搜档网
当前位置:搜档网 › 两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案
两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案

一、选择题:

1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=

则的值是 A .2 B .-2 C .211 D .-211

2、如果sin cos ,sin cos x x x x =3那么·的值是

A .16

B .15

C .29

D .310

3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=

+ A .1318 B .322 C .1322 D .-1318

4、若f x x f (sin )cos ,=?? ??

?232则等于 A .-12 B .-32 C .12 D .32

5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是

A .锐角三角形

B .钝角三角形

C .直角三角形

D .等腰三角形

二、填空题:

6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ;

7、若αα23tan ,则=所在象限是 ;

8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ;

9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x +=

。 三、解答题:

11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+

13、已知求的值。cos ,sin cos 23544θθθ=+

14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x

·cos()αβ+的值。

两角和与差的三角函数及倍角公式答案

一、

1、B

2、D 提示: tan x = 3, 所求122sin x , 用万能公式。

3、B 提示: ()απαββπ+=+--?? ???44

4、A 提示: 把x =π3代入

5、B 提示: ∵cos(A + B ) > 0 ∴角C 为钝角。

二、

6、-22

7、分别用万能公式算出sin cos 22αα及。第二

8、-12 9、-1 10、2326sin()x +π

三、

11、-4 12、2 13、1725 14、-35

两角和与差的三角函数及倍角公式练习及答案

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

两角和与差的三角函数求值 高中数学教案

两角和与差的三角函数求值微课设计 一、教材分析 三角函数的求值主要有两种类型,即给值求值,给值求角. (1)正确地理解、选用公式,把非特殊角的三角函数值化为特殊角的三角函数值; (2)找出已知条件与所求结论之间的联系,一般可以适当变换已知代数式,从而达到解题的目的。 二、教学目标 知识与技能:探究已知与未知的内在联系,加深对公式的理解,培养学生的运算能力及逻辑推理能力。 过程与方法:通过两角和与差的三角函数公式的运用,会进行简单的求值、化简,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题的能力。 情感态度与价值观:通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质。 三、学情分析 (1)对公式记忆不准确而使公式应用错误; (2)公式不能灵活应用和变形应用; (3)忽略角的范围或者角的范围判断错误.。 四、教学重、难点 教学重点: 两角和与差的三角函数公式的理解; 教学难点: 两角和与差的三角函数公式的运用。 五、教法学法 讲授法。 六、教学过程设计

故知新 通过分析两角和与差的三角函数公式,加深对知识的理解. 创设情境问题情境: 通过对热点考向的分析, 明确本节主要内容与学习方 向。 通过设计一系列典型例 题,让学生进一步体会两角和 与差的三角函数公式的正用、 逆用,以及整体代换思想的融 合,,提高学生的观察分析能 力,培养学生的应用意识。

典 例 分 析 引导学生从多角度思考 问题,意识到解决问题方法的 不唯一性,加深学生对两角和 与差的三角函数公式的理解, 拓展学生思维。 课 堂梳理公式特点分析; 整体代换思想。 课堂梳理,可以把课堂探究生 成的知识尽快转化为学生的 素质,巩固深化这节课的内 容.

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的 :两角和与差及其二倍角公式知识点及典例 知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )= T( a + 3 ): tan( a + 3 )= 2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2 h 例 2 设 cos a — 2 1 9’ T 2 : tan2 . a sin 2 — 2 3,其中 n 2, n 0, 2,求 cos( a+ 3). sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a = — — , 3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T( a± 3可变形为: tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B 、 tan 3 = 3, 7 11 变式2:已知0 3 . ncos(— 4 4 3 5,sin( 4 )—,求 sin( a + 3 )的值. 13 则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤: (1)确定角所在的范围; 值(要求该三角函数应在角的范围内严格单调 );(3)求出角。 1 1 例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值. (2)求角的某一个三角函数 n a — 6 + A —症 A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 4 3」 B 辺 B. 5 4 q 5 cosA = 5,cosB = 13, B 56 B.65 sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C. 65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( ) C . 0 或 3 4 D ?5 16 65 0或土 3 A . 0 B . ± 3 一.卜 2cos55 — j‘3sin5 5、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5 B. o ■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值? 1 1 变式3:已知tan a = , tan 3 =-,并且a , 3均为锐角,求a +23的值. 7 3 题型4辅助角公式的应用 J 2 2 asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定, 角的值由 b tan —确定)在求最值、化简时起着重要作用。 a 例4求函数f(x) 5sin xcosx ^3cos 2 x —V 3( x R)的单调递增区间? 2 变式4( 1)如果f x sin x 2cos(x )是奇函数,则tan 变式1 :化简求值: 题型2给值求值 2cos10 sin 20 cos20 (2)若方程si nx J3cosx c 有实数解,则c 的取值范围是 ____________________ 题型5公式变形使用 二倍角公式的升幕降幕 三角函数的给值求值问题解决的关键在于把 所求角 用“已知角”表示.

两角和与差及倍角公式(一)

两角和与差及倍角公式(一) 【考点导读】 1.掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2.能运用上述公式进行简单的恒等变换; 3.三角式变换的关键是条件和结论之间在角,函数名称及次数三方面的差异及联系,然后通过“角变换”,“名称变换”,“升降幂变换”找到已知式与所求式之间的联系; 4.证明三角恒等式的基本思路:根据等式两端的特征,通过三角恒等变换,应用化繁为简,左右归一,变更命题等方法将等式两端的“异”化“同”. 【基础练习】 1.sin163sin 223sin 253sin313+= ___________. 2. 化简2cos 6sin x x -=_____________ . 3. 若f (sin x )=3-cos2x ,则f (cos x )=___________ . 4.化简: sin sin 21cos cos 2αααα +=++___________ . 【范例解析】 例 .化简:(1) 4221 2cos 2cos 22tan()sin () 44 x x x x ππ-+ -+; (2) (1sin cos )(sin cos ) 22(0)22cos θθ θθθπθ ++-<<+. (1)分析一:降次,切化弦. 解法一 : 原 式 = 2221 (2cos 1)2 2sin() 4cos () 4cos()4 x x x x π ππ----22 (2cos 1)4sin()cos() 44 x x x ππ -= --2cos 22sin(2)2 x x π = -1 cos 22 x =. 分析二:变“复角”为“单角”. 解法二 :原式 221 (2cos 1)21tan 222(sin cos ) 1tan 22 x x x x x -= -?++2 2c o s 2c o s s 2(s i c o s s x x x x x x x =- ?++ 1c o s 2 x =. ( 2 ) 原 式 = 22 (2sin cos 2cos )(sin cos )2 22224cos 2 θ θ θθθθ+-22cos (sin cos )cos cos 2222cos cos 22θθθθ θθθ--?== 12 3+cos2x 22cos()3x π + tan α

两角和差的三角函数(教案)

两角和与差的正弦、余弦、和正切公式教案(一) 教学目标 ? 知识与技能:理解利用向量推导两角和差的三角函数公式的过程,进一步体会向量方法的作用,能运用公式进行简单的恒等变换; ? 过程与方法:通过适当强度的课前学生自学,课堂上学生讲解与教师辅助点拨相结合,逐步培养学生自学,敢于展示、认真聆听、积极交流的能力; ? 情感态度与价值观:自主展示实现自我价值,合作学习培养团队合作。 一.课前自学 1.问题提出: 利用熟悉的角的三角函数值验证cos()αβ-是否等于cos cos αβ-,其他三个 , , 的情况又如何? 设计意图:通过对简单的易于进入的问题的探讨,在学生心中生成问题,激发求知欲,为课程的展开提供主观动力。 2. 公式推导: 如图1,在以坐标原点为圆心的单位圆O 中,已知角 与角的终边为与单位圆的交点分别为A,B, 则____________ 根据三角函数的定义:若点A 的坐标为,点B 的坐标为 则 ; 则点A 的坐标可以用的三角函数表示为( , ) 点B 的坐标可以用的三角函数表示为( , ) 则 的坐标(_________________) , 的坐标(_________________) _________________________________OA OB ?= 向量夹角 , 的夹角为 cos()cos ,OA OB αβ-==( ) ( ) =______________________________________ ____________________________________________(提示: OA 与OB 的模为?) =_________________________________ 提醒学生思考:如果角α β、改变结果是否会发生改变,进行推到过程的严谨性探究。

两角和与差及二倍角公式经典例题及答案

:两角和与差及其二倍角公式知识点及典例 知识要点: 1、两角和与差的正弦、余弦、正切公式 C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式 2S α:sin2α= ; 2T α:tan2α= ; 2C α:cos2α= = = ; 3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。 如T(α±β)可变形为: tan α±tan β=___________________; tan αtan β= = . 考点自测: 1、已知tan α=4,tan β=3,则tan(α+β)=( ) 711 A 、 711 B 、- 713 C 、 7 13D 、- 2、已知cos ????α-π6+ sin α=4 5 3,则 sin ????α+7π6的值是( ) A .-235 B.235 C .-45 D.4 5 3、在△ABC 中,若cos A =45,cos B =5 13 ,则cos C 的值是( ) A.1665 B.5665 C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( ) A .0 B .±3 C .0或 3 D .0或 ±3 5、三角式2cos55°-3sin5° cos5° 值为( ) A.3 2 B. 3 C .2 D .1 题型训练 题型1 给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]???++. 变式1:化简求值:2cos10sin 20.cos 20 ?? ? - 题型2给值求值 三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如 ()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()() αβαβα=+--, 22αβαβ++=? ,()( ) 222αββ ααβ+=--- 例2 设cos ????α-β2=-19 ,sin ????α2-β=2 3,其中α∈????π2,π,β∈????0,π2,求cos(α+β). 变式2:π3π33π5 0π,cos(),sin(),4445413 βααβ<< <<-=+=已知求sin(α+β)的值. 题型3给值求角 已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。 例3已知α,β∈(0,π),且tan(α-β)=12,tan β=-1 7 ,求 2α-β的值. 变式3:已知tan α= 17,tan β= 1 3 ,并且α,β 均为锐角,求α+2β的值. 题型4辅助角公式的应用 ()sin cos a x b x x θ+= + (其中θ角所在的象限由a , b 的符号确定,θ角的值由tan b a θ= 确定) 在求最值、化简时起着重要作用。 例4求函数25f (x )sin xcos x x =-x R )∈的单调递增区间? 变式4(1)如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ; (2)若方程sin x x c =有实数解,则c 的取值范围是___________. 题型5公式变形使用 二倍角公式的升幂降幂

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

两角和、差及倍角公式(一)

两角和、差及倍角公式(一) 【考纲解读】 1. 掌握两角和与差,二倍角的正弦,余弦,正切公式,了解它们的内在联系; 2. 能运用上述公式进行简单的恒等变换. 【基础回顾】 1. 和、差角公式: sin()______________________αβ±=; cos()______________________αβ±=; tan()______________________αβ±=. 2. 二倍角公式: sin 2______________________α=; cos 2_____________________________________________α===; tan 2______________________α=. 3. 半角公式: =αsin _________________; _________________________________________________cos ===α; ________________tan =α. 4.降幂公式: 2sin _________________α=; 2cos _________________α=. 5.辅助角公式: sin cos ______________a x b x +=, (其中sin ______cos ______??==,). 【基础练习】

1. 已知),,2( ,53cos ππαα∈-= 的值求)4cos(απ-。 2. 已知)3 cos(,1715sin πθθθ-= 是第二象限角,求 3. 利用两角和差公式求下列各式的值 (1)?15sin (2)?75cos (3) ?15tan 4. 的值求已知)3tan(,3tan παα+ = 5.求下列各式的值: (1)??+??18sin 72cos 18cos 72sin (2)??+??12sin 72sin 12cos 72cos 6.化归:))tan()(os A )sin(A (?ω?ω?ω+++x x c x 、 、即化归成 (1) =-x x sin 23cos 21 (2)=+x x cos sin 3 (3)=-)sin (cos 2x x (4)=-x x sin 6cos 2 【高考例题】 4. (04重庆)sin163sin 223sin 253sin313_____??+??=. 5. (05北京)在ABC ?中,已知2sin cos sin A B C =,那么ABC ?是___三角形.

两角和与差的三角函数练习含答案

一、选择题(共9小题,每小题4分,满分36分) 1.(4分)(2009?陕西)若3sinα+cosα=0,则的值为() A.B.C.D.﹣2 2.(4分)已知,则=() A.B.C.D. 3.(4分)如果α∈(,π),且sinα=,那么sin(α+)+cos(α+)=() A.B.﹣C.D.﹣ 7.(4分)(2008?海南)=() A.B.C.2D. 8.(4分)已知sinθ=﹣,θ∈(﹣,),则sin(θ﹣5π)sin(π﹣θ)的值是() A.B.﹣C.﹣D. 9.(4分)(2007?海南)若,则cosα+sinα的值为() A.B.C.D. 10.(4分)设α,β都是锐角,那么下列各式中成立的是() A.s in(α+β)>sinα+sinβB.c os(α+β)>cosαcosβ C.s in(α+β)>sin(α﹣β)D.c os(α+β)>cos(α﹣β) 11.(4分)(2009?杭州二模)在直角坐标系xOy中,直线y=2x﹣与圆x2+y2=1交于A,B两点,记∠xOA=α(0<α<),∠xOB=β(π<β<),则sin(α+β)的值为() A.B.C.﹣D.﹣ 12.(4分)(2008?山东)已知,则的值是() A.B.C.D. 二、填空题(共5小题,每小题5分,满分25分) 4.(5分)(2008?宁波模拟)已知cos(α+)=sin(α﹣),则tanα=_________ . 5.(5分)已知sin(30°+α)=,60°<α<150°,则c osα的值为 _________ . 13.(5分)?的值为_________ . 14.(5分)(2012?桂林一模)若点P(cosα,sinα)在直线y=﹣2x上,则sin2α+2cos2α=_________ .15.(5分)的值为 _________ . 三、解答题(共4小题,满分0分) 6.化简: (1); (2)﹣. 16.(2006?上海)已知α是第一象限的角,且,求的值. 17.求值:(1);

三角函数所有公式

倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a. 锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的 对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2 (a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2C os^2(a)-1=1-2Sin^2(a) 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sin a(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2] cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasi

两角和与差及二倍角公式讲义

两角和与差及二倍角公式 一.【复习要求】 1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联. 2.掌握二倍角的正弦、余弦、正切公式. 2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明. 二、【知识回顾】 1.两角和与差的三角函数 sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ; 2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。 sin 2α= ; cos2α= = = tan 2α= 。 3.降幂公式 2 sin α= ; 2cos α= . 注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用 4.辅助角公式 证明: )sin cos x x y x x =+= sin sin cos )x x ??+ )x ?+ 其中, cos ?= sin ?= tan b a ?= 且角?终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想 如:sin cos αα+= ;sin cos αα-= 。 5.公式的使用技巧 (1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++

(2)“1”的代换:22 sin cos 1αα+=,sin 1,tan 12 4 π π == (3)收缩代换:sin cos y x x =+ =)x ?+, (其中,a b 不能同时为0) (4)公式的变形: tan tan tan()1tan tan αβ αβαβ ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++ tan tan tan()1tan tan αβ αβαβ --= +→tan()tan tan tan()tan tan αβαβαβαβ-=--- 如:tan 95tan 353tan 95tan 35--= 。 tan 70tan 503tan 70tan 50+-= 。 (5)角的变换(拆角与配角技巧) 22 α α=? , ()ααββ=+-, ()αββα=--, 1[()()]2 ααβαβ= ++-, ()4 4 ααπ π =+ - , ()4 24π π π αα+= --,1 [()()]2 βαβαβ=+--, (6)二倍角公式的逆用及常见变形 二倍角的正用、逆用、变形应用是公式的三种主要使用方法,特别是二倍角的余弦公式,它在求值、化简、证明中有广泛的应用,解题时应根据不同的需要,灵活选取。 ①sin 2sin cos 22 α α α=;②2 2 2 2 cos cos sin 12sin 2cos 12 2 2 2 α α α α α=-=-=- ③2 2tan 2tan 1tan 2 α αα = -;④21sin 2(sin cos )ααα±=±;⑤22(sin cos )(sin cos )2αααα++-= 5.三角函数式的化简 (1)化简方法:①直接应用公式进行降次、消项;②化切为弦,异名化同名,异角化同角;③ 三 角公式的逆用等。④降幂或升幂 (2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少; ④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。 6.三角函数的求值类型有三类 (1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变 换消去非特殊角,转化为求特殊角的三角函数值问题; (2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于 “变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论; (3)给值求角:实质上转化为“给值求值”问题,关键也在于“变角”,把所求角用含已知角的 式子表示,由所得的函数值结合所求角的范围或函数的单调性求得角。 7.三角等式的证明 (1)三角恒等式的证明

三角函数的和差公式

1 / 2 第四~五课时 三角函数的和角公式、差角公式 [教学目标] 1、通过两角差的正弦公式的推导和证明,继而导出三角函数的和角公式、差角公 式,学生进一步理解与运用函数的思想,进一步渗透基本量的数学思想方法(基本量思想就是一种函数的思想)。 2、使学生掌握三角函数的和角公式、差角公式,并会应用这组公式解决一些有关三 角函数的求值问题。 3、在公式的推导过程中,使学生注意并学习严密而准确的数学思维方法及其数学表 达方式。 [教学重点与难点] 本节课的重点是使学生掌握三角函数的和角公式、差角公式。 难点是应用三角函数的和角公式、差角公式求三角函数值。 [教学过程设计] 一、三角函数的和角公式的推导与证明。 1、推导两角和的正弦公式。(参阅课本第75~76页)。 2、给出两角和的余弦公式。 3、利用同角三角函数恒等式,对正切函数可得两角和的正切公式。 (板书) 三角函数的和角公式 sin(α+β)=sin αcos β+ cos αsin β cos(α+β)= cos αcos β-sin αsin β tan(α+β)=β αβαtan tan -1tan tan + 二、三角函数的差角公式的推导。 直接用和角公式结合负角公式,导出三角函数的差角公式:(参阅课本第76页) (板书) 三角函数的差角公式 sin(α-β)=sin αcos β- cos αsin β cos(α-β)= cos αcos β+sin αsin β tan(α-β)=β αβαtan tan 1tan tan +- 三、和角、差角三角函数公式在计算三角函数式值中的应用。 1、求三角函数的值 例4:不使用计算器,求下列各式的值:(略——参阅课本第76页) 练习4:课本第76页,课内练习4) 2、已知角α、β的(部分)三角函数值,求和角、差角的三角函数值。 )tan(),cos(),sin(),23,(,43cos ),,2(,32sin 5βαβαβαππββππαα+++∈-=∈= 求已知例: (解略——参阅课本第78页) 练习5:课本第79页,课内练习5~1、2、3

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

相关主题