检查。请您坐好,系好安全带,收起座椅靠背和小桌板。请您确认您的手提物品是否妥善安放在头顶上方的行李架内或座椅下方。(本次航班全程禁烟,在飞行途中请不要吸烟。) We will take off immediately, Please be seated, fasten your seat belt, and make sure your seat back is straight up, your tray table is closed and your carry-on items are securely stowed in the overhead bin or under the seat in front of you. This is a non-smoking flight, please do not smoke on board. 本次航班的乘务长将协同机上_______名乘务员竭诚为为您提供及时周到的服务。 谢谢!

飞行性能考试选择题库

1. 已知压力高度3000英尺处的温度偏差为ISA+10℃,则该高度的实际气温为()。 A: B:19 C:25 D:30 正确答案: 2 2. 国际标准大气ISA规定,海平面温度为()℃,海平面压力()mbar。 A:15,1003 B:59,1003 C:15,1013 D:59,1013 正确答案: C 3. 低速飞行常用飞机的________来衡量飞机气动性能的好坏,高速飞行常用________来衡量飞机气动性能的好坏。 A:升阻比,马赫数 B:最大升阻比,气动效率 C:阻力系数,升阻比 D:阻力系数,最大升阻比 正确答案: B 1. 飞机起飞场道结束时和着陆过跑道头时的高度分别是___ (ft) A:15,35 B:35,15 C:50,35 D:35,50 正确答案: D 2. 飞机一发故障,在V1时决定继续起飞,在跑道头上空35ft处速度不小于___。 A:V2 B:V2+5 C:V2+10 D:V2+15 正确答案: A 3. 在平衡跑道条件下起飞,_____。 A:从起飞加速到V1的距离,等于从V1停下来的距离 B:起飞性能最好

C:C. 加速到V1之前1秒一台发动机失效,使飞机停下来的距离,等于继续起飞到高度35ft,速度达到V2的距离 D:起飞距离与着陆距离相等 正确答案: C 4. 若起飞中只计入净空道,和不计净空道相比____。 A:最大起飞重量增大且相应的V1降低 B:最大起飞重量减小且相应的V1降低 C:最大起飞重量增大且相应的V1增大 D:最大起飞重量减小且相应的V1增大 正确答案: C 5. 适当增大起飞襟翼角度,可导致____。 A:较短的滑跑距离 B:较大的离地速度VLOF C:上升性能改进 D:减小飞机阻力 正确答案: A 6. 最大轮胎速度是指()。 A:地速 B:空速 C:表速 D:VMBE 正确答案: A 7. FAA规定,用假设温度法减推力起飞,减推力的最大值不得超过______,假设温度比实际温度______。 A:25,高 B:30,高 C:25,低 D:30,低 正确答案: A 8. FAR对飞机起飞净航迹与障碍物之间的高度规定是飞机净航迹()。 A:至少高于障碍物35英尺 B:高于障碍物50英尺 C:高于障碍物30英尺 D:根据具体情况而定

关于某飞机起飞降落地地理题

《飞机飞行与昼夜长短》专题训练 1.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、 昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 北京时间3月21日12点,一架飞机从某机场(120oE ,66o34′N )起飞,沿北极圈向东作环球航行,12小时后返回原地,据此回答2~3题。 2.飞行员能观测到的日出、日落次数是( ) A .一次日出,一次日落 B .两次日落,一次日出 C .两次日出,一次日落 D .零次日出,一次日落 3.观察者在飞机上看到的昼夜更替时间为( ) A .6小时 B .8小时 C .12小时 D .24小时 4. (潍坊市四县(市)2004—2005学年度第一学期期中考试) 在30°N 纬线上,若飞机向东以15°/小时的速度飞行,那么飞机上的人将经历( ) A 、昼夜长短相等 B 、昼夜长度均增加了一倍 C 、昼夜长度均减小了一半 D 、太阳永不西落或东升 5.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 6.假设一探险者驾驶轻型飞机沿赤道以555千米/小时的速度向东环球飞行一周。探险者在飞行过程中感觉到的昼夜长短情况是( ) A .昼长约9小时,夜长约9小时 B .昼长约12小时,夜长约12小时 C. 昼长约10小时,夜长约11小时 D .昼长约18小时,夜长约18小时 7.(江苏省海安中学2005届高三年级调研考试)某飞机于2004年9月23日下午6时从北京机场起飞,自西向东环球一周,48小时后飞回北京机场。下列说法可信的是( ) A 、飞行员在飞行途中看到太阳一直在西边的地平线上 B 、在经过120°E 、120°W 和0°经线时都能看到日出 C 、在经过180°经线时看到了日落 D 、该飞机在飞行过程中经历了三个昼夜 有一架飞机在当地时间7月1日5时从 旭日东升的A 机场起飞,沿纬线向东飞行, 一路上阳光普照,降落到B 机场正值日落。 读下图完成8~9题。 8.降落到B 机场时,当地时间为( ) A .7月2日11时 B .7月1日21时 C .7月1日19时 D .6月30日19时 9.从A 机场飞行到B 机场经历的时间是( ) A .6小时 B .10小时 C .14小时 D .22小时 读“某地区等高线地形图”,假设一探险者驾驶轻型 飞机从图中的P 地出发,以555千米/小时的速度向东环 球飞行一周。读图完成10~11题。

飞机的起飞原理

飞机起飞模型 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明 飞机能起飞依靠的是伯努力原理和机翼的升力。 两张纸在内外压强差作用下靠拢气流从机翼上下方流过的情况 飞机机翼的剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图所示。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就

是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 所以,飞机能起飞,最重要的是机翼的制作,模型中机翼上表面凸起,下表面平整,当给它在水平方向受到风力时,机翼上表面的气流运动较下表面的慢,从而使下表面的压强大于上表面的压强,机翼获得向上的升力。 三、制作方法及实物图介绍 1.取cm cm 20150 的木板做飞机的水平轨道,另取两根长cm 40的钢筋做支架。如实物图所示。 2.用费旧的展板做飞机的机翼,尾翼和舵,如实物图所示。 3.用泡沫做飞机的机身和机舱。如实物图所示。 4.用一根长cm 90的长直铜管做水平支架,并在支架的一端连接一只铁球,作为动力。如实物图所示。 5.将铜管的另一端与飞机相连(在飞机重心位置处)。如实物图所示。 6.在飞机前端装一个风源(电风扇)。如实物图所示。 四、模型的使用说明 1、将模型放置于桌上,调节机身,使它处于飞行轨道中央。 2、打开电风扇,将风力调节到最高档——第三档。 3、观察飞机的起飞。 此模型的制作简单,它所需要的原材料简单易得,比如机身所需的是废旧泡沫,机翼是废旧展板。但是它能很好的展示飞机的起飞,很清楚的解释飞机的起飞原理,让人一看即明。另外模型使用简单,安全方便,适合各类人群演示,具有普遍性。 五、相关拓展知识 (一)影响飞机起飞的因素及注意事项 影响起飞滑跑距离的困素有:油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。 1.油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。

飞机起降过程物理过程分析

飞机起降过程物理过程分析 摘要:随着经济的发展,人们生活水平的提高,越来越多的人选择方便快捷的飞机作为主要出行方式。中国低空领域的开放,将会进一步促进整个行业的大发展。人们的生活也越来越离不开飞机。飞机涉及到非常多的知识和原理。文章将对飞机的原理和相关的运行规定进行整理分析,以及理想情况下飞机降落过程的受力分析来展示飞机降落的整个过程。 关键词:飞机;着陆;起飞;标准降落;受力分析 1 起飞着陆具体过程 在飞机的整个飞行中起飞着陆是最复杂、最危险的阶段,在这一阶段发生事故的概率最高。 当飞机得到起飞命令以后,飞行员加大飞机的油门开始滑跑,当滑跑速度达到一定数值(离地速度)时,飞行员向后拉驾驶杆使飞机的迎角增加,这样飞机的升力就随着滑跑速度和迎角的增加而增大。当升力增加到大于飞机的重力时,飞机便开始离开地面。以后,飞机继续加速爬升,当飞机爬升到离地面10~15米时,飞行员便开始收起落架以减小飞行阻力。当飞机爬升到安全高度以后,起飞阶段就结束了。

飞机着陆过程是指飞机从安全高度以3度下降角下降,发动机慢车,飞机近似等速直线飞行。在离地6到12米时,开始将飞机拉平。飞机减速平飞,继续增加迎角接近护尾迎角,速度继续降低。当升力小于重力时,飞机飘落主轮接地后,保持两点滑跑,利用空气阻力减速到一定速度后,飞机前轮接地,三点滑跑并开始刹车直到停止。整个过程可概括为:下降、拉平、平飘、接地、滑跑。 2 升力产生的物理过程 空气在机翼迎风时的流向图。如图1所示。 空气在机翼上方要随机翼的形状走过更多的行程,于是机翼上方的流速小于机翼下方,根据气体性质,那么机翼上方的气体压强要小于机翼下方,于是形成了上下的气压差,飞机的升力本质上由此产生。 3 起飞性能参数 提高飞机起飞时的加速度,使它尽快地达到离地速度,以缩短起飞滑跑距离。飞机起飞是一个直线加速运动,它分两个阶段,即最大功率地面滑跑阶段,以及加速爬升阶段。飞机起跑速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即飞机飞到规定的高度,起飞阶段结束。

飞机性能

第一章绪论 1.飞机的重量定义. 1)最大起飞重量:飞机松开刹车进行起飞滑跑的最大允许重量. 2)最大滑行重量:在最大起飞重量的基础上增加一部分滑行用的油料. 3)最大着陆重量:又称最大落地重量,取决于飞机结构强度及起落架承受冲击的 能力. 4)最大无燃油重量:指燃油烧尽\无燃油时的最大允许飞机结构重量. 5)营运空机重量:除了业务载重和燃料以外的飞机重量. 6)基本空重:制造厂商的空机重量 2.飞机的高度定义. ●绝对高度:飞机所在位置到平均海平面的垂直距离. ●相对高度:飞机所在位置到机场跑道地面的垂直距离. ●真实高度:飞机所在位置到其正下方地面的垂直距离. ●标准气压高度:以国际标准大气压强P0=1013mb的气压面为基准(ISA datum),按标准大气的气压递减率测量的高度. 3.飞机速度的定义. 1)仪表指示空速V I 2)指示空速V i 3)校正空速V c 4)当量空速V e 5)真实空速V T 6)地速V g 4.升力系数与迎角的关系 C L=(a-a0)C a L 5.机翼的升力特性 机翼的升力特性主要反映在升力系数上,对于几何形状一定的机翼,升力系数是迎角,气流雷诺数及马赫数的函数,其中最主要因素是迎角. 图P19 6.机翼的升力和阻力计算公式:P 18 7.发动机特性 发动机特性指发动机的主要性能参数----推力FN与耗油率sfc随发动机的工作条件变化而变化的特性.包括转速特性\速度特性和高度特性. 8.涡轮喷气发动机的转速特性P 24 9.涡轮风扇发动机的特性P 25 第二章飞机的起飞性能 1.起飞过程的几个参考速度: 1)失速速度Vs:飞机维持水平直线等速飞行的最小速度. 2)最小离地速度Vmu:保证 3)最小操纵速度Vmc G:保证飞机尾部不触地的情况下安全地抬头和离地\并

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1.机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2.机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3.尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

文档飞机转弯原理

从飞机爬升和下降的操作情况来看,似乎只要驾驶员踩踩脚蹬和控制一下方向舵,飞机就可以左转或右转了。但实际上比这要复杂的的多。与地上行驶的汽车相比,飞机多出来一个侧倾转动,而除非在路面倾斜的情况下,汽车自身是不会倾斜的。飞机在空中倾斜运动是自由的,驾驶杆向右转飞机向右倾斜,这时飞机的重力与地面垂直,可是机翼上的升力却是垂直于机翼的,此刻的升力不再指向地面的正上方而是指向斜上方。由于重力和升力的方向不同,它们不再互相平衡,于是就产生了一个垂直于机身指向右方的力,在这个力的作用下,飞机沿着一条圆弧向后右转动,这与人骑自行车的经验相近似,骑车人的身体如向一侧倾斜,自行车会随之倾斜并且自动向倾斜方向转弯无须转动车把。这就是驾驶员利用驾驶杆操纵副翼使飞机转弯的道理。同理,驾驶杆向左转时飞机也会向左转弯。从上面的描述,大致可以看出在飞机转弯时,驾驶杆的使用与汽车转弯时方向盘的使用是完全一致的。既然使用驾驶杆和使用脚蹬控制方向舵都能使飞机转弯,那它们之间有什么差别呢?下面让我们再进一步了解一下:如果驾驶员只用驾驶杆控制副翼使飞机转弯,例如右转弯,此时飞机向右侧倾斜,有一个心力拉着飞机向右转,但机头所对的方向并未改变(实际上它可能由于右侧倾斜导致略向左侧偏转),于是就出现了机头向前而飞机的整体向右转的状态。恰如同一条船面向前行而整个船体却沿圆弧行进。这样会使阻力增大,造成不必要的燃料浪费。如果驾驶员仅用脚蹬控制转弯,在机身不倾斜的状况下机头突然转向,此时机翼上的气流方向发生剧变,升力下降、机身受力增大,导致飞机高度快速下落,机舱内的乘客会感觉很不舒服。所以要实现一个平稳的、使人感到舒适的转弯(航空上称为直辖市转弯),驾驶员必须同时使用驾驶杆和脚蹬。假如飞机需要右转弯,驾驶员就把驾驶杆向右转动同时踩右脚蹬,此时飞机机可靠垂尾,机的任何动作可以分为三个基本动作,滚转、偏航和俯仰,三个动作依次需要副翼、方向舵和升降舵来实现。实际上飞机在空中转弯很复杂,同样包括了这三个动作。以向左转为例,飞行员踩左脚蹬,方向舵发生偏转,同时向左压杆,副翼偏转,飞机左滚转一定角度后,回杆,这个过程叫做压坡度。此时由于机翼不水平所以升力已经存在一个很小的左分量,飞机已经在左转,但转弯半径大而且在掉高度,所以飞行员此时要拉杆使升降舵偏转,飞机做俯仰动作,机头上抬,产生了更大的升力,这样飞机就可以在不丢高度的情况下实现小半径左转。在转弯到一定角度后,飞行员将杆复位,松开脚蹬,同时向右压杆,又滚转至水平位置,回杆。这样就完成了一个左转动作。很多时候飞机的转弯只是利用操作杆完成,我们玩航模的人都应该清楚,方向舵不过是起飞和降落时和前起联动调整划跑时才会用到,空中转弯完全依靠副翼和升降舵完成。如今大部分书都没有详细讲过飞机转弯的过程,但通过看一些录像还是能够发现蛛丝马迹,飞机转弯过程可以很清楚地看出开始的压坡度和后来的回正过程。头向右转、机身向右倾,飞机在天空中画中一条高度不变的平滑圆润的向外弯曲的美丽弧线。左转弯也是如此。以上就是飞机转弯的奥妙。第一种使用垂尾--飞机屁股上高高翘起的那个。就像船舵一样,垂尾后部向左折,飞机就左转,反之右转第二种。这种比较复杂,但比第一种效率高。先是飞机主机翼两端的翻滚控制翼张开,例如左翼向下,右翼向上,这样一来飞机就会以机头到机尾的轴线顺时针旋转,当旋转到90度左右时,主翼恢复正常,水平尾翼向上翘起,飞机就开始大幅度转向。这个动作本身和飞机起飞没什么区别。问题在于起飞动作处于垂直位面,转向动作处于水平位面。当机头指向你想转的方向时,水平尾翼恢复正常,翻滚控制翼再次张开,左翼向上,右翼向下,飞机逆时针旋转至恢复水平状态,主翼恢复正常,完成转向。转向控制翼只是主机翼的一小部分,并不是整个主翼转动

性能与飞行原理总结

1、爬升限制的起飞重量的影响因素有:气压高度、襟翼位置、机场气温 2、下列有关爬升限制的起飞重量的影响正确的是襟翼越小,爬升限制的起飞重量越大 3、增大V1速度的因素有:机场气温增加 4、EPR随外界条件变化的关系是:当机场温度超过某一值后,温度增加,EPR降低 5、炫酷儿确定推理的参数中,经常采用的是EPR 6、在下列哪种条件下可使用灵活推力起飞:湿跑道 7、确定EPR是需要的参数是:跑道长度、起飞重量、爬升梯度 8、当襟翼偏度较小时,除了场地长度、爬升梯度的限制外,还需要考虑灵活温度的限制是: 越障限制 9、灵活推力起飞与正常推力起飞相比,下列哪种起飞限制的安全水平是相同的:爬升限制 10、使用灵活推力是推力减小量不得超过正常起飞推力的:1/4 11、下列关于改进爬升叙述正确的是:改进爬升是通过增大爬升速度来完成的 12、下列正大爬升梯度正确的做法是:增大爬升速度 13、已知机场气温24℃,机场风味13805MPS,查出飞机的最大起飞重量为:50600公 斤 14、已知机场气温24℃,机场风味13805MPS,查出机场的决断速度为130节 15、已知机场气温24℃,机场风为13805MPS,查出飞机的抬前轮速度为132节 16、已知机场气温24℃,机场风为13805MPS,查出飞机的安全速度问140节 17、已知机场气温问24℃。机场风为13805MPS,查出飞机的最大起飞重量的限制因素 为:越障限制 18、已知机场气温24℃,机场风为13805MPS,使用改进爬升,查出飞机的最大起飞重 量为:51200公斤 19、已知机场气温为30℃,机场风为13805MPS,使用改进爬升,查出飞机的起飞安全 速度为:146 20、已知机场气温30℃,机场风为13805MPS,使用改进爬升,查出飞机的决断速度的 增量为:5节 21、从起飞分析表中科得知,该机场的可用起飞距离为:2000米 22、从起飞分析表中可得知,该机场的可用加速停止距离为:2060米 23、某飞机所选巡航高度为FL331,所选航路的高空平均气温为—41℃,则该飞机的爬 升性能参数对应的大气状态为ISA+10 24、已知某飞机的爬升梯度为5%,速度400节,则爬升率为:10米/秒 25、已知某飞机爬升率为5.4米/秒,速度为350公里/小时,则爬上梯度为:5.6% 26、以最大爬升率爬升时:爬升燃油最省 27、对最佳爬升速度影响最大的因素为:起飞重量 28、螺旋桨式飞机在最大升阻比飞行时的性能特征是什么:最大航程和下滑距离 29、对于喷气式飞机,最大航程所对应的速度是什么:大于最大升阻比对应的速度 30、在相同重量下,巡航高度与燃油流量的关系是:在最佳巡航高度的燃油流量最小 31、下列关于燃油里程叙述正确的是:燃油流量越大,燃油里程越小 32、采用M数和飞行高度固定不变的巡航方式的特点是:飞行时间缩短 33、下列关于远程(LRC)叙述正确的是:该巡航速度是损失1%最大燃油里程对应的速 度 34、燃油里程的大小与什么有关?温度飞机失速速度的正确代表符号(VS) 35、飞机在着陆机型下的最小稳定操纵速度或失速度或失速速度的正确代表符号是 (VSO)

飞机靠什么原理起飞的

飞机靠什么原理起飞的? 飞机的机翼翼型不是一个平面,而是略向外凸,机翼的上表面外凸引起了上表面空气流管缩小,空气流速加快,与下表面的气流产生了流速差,根据伯努力原方程,流体流速越大,压强越小,因此,机翼上就有了升力,当飞机速度越快,流速差就越大,升力就越大,当升力超过重力,飞机就能起飞了 飞行原理一. 滑行 飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。 滑行的基本要求是飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。 二. 起飞 飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。 飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结 果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。 (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。 机翼起飞时,速度加快,因为机翼上方比下放曲,呈留线形.速度大,流速就大,流 速大,则上方气压大于下方的气压,于是下放的气压机翼有向上的托力!因此,飞机起飞是靠形成的上下气压差起飞的.

飞机的起飞原理

伯努利方程原理以及在实际生活中的运用 2011444367 陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。伯努利方程 p+ρgh+(1/2)*ρv 2=c 式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用:

1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明

推荐-起飞与着陆中的滑水现象、侧风影响及机组训练

起飞与着陆中的滑水现象、侧风影响及机组训练 大雨和侧风的不利气象条件给减速停机带来许多问题,在这种情况下如果因飞机故障要求中断起飞或着陆接地后将飞机停住,而不冲出或偏离跑道对机组来说是一种挑战。 近几年的研究成果和技术改进使这类问题有所缓解,但问题仍然存在,有关在湿跑道上高速着陆或中断起飞而冲出跑道的事故和事故征候每年都还发生。导致高速着陆和中断起飞时发生事故的因素是非常相似的。 一、冲出跑道事故不断发生 波音公司最近一份研究报告表明,在30年的喷气机运输中与中断起飞有关的冲出跑道事故有48起,死亡400多人,另外还有28起严重的事故征候。同时报告还指出,在冲出跑道的事故率方面至今还没有明显的改善。 喷气机运输事故统计表明3000次起飞中有一次中断起飞;大约有1/3的中断起飞是不成功的,导致严重的冲出跑道事故或事故征候。按照这一比率,每年的1500万次起飞中至少会出现5起中断起飞冲出跑道事故或事故征候。 一些研究报告指出过去发生的中断起飞冲出跑道的事故和事故征候中有80%是可以避免的。当飞机在跑道上快速加速时,飞行员在驾驶舱这样紧张的环境中做出中断起飞的决定不象事后经仔细研究分析做出的决定那样可靠。 波音公司的研究表明,大约74%的中断起飞是与发动机毫无关系的。虽然在模拟机训练中,中断起飞通常都用因发动机异常情况来模拟,但是实际只有26%的中断起飞是因发动机情况异常。继之还有24%因轮胎/起落架支柱故障,13%因飞

机构形不正确。其余的造成中断起飞的还有鸟击、机组配合等其他原因。及时地把对飞机的操纵权从副驾驶手里转到机长手里,对中断起飞的决策是十分重要的。 研究得出的结论是大多数中断起飞冲出跑道事故是可以预防的,同时研究还指出58%的事件发生V1以后。在这样高的速度下,即使是在理想的气象条件,要在剩余跑道上减速并停机也是有问题的。研究报告还指出,1/3冲出跑道事故的主要原因与跑道面的湿滑有关。 二、滑水现象 与滑水现象有关的因素为人们所认识大约仅30年的时间,在这之前与湿跑道有关的事故被认为是飞行员的过错。 英国于1956年开展了最早的滑水现象的研究,这以后美国航空航天局(NASA)也开展了许多这方面的研究,NASA的研究发现与滑水速度有直接关系的是轮胎的冲气压力,而不是轮胎的花纹。NASA的结论是轮胎冲气压力越高,滑水速度越大。 现在,制造商已生产出更高压力的轮胎,其他的技术改进,如防滑刹车装置和反推装置的改进,使喷气飞机在所有气象条件下的高速着陆性能有所改善。 1.滑水现象原理 滑水现象很复杂,对这一现象的研究工作一直没有停止,要完整、详细地解释滑水现象原理是相当困难的。简单地说滑水现象是指,冲气的飞机轮胎在有水、冰或融雪覆盖的跑道上滚动时,轮胎接地表面与道面之间会产生流体动压力。随着地速的增加,这一动压力也在增加。当达到某一临界速度时,流体动压力等于飞机的重量,这时即达到滑水速度。当速度大于滑水速度时,飞机轮胎将被流体

飞机性能

第一章绪论 1.飞机的重量定义.1)最大起飞重量: 飞机松开刹车进行起飞滑跑的最大允许重量.2)最大滑行重量: 在最大起飞重量的基础上增加一部分滑行用的油料.3)最大着陆重量: 又称最大落地重量,取决于飞机结构强度及起落架承受冲击的能力.4)最大无燃油重量: 指燃油烧尽\无燃油时的最大允许飞机结构重量.5)营运空机重量: 除了业务载重和燃料以外的飞机重量.6)基本空重: 制造厂商的空机重量 2.飞机的高度定义.绝对高度: 飞机所在位置到平均海平面的垂直距离.相对高度: 飞机所在位置到机场跑道地面的垂直距离.真实高度: 飞机所在位置到其正下方地面的垂直距离.标准气压高度: 以国际标准大气压强P0=1013mb的气压面为基准(ISAdatum),按标准大气的气压递减率测量的高度. 3.飞机速度的定义.1)仪表指示空速VI2)指示空速Vi3)校正空速Vc4)当量空速Ve5)真实空速VT6)地速Vg升力系数与迎角的关系CL=(a-a0)CaL机翼的升力特性主要反映在升力系数上,对于几何形状一定的机翼,升力系数是迎角,气流雷诺数及马赫数的函数,其中最主要因素是迎角.图P19机翼的升力和阻力计算公式: P 18发动机特性指发动机的主要性能参数----推力FN与耗油率sfc随发动机的工作条件变化而变化的特性.包括转速特性\速度特性和高度特性.涡轮喷气发动机的转速特性P24涡轮风扇发动机的特性P 254.5.

6.7. 8.9.第二章飞机的起飞性能 1.起飞过程的几个参考速度: 1)失速速度Vs: 飞机维持水平直线等速飞行的最小速度.2)最小离地速度Vmu: 保证3)最小操纵速度VmcG: 保证飞机尾部不触地的情况下安全地抬头和离地\并 2.3. 4.5. 6.7. 8.9.继续爬山升的最小速度.4)决断速度V1: 决定飞机可否中断起飞的最大允许滑跑速度.5)抬前轮速度VR: 飞机起飞滑跑加速到开始抬头,前轮离开地面时的速度.6)离地速度VLO: 飞机安全离地的速度7)起飞安全速度V2: 保证起飞安全的起飞终点速度.起飞过程受力分析与起飞距离P35平衡地长度与非平衡地长度: 在一发失效时,按继续起飞距离和中断起飞距离相等条件所确定的场地长度.非平衡地长度: 不满足平衡地场地长度要求所确定的场长称为非平衡地场度.净空道根据FAR规定,净空道是在跑道中线的延长线上,宽度不小于150m(500ft);从跑道终端起,以不超过 1.25%的坡度身上延伸,为供飞机飞越的无障碍物的净空面,该净空面以下的地面是在机场当局的管辖之内.安全道是指对称一设在跑道的延长线上,宽度不小

相关主题