搜档网
当前位置:搜档网 › 超声三维声场特性自动测量系统

超声三维声场特性自动测量系统

超声三维声场特性自动测量系统
超声三维声场特性自动测量系统

超声声输出测量 概述 Array ATT-2系列超声声场分

布测量系统包括ATT-2D(测

量诊断超声)和ATT-2H(测

量治疗超声)两种型号,是

根据相关标准设计的针对

检测机构使用的声场测试

系统,该系统可以根据检测

机构的工作情况选择相应

本图供参考,具体以实物为准

的功能模块,并可以方便添

加相关功能模块,测量相应的检测设备。

ATT-2测量系统包含以下几个部分:

1、水箱和机械控制系统(ATT-2D/H共用)

2、软件(分ATT-2Ds和ATT-2Hs两种)

3、水听器(可根据客户需求选择)

ATT-2D能够根据GB16846-1997,IEC61157,IEC60601-2-37,NEMA UD2和NEMA UD3要求进行诊断超声,多普勒胎心仪和TCD(经颅多普勒)相关参数的测量,可以提供完整的测量GB16846-1997,IEC61157,IEC60601-2-37,NEMA UD2和NEMA UD3中所要求的声输出参数,包括了CW模式,PW模式,M模式,B模式,彩色模式等各种模式。

ATT-2H能够根据GB/T 19890-2005,IEC60601-2-5和IEC61689要求进行HIFU等超声治疗设备相关参数的测量,可以提供完整的测量GB/T 19890-2005,IEC60601-2-5和IEC61689中所要求的声输出参数。

ATT-2系列设计特点

??采用独特的测试软件和硬件设施双重保险,有效防止水听器与超声换能器、测量系统机械组织碰撞所导致的仪器损坏

??测试软件使用先进的NI LABVIEW编写,有非常强的扩展性,方便更新和升级。ATT-2系列的外部控制程序可以通过以太网进行连接,自定义测试步骤,提供客户自己设置测试流程的功能,完全做到按照客户测试需求而进行各种声输出相关测量

??兼容多个品牌多个型号的水听器,采用多种扫描测量模式:不同能量特性声束可以在水平和垂直方向进行扫描,同时可以对水听器和超声换能器进行角度调节

??可以通过控制软件进行超声换能器的角度调节,使用非常方便

??水箱系统的稳定性直接影响最终结果的稳定性。当声束水平发射时,ATT-2系列系统的超声换能器和水听器均有专门的夹具,从而可以稳定的放置,避免测量过程中因震动带来的不良影响

??考虑到实际中测量需求,ATT-2在水听器和超声换能器后方采用吸声材料,避免回波的影响

??可以根据客户的不同需求,进行相应的功能的定制,例如选择多种水听器,特殊的测量模式等功能(选配)

??可以根据客户不同工作需求,选择诊断超声声输出测量功能模块或者治疗类声输出测量功能模块。同时可以在购买部分功能的基础上,以后添加其他的功能模块,有丰富的扩展性

ATT-2D诊断超声检测系统软件ATT-2Ds

ATT-2Ds满足GB16846-1997,IEC61157,IEC60601-2-37,NEMA UD2和NEMA UD3要求,测量上述标准中测量诊断类超声设备要求的相关参数。

ATT-2系统可以将超声信号进行数字化,可以对超声的声输出进行1维或者2维扫描,并支持多种频率的扫描功能。同时,ATT-2的软件可以收集、显示和储存数据,并能根据原始数据进行各种运算,得到各种声输出相关指标,进行相关的分析。

ATT-2还配有独特的波形分析软件,可以自动计算出各种声强参数。

打印数表和绘图 :具有上述数据的打印和声场分布绘图功能,焦平面曲线图,焦平面等高线图,焦径方向曲线图,焦径方向等高线图

测量参数

¤脉冲平均声强Isppa,Isppa.3

¤空间峰值时间平均声强 Ispta,Ispta.3

¤声焦距Focus length

¤声压聚焦面积EAR

¤-6dB

焦域尺寸

¤-6dB 声束面积内时间

平均声强

¤最大空间平均声功率

输出(最大功率)

¤峰值负声压(峰值舒

张声压)Pr,Pr.3

¤机械指数MI

¤热指数TIS,TIB,TIC

¤中心频率fc

¤脉冲强度积分PII

ATT-2H 治疗超声检测系统软件ATT-2Hs

ATT-2Hs 满足GB/T 19890-2005,IEC60601-2-5和IEC61689,测量治疗类超声设备要求的相关参数。

ATT-2系统可以将超声信号进行数字化,可以对超声的声输出进行1维或者2维扫描,并支持多种频率的扫描功能。同时,ATT-2的软件可以收集、显示和储存数据,并能根据原始数据进行各种运算,得到各种声输出相关指标,进行相关的分析。

ATT-2还配有独特的波形分析软件,可以自动计算出各种声强参数。利用1维或者2维扫描可以得到焦域尺寸,三维扫描可以得到

最大旁瓣级、轴向次极大级等参数。

声压聚焦面积,焦域纵向尺寸,最大旁瓣级,轴向次极大级,焦域最大声强,声工作频率偏差

打印数表和绘图 :具有上述数据的打印和声场分布绘图功能,焦平面曲线图,焦平面等高线图,焦径方向曲线图,焦径方向等高线图

测量参数

¤脉冲平均声强

¤空间峰值声强

¤最大旁瓣级

¤轴向次极大级

¤焦域最大声强

¤声焦距

¤声压聚焦面积

¤-6dB焦域尺寸

¤-6dB声束面积内时

间平均声强

¤最大空间平均声功率输出(最大功率)

¤峰值负声压(峰值舒

张声压) ¤声工作频率偏差

¤波束不均匀系数

技术指标

(水箱及机械系统

外形尺寸:1200ˉ600ˉ1000mm

水箱尺寸:450ˉ450ˉ450mm

步距:0.01mm

具备水听器安装夹具

每个轴均有相应限位点

(水听器(可选择下面列出的各种水听器) ATT-2测试系统具体配置

¤3维水箱

¤电机自动控制系统

¤连接电缆

¤系统控制计算机

¤水听器(H型号,对应治疗超声测量)

¤计算机自动测试软件(H型号,对应治疗超声测量) ¤自动扫描系统(H型号,对应治疗超声测量)

¤水听器(D型号,超声诊断测量用)

¤计算机自动测试软件(D型号,超声诊断测量用) ¤自动扫描系统(D型号,超声诊断测量用)

¤超声探头夹具

¤传感器夹具

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

检测系统的基本特性

第2章 检测系统的基本特性 2.1 检测系统的静态特性及指标 2.1.1检测系统的静态特性 一、静态测量和静态特性 静态测量:测量过程中被测量保持恒定不变(即dx/dt=0系统处于稳定状态)时的测量。 静态特性(标度特性):在静态测量中,检测系统的输出-输入特性。 n n x a x a x a x a a y +++++= 332210 例如:理想的线性检测系统: x a y 1= 如图2-1-1(a)所示 带有零位值的线性检测系统:x a a y 10+= 如图2-1-1(b)所示 二、静态特性的校准(标定)条件――静态标准条件。 2.1.2检测系统的静态性能指标 一、测量范围和量程 1、 测量范围:(x min ,x max ) x min ――检测系统所能测量到的最小被测输入量(下限) x max ――检测系统所能测量到的最大被测输入量(上限)。 2、量程: min max x x L -= 二、灵敏度S dx dy x y S x =??=→?)( lim 0 串接系统的总灵敏度为各组成环节灵敏度的连乘积 321S S S S = 三、分辨力与分辨率 1、分辨力:能引起输出量发生变化时输入量的最小变化量min x ?。 2、分辨率:全量程中最大的min x ?即min max x ?与满量程L 之比的百分数。 四、精度(见第三章) 五、线性度e L max .. 100%L L F S e y ?=± ? max L ?――检测系统实际测得的输出-输入特性曲线(称为标定曲线)与其拟合直线之

间的最大偏差 ..S F y ――满量程(F.S.)输出 注意:线性度和直线拟合方法有关。 最常用的求解拟合直线的方法:端点法 最小二乘法 图2-1-3线性度 a.端基线性度; b.最小二乘线性度 四、迟滞e H %100. .max ??= S F H y H e 回程误差――检测系统的输入量由小增大(正行程),继而自大减小(反行程)的测试 过程中,对应于同一输入量,输出量的差值。 ΔHmax ――输出值在正反行程的最大差值即回程误差最大值。 迟滞特性 五、稳定性与漂移 稳定性:在一定工作条件下,保持输入信号不变时,输出信号随时间或温度的变化而出 现缓慢变化的程度。 时漂: 在输入信号不变的情况下,检测系统的输出随着时间变化的现象。 温漂: 随着环境温度变化的现象(通常包括零位温漂、灵敏度温漂)。 2.2 检测系统的动态特性及指标 动态测量:测量过程中被测量随时间变化时的测量。 动态特性――检测系统动态测量时的输出-输入特性。 常用实验的方法: 频率响应分析法――以正弦信号作为系统的输入;

声学的基本性质和室内声场

声学基础 第一章声音的基本性质 1.1 声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 1.2 声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000 Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

E+H超声波液位计设置

Endress+Hauser超声波液位计设置 我们需设置三个参数: V0H1 探头到滤池滤砂的距离 V0H2 设定的量程 V0H9 实际液位高度 调试步骤:先设定量程V0H2,再估计探头到滤砂的距离设定V0H1,通过查看V0H9的数据,调节V0H1,在滤池没有水时将其调节到0。 具体操作步骤如下: 1、如何选择V、H参数 通过相应按键可选择V、H的参数,当你一直按着V或H按 键时相应V、H的参数将不断的循环增减。 2、设定V0H2参数 V0H2参数为设定的量程,如下图我们设定的量程为3m: 设定时通过按键对数值的增减操作,一直按着时数 值将会不断的增(减)。 3、初设V0H1参数 V0H1参数为探头到底砂的距离,我们需要先估计一下,现滤池液位计探头到底砂的距离大概为2m。

4、调节V0H1参数,查看V0H9参数 当我们初设了V0H1参数,然后查看V0H9参数,V0H9为实际的液位数值。 我们在进行调试液位计时,需保证滤池中无水,这样V0H9应该需要调节到0。如下图: 我们需要不断的调节V0H1参数使得V0H9参数设置为,当然在之间波动也无妨,但不要在之间波动。 在调节V0H1参数查看V0H9参数时,若V0H9变大则说明V0H1参数偏大,反之则偏小,我们需不断反复的调节V0H1参数,尽量使得V0H9参数达到标准。每次调节V0H1参数后查看V0H9参数,需要观察V0H9参数1分钟以上,看看是否稳定。 超声波液位计RESET:将参数V9H5设定为333即可复位超声波液位计。

你可以先尝试在V3H0输入1m,这是抑制,从上往下1m内的干扰将被抑制。 然后退到V0H0看示数是否正常。 若不行则先记录下空标满标值如下。 V0H1是空标值,也就是探头到池底的距离。 V0H2是满标值,也就是空标值减去的盲区,该值需要与上位机对应上,相当于量程。同时按-和V便是复位,复位后需要重新设空标和满标。 设好后选择V0H0,便是显示测量值的主界面。 若还不行,建议更换仪表测试。

超声波液位测量系统设计

超声波液位测量系统设计阳华忠孙传友长4女学电,;学M4¨025 鞭蛹隧鞠獬黼黜裂簿螽缓灏醺戳黼{t*t☆sPcEoBl^女m●^‰,LMl812≈,《{目^《tE“&”^#&*雎*t{《.*#自&m£i”1“女T一**¨t《,”‘f#十∞}m*.mtT≈,《ttt湿度.*^.B§f#境目t*Ⅻt十¥∞#自.tm7}#《*目^#^*&镕■t十来目f&.#^i&&■t¨#*t.豳■蕾鞠积整黼燃霸麟醐黼}E#.}m*,《’女;LMlB12 1引言 n【】__超市披挂求班}K迅速.4、M渗墟刮*个镯域.¨仃军¥Ⅸ玎驯缭婶冉IIii#8有rL£的“川.漓f±☆1删*和托M也址日常t僻巾十最盛的邻j域+披ft的删*片证卉他毒。恻如羞Ⅲ往洲n液俺U锌“,删屉池位,赳胜补偿趟自浊扯删量池似等等m采邢t些方法会J、腰劣∞环境和抽悼峦‘£的坐化给删*带m#k的瞄莘…毕“;fm悼具有蝇蚀什…嘲蚀删抽越^¨埘I№-陋,奉&计性出r坫f浮rn0磐【匕浊ms},cl,∞l^.1…单Jt扎LMl8l二越r々渡々m推成,0片#【f占,l的古洼自g{kI。硅U越。水《统可蒜性-≈.近H1fj:%精度高。 2参比法液位测量原理 警比洼H娘理是利用超}"往换能8发一¨110趟-;浊忸冲]Ⅲ过’Ln《传播0g鹰崔ft转^的并【日处掰成fi针日睦f々到搀能*片搏M接收。精Ⅲ忧5超声被¨垃日十纠挡牧自坩_{,J就“J眦牯确地计算Ⅲ随Ⅻ4披体的触协。其原H圳Ⅵl,j超声藏#射Ji掳4£趟十波∞传感*就鼻m趺控憧剑州柬m泄f:号求…濉足“枉准环处r“生的删∞帅时问为【o。B求H“#是I_I_泞r灶产’p的,删址的时问山r6掉F陆触洲浦傩的披1Ⅳ峦fLm坐化超J:一被“行早以j,的7L秆m。…々播。山十越钠【d的j{罐中1怍,超F*纠K,*q■fJ}”}千肌蛳的琏鹰+H‘÷,山ft可得 咖} P止巾vf)是超,r漓到拉准环∞迹Ⅱ。V是超声涟刊iTr顺_fii自0Jl嚏.“r“推111: ⅢJ+ H一=_』 胜艟Ⅻ目演津的液化- ¨】|0_hd }r=H卜坐1一d l^?hH是储删砝液体的涟n h-挂地奇被传晦%爿存*睡带的m离;h 是超■被心堪*Ⅻ",琐部的H捕.酒过 删%的时州“弹其值?ho是超声被f々盛* 判}tt*M一的啦离.一q椒擗址日】肫m】稠整棱 挂环的r*度;d是泞r项而刊油自帕* 离。m此”rⅢ删址日f々出#艘∞谴虚£ 芏*仃枉州温睦m鹿,≮H描{啊超 Jh挫∞速疃拚呆统带沫舶m菇。 法i坑錾盛观J#功矩{【l减少i统琨 蕈麓世gm满Mmr要求苴M t管的底口?‘o№删f&体连通恒f*删陂 似进^【I|II最昔:¨’,浮于的密度90川、 T触目哺体的密嘘.JL汗子具备托惭蚀 忡;其。,抟c*环_胛丁^选有利于起} *i川nⅡ“抖;】lH,Ⅲl量管录I¨抗腐蚀 忡蝗的十诱钢村料. 囤1臆理犀 3硬件原理电路 牟系统纳简嘤碰什}b路¨RI!.性自f 和拄牧Ⅻ什电路目ⅢIM1s11趟■胜々… 鞋成oI_l。M1sl二硅种既能K进《能 接性超声波的0H呆¨』适块鞋戍,,l以简 ft№m“牿提高{统的一,J稚性。0l-内 郫乜拈:胩f-p州制c生妊落#,,*增& 接收∞,脉冲啁,¨拴删#啭自抑制≈, ‘j8%【☆j自电。Fn、f.1MI812处于发时 模式.箱】符嘟外拄c1lik亡m瞎的世蚶 矗摊投的[怍撷牛LlCI扳蒿增蚰被憾为 振荡醺走,振荡信≈!{驱r女坡★后,M13管 wⅡ6管脚输m。 ’_8管Ⅷ为Ⅱl“平时.iMl8l!处于 拉收懊文,趣声踺1々媾g摇收“连日的衄 市披1j号%电彝耦仟…4符脚输^再经 内郫哺级般^艘凡岳的f;}轴U】管删 的喈扳日路取出的竹母起送剑幢删£. 目时竹檗F一也披捡删,-4“通过l7管W外 接的电料进行滤眭。’1管M【L的电Ⅲ盘 拜小州*能触牲怪Ⅻ蝌祝j,器&蜒蚓簋 T转¥”IⅢ” 圉3主程序流程圈 图2简要磋件电路目

超声波风速风向仪设计

超声波风速风向仪设计 1.研究背景及意义 风速测量在工业生产和科学实验中都有广泛的应用,尤其在气象领域,风速测量更有着重要的价值。风速测量,常用的仪表有杯状风速计、翼状风速计、热敏风速计和超声波风速计。杯状风速计和翼状风速计使用方便,但其惰性和机械摩擦阻力较大,只适合于测定较大的风速。热敏风速计利用热敏探头,其工作原理是基于冷冲击气体带走热元件上的热量,借助一个调节开元器件保持温度恒定,此时调节电流和流速成正比。这种测量方法需要人为的干预,而且此仪表在湍流中使用时,来自各个方向的气流同时冲击热元件,会影响到测量结果的准确性。现阶段常采用基于超声波传播速度受风速影响因而增减原理制成的超声波风速仪表,与其它各类仪表相比较,其优势在于:安装简单,维护方便;不需要考虑机械磨损,精度较高;不需要人为的参与,可完全智能化。 2.国内外研究历史及发展状况 超声波可用于测量,是因为在超声波在传播过程中,会加载流体的流速信息,这些信息经过分离处理,便可以得到流体的流速。70年代中后期,大规模集成电路技术的飞速发展,高精度的时间测量成为一件轻而易举的事情,再加上高性能的、动作非常稳定的PLL(锁相环路)技术的应用,使得超声波流量计的稳定可靠性得到了初步的保证。同时为了消除声速变化对测量精度的影响,出现了频差法、锁相频差法等。该类方法测量周期短,响应速度快,而且几乎完全消除了声速对测量精度的影响。80年代,超声波测量出现了新的方法,比如射束位移法、多普勒法和相关噪声法等等。90年代才真正实现了高精度超声波气体流量计。 从国内、外超声波气体测量发展来看,国外机构开展这项工作的时间较早,到现在为止已经形成较为成熟的产品。当今世界,超声波流量计用于气体流量计的研究与开发方面,荷兰的工nstromet公司、英国的Dnaiel公司以及美国的Cnotrolotmo公司均做出了大量的工作并取得了较好的应用效果,其销售份额也排在前几位。日本在超声波气体流量计的设计方面也具有很大的优势,在消除管外传播时间、提高仪器精度和缩短响应时间方面有独到之处。我国的超声波流量

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

超声波液位计与雷达液位计的区别

超声波液位计和雷达液位计的区别 我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。 在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。如图所示,将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。 由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。 超声波有盲区,安装时必须计算预留出传感器安装位置与测量液体之间的距离。 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间

雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 超声波用的是声波,雷达用的是电磁波,这才是最大的区别。而且超声波的穿透能力和方向性都比电磁波强的多,这就是超声波探测现在比较流行的原因。 主要应用场合的区别: 1.雷达测量范围要比超声波大很多。 2.雷达有喇叭式、杆式、缆式,相对超声波能够应用于更复杂的工况。 3.超声波精度不如雷达。 4.雷达相对价位较高。 5.用雷达的时候要考虑介质的介电常数。 6.超声波不能应用于真空、蒸汽含量过高或液面有泡沫等工况。

[实验二]望远系统特性参数的测量

[实验二] 望远系统特性参数的测量一、实验目的 通过对望远系统特性参数的实际测量,进一步掌握望远系统的基本成像原理,同时加深对其各参数的理解。 二、实验内容 实际测量望远系统的出瞳及出瞳距的大小。 三、实验仪器 平行光管、待测望远系统(经纬仪或水平仪)、倍率计等。 四、测量原理 对于望远系统来而言,物镜框就是孔径光阑,也为入瞳;物镜框经后面的目镜所成的像即为望远系统的出瞳D′,出瞳 ′ 到望远系统目镜最后一面的顶点的距离就是出瞳距离,如 P 图2-1所示。

图 2-1 利用倍率计可以简单而比较精确的测量出出瞳直径及出瞳距。倍率计的结构原理如图2-2所示,其光学系统是一个低倍的显微镜,物镜的放大率是1倍,目镜是倍,分划板上刻有用来测量出瞳像直径的标尺,其刻划范围为。此外,显微镜可以在外筒内前后移动,在显微镜筒上有一根长度标尺,刻划范围为,格值为(在外筒上有一窗口可见到此标尺)。当显微镜在外筒内移动时,标尺可指示出它的位置,以方便的测量出出瞳距。 5.12mm 10mm 80~0mm 1 图 2-2 五、测量步骤 (一)望远系统出瞳直径的测量 1、测量前将被测望远系统的目镜视度调整到零,使仪器处于正常工作状态。 2、将平行光管、被测望远系统、倍率计如图2-3依次放置,并调整三者共轴等高。

图2-3 3、通过倍率计观察望远系统物镜框所成之像,并对出瞳亮斑调焦,从而使被测系统的出瞳在倍率计分划板中心部位上成清晰的像,此时从倍率计分划板上的刻线值即可正确地读出被测系统的出瞳直径的大小。 D′ (二)望远系统出瞳距离的测量 1、当倍率计调焦在出瞳面上时,从倍率计外筒窗口上也 a 可以读得一个读数,此读数即为沿轴方向的出瞳面的位置。 1 2、然后,沿倍率计外筒拉动显微镜,将它调焦在被测系统目镜的最后一个表面顶点上,此时再次记下外筒窗口上的读 a p′。 数。两次读数之差就是被测系统的出瞳距 2 六、思考 1、如何测量望远镜的入瞳及入瞳距? 2、为什么大多数望远系统的孔径光阑都是位于物镜上?

声场设计依据数值

1.扩声系统设计指标 根据会议现场的建筑环境,节目类型及音源动态要求,现行的多功能厅,报告厅会议室等,都按照《厅堂扩声系统声学特性指标》 GYJ25-86 的语言兼音乐扩声一级标设计,设计的指标如下: 最大声压级(空场稳态,准峰值): 125~4000 Hz,平均≥98dB 传输频率特性:125~4000Hz,≤4dB 传声增益:125~4000Hz,≥8dB 声场不均匀度: 100Hz≤8dB, 1000 Hz~6300 Hz≤6dB 噪声级:≤NR25 (扩声系统) 2.专业扩声系统术语解释 由于电子技术的发展,扩声系统中电子设备的频率响应和相位响应处理技术已经达到很高的水平,影响扩声系统还原性能的主要瓶颈是换能器(扬声器)的失真,因此扬声器是决定扩声系统设计指标和品质因素的重点,换言之,扩声系统的预期指标与扬声器的规格参数息息相关。 3.频响范围 频响范围由频率范围与频率响应组成:频率范围 指电子设备最低有效重放信号频率与最高有效重放信 号频率之间的范围,一般采用图表形式表示音箱的相对幅 度和频率的函数关系(频率响应图)。左图是某音箱理想 的频率范围: 60Hz~20KHz@-3dB;频率响应指将一个恒 压输出的音频信号与系统相连接时,音箱产生的声压随频 率变化而发生增大或衰减,相位随频率发生变化的现象, 这种声压,相位频率的相关变化关系称为频率响应,单位 为分贝(dB)。

声压与相位滞后随频率变化的曲线称为频率特性。这是考察音箱性能优劣的一个重要指标,它与音箱的性价有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。人耳可分辨的频响不平坦程度因人及节目内容而异,大多数人对同一节目的频响变化如果小于 2~4dB就不易觉察。 选择音箱时应是扩音系统频响范围越大越好,但也必须是平坦的,两端衰减量不大于 3dB才有意义。 声压Sound Pressure:有声波产生时,传播媒质中的压力与静压的差值。单位为帕斯卡,简称帕(Pa)。 声功率:单位时间内通过某一面积的声能,单位为W(瓦)。 声压级Sound Pressure Level:声压与基准声压的比值以10为底的对数乘以2,通常以分贝(dB)为单位,基准声压必须指明。功放的功率Power:功放的单位是W(瓦),容量的大小与重放信号的大小、频率范围、负载阻抗、以及可承受的失真电平有关。为了制定功率的测试标准,联邦贸易委员会(FTC)颁布了以输入信号为20Hz~20KHz,失真低于1%的长时间测试标准,一种是使用“单音短脉冲触发”的方法在以下频率进行: 20Hz-0.05秒脉冲信号

超声波的声场特性

第二章超声波声场的特性 第一节波源辐射声场 超声检测或超声相控阵成像检测设备都是工作于主动检测方式。即由作为生源的超声换能器或阵列超声换能器向被检测物体内发射超声波,然后由接收换能器或阵列换能器接收载有被检测物体内缺陷或组织信息的超声回波信号,再通过信息提取与处理,实现对被检测物体内部缺陷或结构的评估与成像。 2.1 波动方程 物理声学中的波动方程是研究超声(或阵列)换能器的声场特性最基本的原理和方程。若被超声检测的物体为金属材质,大部分区域被认为各点的声速和密度是一致的,被认为是均匀体,只是对于缺陷或组织不均匀区域则是不一致的;若被检测物体为生物体,物体内各点的声速与密度存在起伏,并非均匀一致。本书只讨论在工程应用的超声相控阵成像检测技术,因此仅讨论在均匀介质中的声场。在声速与密度非均匀的介质中,声波传播过程用非均匀介质中声波方程来加以描述。非均匀介质中波动方程为 ?2P?1 C2e2P et2 =1 ρ ?ρ??P(式2-1) 式中,P是声强,ρ是介质密度,c是声波的速度,▽是梯度算子。假设声速和密度较之平均声速c0和平均密度ρ0有微小偏移,即 ρ=ρ0+?ρc=c0+?c 其中?ρ<<ρ0,?c<

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

EASE声场分析说明教学提纲

E A S E声场分析说明

声场分析 计算机模拟声场分析 (3) 1. EASE 4.3电脑设计系统简介 (3) 2. 分析依据: (3) 3. 电视电话会议室声场分析 (5) 4. 电视电话会议室分析结果 (12) 5. 作战指挥室声场分析 (13) 6. 作战指挥室分析结果 (20)

计算机模拟声场分析 为使武警水电会场声学方案设计更好地符合实际的效果,运用当代先进的计算机模拟技术,根据实际尺寸建立计算机建筑模型,对方案设计的音响效果进行计算机模拟验证,以确认设计的合理性,以及能满足技术要求,达到预期效果。 设计运用的是著名的声场分析软件——EASE4.3。 1.EASE 4.3电脑设计系统简介 EASE(全称ELECHO ACOUSTIC SIMNLATOR FOR ENGINEER)是由德国人在九十年代中期开发的通用数据库,现已成为世界上最为广泛使用的声学设计软件。 EASE是采用计算机CAD技术进行模拟声场的模型建设、声学设计、声学计算与声学分析的综合设计软件。 我们现在使用的是EASE 4.3版本,主要用它进行模拟验算的声学参数有: ?声场声压的分布——对声场的均匀度、频率响应及分布进行分析计算?声场清晰度的计算——对声音清晰度的分析计算 2.分析依据: 武警水电电视电话会议室以及作战指挥室扩声系统属厅堂扩声。声学特性指标采用广播电影电视部部分标准GYJ25-86<<厅堂电声系统声学特性指标>>中语言和音乐兼用的电声系统二级(语言扩声一级)声学特性指标。

RASTI----快速语言传输指数(rapid speech transmission index)是语言传输指数法(STI法)在某些条件下的一种简化形式,用来测定与可懂度有关的语言传输质量。在EASE中0.75~1(含0.75)为优,0.6~0.75(含 0.6)为良好,0.45~0.6(含0.6)为一般,0.3~0.45(含0.3)为较差,小于0.3为差.一般大于0.5为好. ALC-----辅音清晰度损失百分比(%ALCONS)是一种语言可懂度的度量方法。在EASE中0%~3.3%为优,3.3%~6.6%为良好,6.6%~14.7%为一 般,14.7%~33.6%为较差,33.6%以上为差.一般小于10%为好. 说明:以下六种图,前两种图表示设计者的音箱布置方式,后三种图是计算机模拟分析的结果。设计选择的音箱型号是软件数据库所具备的,所以其模拟分析的结果是有一定参考价值的。 建筑模型图——表示音箱的设计布置方式; 音箱声向图——表示音箱声线主轴所指向的位置;

第2章 超声波发射声场与规则反射体的回波声压

第二章超声波发射声场与规则 反射体的回波声压 超声波探头(波源)发射的超声场,具有特殊的结构。只有当缺陷位于超声场内时,才有有可能被发现。 由于液体介质中的声压可以进行线性叠加,并且测试比较方便。因此对声场的理论分析研究常常从液体介质入手,然后在一定条件下过渡到固体介质。 又由于实际探伤中广泛应用反射法,因此本章在讨论了超声波发射声场以后,还讨论了各种规则反射体的回波声压。 第一节纵波发射声场 一、圆盘波源辐射的纵波声场 1.波源轴线上声压分布 在不考虑介质衰减的条件下,图2.1所示的液体介质中圆盘源上一点波源ds辐射的球面波在波源轴线上Q点引起的声压为 式中 P o——波源的起始声压; d s——点波源的面积; λ——波长; r——点波源至Q点的距离; κ———波数,κ=ω/c=2π/λ; ω——圆频率,ω=2πf;‘ t——时间。 根据波的迭加原理,作活塞振动的圆盘波 源各点波源在轴线上Q点引起的声压可以线性迭加,所以对整个波源面积积分就可以得到波源轴线上的任意一点声压为 其声压幅值为 (2.1) 式中 R s—波源半径; χ——轴线上Q点至波源的距离。 上述声压公式比较复杂,使用不便,特作如下简化。 当χ≥2R,时,根据牛顿二项式将(2.1)式 简化为 (2.2) 根据sinθ≈θ(θ很小时)上式可简化为 (2.3) 式中 Fs——波源面积, (2.3)式表明,当χ≥3R;/A时,圆盘源轴线上的声压与距离成反比,与波源面积成正比。 波源轴线上的声压随距离变化的情况如图2.2所示。

(1)近场区:波源附近由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区,又叫菲涅耳区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。 波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。 声压P有极大值,化简得极大值对应的距 离为 式中n=O、1、2、3、……<(D s-一x)/2λ的正整数,共有n+1个极大值,其中n=0为最后一个极大值。因此近场长度为 (2.4) 声压P有极小值,化简得极小值对应的距离为 式中,n=0、1、2、3、……N的区域称为远场区,又叫富琅和费区。远场区轴线上的声压随距离增加单调减少。当x>3N时,声压与距离成反比,近似球面波的规律,P=PoFs/λx.这是因为距离χ足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉现象可略去不计。所以远场区轴线上不会出现声压极大极小值。 2.波束指向性和半扩散角 至波源充分远处任意一点的声压如图2.3所示。 点波源d s在至波源距离充分远处任意一点M(r,O)处引起的声压为 整个圆盘源在点M(r,θ)处引起的总声压幅值为 (2.5) 式中 r——点M(r,θ)至波源中心的距离; θ——r与波源轴线的夹角;

超声波液位测量系统的设计

黄河科技学院本科毕业设计任务书 信息工程学院电子与通信工程系电子信息工程专业级班学号学生指导教师王二萍 毕业设计题目超声波液位测量系统的设计 毕业设计工作内容与基本要求 一、背景和意义 液位控制问题是工业过程中的一类常见问题,目前国内在液位自动控制方面缺少长期可靠的使用范例,还没有适用于液位测量和自动控制的定型产品。因此研究出一种超声波液位传感器很有必要。传统的液位测量绝大多数都是人工控制,造成了人力资源的浪费,同时安全性可靠性都不高,采用单片机实现液位测量即可避免这种情况的发生。 二、目标和任务 本设计目标是针对现有液位传感器的不足,开发一种大量程、精度高、带有标准工业控制输出接口的超声波液位传感器,建议采用单片机作为超声液位传感器的控制核心,能够简化控制电路设计;采用单一换能器进行超声波的发射和接收以降低装置成本;采用多级二阶有源滤波器以提高信噪比,进而能较大限度地提高对微弱回波信号的放大倍数。最后根据设计原理图焊接、调试。 三、途径和方法 1.从网络上查阅此领域最新研究成果,并查阅相关理论知识,利用单片机控制技术的相关知识整理出硬件设计方案; 2.在已搭建的硬件的基础上构思软件流程,给出程序; 3.软硬件联调。 四、主要参考资料 [1] 白宗文,刘生春,白洁.基于单片机的超声波测控液位系统的设计[J].电子设计工程,2011(18):33~36. [2] 么启等. 基于DSP的超声波明渠液位测量系统[J].电子设计工程,2011(21):142~145. [3]房小翠、熊光洁、聂学俊等,单片微型计算机与机电接口技术[M].北京;

国防工业出版社,2002. [4]王质朴,吕运朋,MCS-51单片机原理、接口及应用[M].北京:北京理工大学出版社,2009. [5] 杨素行等.模拟电子技术基础简明教程[M].北京:高等教育出版社,2001. [6] 闫石.数字电子技术基础[M].第三版.北京: 高等教育出版社,1989. 毕业设计时间:2013 年 2 月10 日至2013 年 5 月25 日 计划答辩时间:2013 年 5 月22 日 工作任务与工作量要求:原则上查阅文献资料不少于12篇,其中外文资料不少于2篇;文献综述不少于3000字;文献翻译不少于3000字,理工科类论文或设计说明书不少于8000字(同时提交有关图纸和附件),提交相关图纸、实验报告、调研报告、译文等其它形式的成果。毕业设计说明书撰写规范及有关要求,请查阅《黄河科技学院本科毕业设计(论文)指导手册》。 专业(教研室)审批意见 审批人签名:

声场种类和参数

声场 消声室—房间四周均有吸声结构,因此传向各个方向的声音不会被反射。若一个房间具备自由场的条件,则会有完美的吸声效果。 消声末端—经常在高效吸声风管末端测试消声效果。 房间平均吸声系数(a)—将一个房间分成几个表面区域,单位为ft2或m2,全部房间的吸声系数,单位为赛宾或公制赛宾。 辐射─指声音以一个相当小的立体角度发射的现象。当频率增加时,这种特性更加准确。 散射场—在此环境中,各个位置的声压级相同,各个方向的声能流量也相等。 指向性因数(DI)—在远场中的任一个给定方向的声压级和平均声压级之间的差别。 从一个敞开的、排风管或风管发出的噪声,随测点和风管中心线的夹角而变化。以上所示数据为当量直径或直径约为10 ft (3.05m)的管道或风管发出的噪声。 扩散—在一个自由声场中,声波的传播使远场中声源的声压级随着离声源的距离越远而越低。 远场—声场的一部分,声压随距声源距离的增加而减少。距离每增加一倍,声压级相应减少约6dB。 自由场—指在一种环境中,声波在没有障碍物或反射的情况下,向各个方向传播。如:消声室。 硬质房间—对声音的吸收率非常低,而反射率相当高的房间。 反平方定律—在远场和自由场的条件下,声音密度的变化与距声源的距离的平方成反比。 两个远场点之间声压级的差如下所示: Lp2 = Lp1 - 20 log(R2 / R1) (B-1) 其中: Lp1 = 位置1的声压级,dB; Lp2 = 位置2的声压级,dB; R1 = 从声源到点1的距离; R2 = 从声源到点2的距离。(R1、R2单位必须相同) 公制Sabins—参看“总吸声值”。 近场—在声源和远场之间,距声源较近的位置。近场的典型特点是:只要测点与声源间距有微小变化,声压就会变化很大。 敞开的场—在一种环境里,声源可被固定在一个声学反射平面上,在无障碍物和反射的情况下,声音以半球形的形式传播。例:一间带有硬质(反射)地板的消声室;具有平坦地面而无障碍物的室外环境。 混响室—房间经过特殊处理,其四周具有高度反射性,以使声场尽可能地扩散,具有很长的混响时间。混响时间—在一个房间中,当一个稳定的声源停止发声后,平均声压级降低60dB所需要的时间。可采用如下方法估算: T = 0.049(V / A)英制单位(B-2)

基于单片机的超声波液位检测系统设计

编号: 审定成绩:毕业设计(论文) 设计(论文)题目: 基于单片机的超声波液位检测系统设计

摘要 液位测量及控制广泛应用于工业、生活等领域,由于许多测量环境条件及其恶劣,例如对具有腐蚀性的液体的液位测量。显然,传统的液位测量设备已不能满要求。因此,一些基于超声波的非接触式液位测量控制技术应运而生。本文利用单片机的强大功能,通过硬件和软件的完美结合,设计、实现了一种基于超声波的液位检测控制系统。系统由液位测量模块、数据显示模块、液位控制模块、超限报警模块和参数设置模块组成,通过HC-SR04超声波测距模块采集数据,经过单片机进行数据处理,然后进行实时液位显示,同时发出液位控制信号和报警控制信号。最后,对所实现的实物进行了测试。测试结果表明系统功能符合设计要求,能达到易控制、稳定性强、测量精度高、安全性高、功耗低的预期目的。 【关键词】单片机超声波液位测量液位控制

ABSTRACT Level measurement and control are widely used in the industrial field and other related fields. In the field of industry, many measurement environments are very bad such as the level measurement of corrosive liquids. Obviously, the traditional level measurement devices can not satisfy the requirements. As a result, some control based on the non-contact ultrasonic level measurement technology arises at the historic moment. This paper makes use of the powerful features of the SCM and the perfect combination of software and hardware to design and implement an advanced control system for liquid level measurement based on the ultrasonic measurement. The designed system includes level measurement module, data display module, level control module, limit alarm module, and parameter set module. The system collects data through HC-SR04 Ultrasonic Ranging Module, and then process the data, display the level in real-time and issue level control signal and the warning signal. Finally, the system was tested. The tested results show the system functions can meet the designed requirements, which achieve control easily, high stability, high accuracy, and high security. 【Key words】SCM Ultrasonic Level measurement Level control

相关主题