搜档网
当前位置:搜档网 › 第七章 稳定同位素地球化学

第七章 稳定同位素地球化学

第七章 稳定同位素地球化学
第七章 稳定同位素地球化学

第七章稳定同位素地球化学

稳定同位素地球化学研究自然界稳定同位素的丰度及其变化。同位素丰度发生变化的主要原因是同位素的分馏作用,即轻同位素和重同位素在物质中的分配发生变化,造成一部分物质富集轻同位素,另一部分富集重同位素。同位素及其化合物在物理或化学性质上的差异叫做同位素效应。同位素效应的产生从根本上讲是由于同位素在质量上的差异引起的,同位素质量差越大,所引起的物理化学性质上的差异也就越大。因此,对质量较轻的元素,其同位素的相对质量差异较大。如H与D 质量差100%,O16和18O质量差12.5%,而204Pb和206Pb质量差仅1%,在目前技术条件下,能测量到的由于同位素效应所造成的自然界同位素丰度变异仅限于质量数小于40的元素内。这就是稳定同位素地球化学目前所涉及的同位素仅限于元素氢(H/D)、碳(14C/13C)、氧(18O/16O)、和硫(34S/32S)以及硼(11B/10B)、氮(15N/14N)的原因所在。

7.1 同位素分馏和组成的表示

7.1.1同位素分馏

由于同位素效应所造成的同位素以不同比例在不同物质或不同相之间的分配称为同位素分馏。这里需引入二个概念。

同位素比值:定义为单位物质中某元素的重同位素和轻同位素的原子数之比,如在陨石中硫同位素比值为:

R=34S/32S=1/22.22

当我们谈论同位素比值时,总是指重同位素和轻同位素之比。

同位素分馏系数:定义为在平衡条件下,经过同位素分馏之后二种物质(或馏份)中某元素的相应同位素比值之商。

设某二种物质为A,B,某元素的同位素比值为R A,R B,则同位素分馏系数为:

所以当我们讨论同位素分馏系数时,必须指明是那种物质对那种物质。一般α值为接近1的一个数字,离1愈远,同位

素分馏就愈大,α=1表示物质间无同位素分馏。R值可通过具体对象的测定而获得,某种物理化学环境下的α值则可通过实验过程确定。把R和α两者联系起来,可用来探讨地质过程的物理化学状况。

7.1.2同位素标准

在稳定同位素地球化学研究中,人们感兴趣的是物质同位素比值的微小变化,而不是绝对值的大小,同时为了便于进行比较,物质的同位素组成除了用同位素比值R表示外,更常用δ值表示,其定义为:

它表示了样品中两种同位素比值相对于某一标准的对应比值的相对千分差。当δ值大于零时,表示样品的重同位素比标准富集,小于零时则相反。实际应用中,δ值就是物质同位素组成的代名词。

由于样品的δ值总是相对于某个标准而言的,同一物质,比较的标准不同,得出的δ值也各异。所以对样品同位素组成进行对比,必须采用同一标准,或者将各实验室的数据换算成国际公认的统一标准,才能进行对比。

一个好的标准应该满足以下一些要求:同位素组成均一,

大致为天然同位素组成变化范围的中间值;数量大,以供长期使用;化学制备和同位素测试操作较易。目前国际上公认的标准主要是:

SMOW(StandardMeanOceanWater)是标准平均大洋水,作为氢、氧同位素标准。SMOW的D/H=156×10-6、18O/16O=2005×10-6,根据定义,其δD=0,δ18O=0。

NBS-1(NationalStandardBureau)是美国Potomac河的蒸馏水,其D/H=149×10-6,18O/16O=1989.4×10-6,以SMOW作标准,其δD=-47.1‰,δ18O=-7.89‰。

PDB(PeedeeBelemnitella)是美国南卡罗莱纳州白垩系皮狄组地层中的美洲拟箭石,用作碳同位素标准,最初由芝加哥大学Ureg等制备的,现已耗尽,但文献中仍沿用它作为碳同位素标准。在古气候研究中也用作碳酸盐氧同位素标准,其

13C/12C=1123.72×10-5,18O/16O=2067.1×10-6,根据定义,其δ13C=0,相对SMOW,其δ18O=30.86‰。

CDT(CanyonDiabloTroilite)是美国亚利桑那州迪亚布洛峡谷中铁陨石中的陨硫铁。用作硫同位素标准。其

34S/32S=4500.45×10-5,δ34S=0

除此之外,还有一些其他氢、氧、碳、硫标准,V-SMOW,SLAP,NBS-28,NBS-18,LTB-1等。在实践工作中,不可能在

实验中把所有测定样品和国际标准进行对比,实际中总是利用各实验室的“工作标准”或“参考标准”。它们的δ值已严格测定,然后把样品对于工作标准的δ值换算成样品对于国际标准的δ值。

任一样品对于不同标准之间δ值的关系可进行如下换算,设X,A,B分别为待测样和二个标准,则根据δ值的定义可推导得:

δX-A=δX-B+δB-A+δX-B·δB-A×10-3

δX-A,δX-B,δB-A分别为样品对标准A、样品对标准B和标准B对标准A的δ值。

7.1.3同位素富集系数

在同位素平衡的前提下,两种不同化合物的同类同位素组成δ值的差,称为同位素富集系数,有

△A-B=δA-δB(7.2)

对于同一元素的一系列化合物而言,其富集系数有简单的相加关系,即

△A-C=△A-B+△B-C

给出同位素富集系数和同位素分馏系数两者的关系

当δA×10-3,δB×103<<1时,可简化为

1000lnαA-B=δA-δB=△A-B(7.3)

因此,只要测得样品的δ值,就可得到二物质间的103lnα,它同样表示了二者同位素分馏的程度,称为简化分馏系数。利用简化分馏系数值可用来绘制同位素分馏曲线、拟合同位素分馏方程和计算同位素平衡温度等。

7.2 同位素分馏机理

同位素的质量差产生了同位素效应,造成不同物质间的同位素分馏,它可以由物理、化学和生物等各种作用引起。物理作用如扩散、蒸发、凝聚等在某些特定条件下可造成比较大的分馏,生物作用实质上是一种复杂的物理化学过程,对其机理

和过程目前还不十分清晰。化学作用则可通过同位素交换反应等实现。

7.2.1同位素平衡分馏

当体系处于同位素平衡时,同位素在两种或两种以上物相间的分馏称为同位素平衡分馏,这时可以不考虑分馏的具体机理,而把所有的平衡分馏看作是同位素交换反应的结果。

同位素交换反应和普通化学反应一样,可列出反应方程式,如氯化氢溶解到重水中:

HCl+HDO=DCl+H2O(7.4)

同位素交换反应有如下一些特点:

同位素交换反应是可逆反应,和化学反应一样,可用平衡常数K来描述交换反应进行的程度。如上一反应有:

同位素交换反应是等分子反应,反应前后的分子数和化学组成不变,只是同位素浓度在各化学组份间的重新分配。

同位素交换反应的热效应非常小,比元素的化学反应热效应小2—4个数量级,因此同位素交换反应基本上是在恒温下进

行。

同位素交换反应达到平衡时,同一元素的重同位素一般富集在氧化态较高或键合力较强的化合物中。

同位素交换反应的平衡常数是温度的函数,由于热效应很低,因而平衡常数随温度变化的趋势也很小。当温度趋于无穷大时,同位素之间交换速度差异消失,平衡常数K→1。

平衡常数和分馏系数是二个不同概念的常数,前者是对某一交换反应而言,指在平衡时反应前后各组份浓度分布关系。后者是对某一分馏过程而言,指把一个体系分成二部分时,同位素浓度分布的比例关系,这个分馏过程可以是一个简单的交换反应,也可以是包含若干反应的复杂情况。

对于如式(7.4)那样的只有一个同位素原子参加交换反应的反应中,平衡分馏系数等于反应的平衡常数,即α=K。对于有n

7.2.2瑞利分馏

除同位素交换反应代表的同位素平衡分馏外,瑞利分馏过程也具有同位素平衡分馏的性质。只是体系处于瞬时平衡状态,某相生成物一旦形成,即离开平衡区域,旧的平衡随之破坏、

新的平衡开始建立。因此瑞利分馏过程中两相的同位素组成随时间会发生不断地变化,分馏系数除了和平衡分馏系数有关外,还与两相物质的相对数量有关。

假定反应物A是无限的,能不断地得到补充,则在同位素平衡条件下产物B的同位素组成R B=αB-A·R A。

假定反应物A是有限的,考虑B的微量产物dn从初始反应物A中生成并发生分离。设

N1为反应物中重同位素的数量

N2为反应物中轻同位素的数量

dn1为重同位素从A转移到B的数量

dn2为轻同位素从A转移到B的数量根据瞬时平衡的前提,有

对上式积分,n1从n0,1→n1,n2从n0,2→n2,则有

因为n2是轻同位素、数量占绝大多数,n1是重同位素,n1

和n0,1均是极少量。所以,

f为分馏过程任一瞬间初始反应物的残余分数.

所以 R A=R0,A·fα-1(7.6)

R0,A和R A分别是反应物的初始同位素比值和分馏到f时刻的反应物同位素瞬时比值。

f时刻的产物B的同位素组成为

R B=αB-A·R A=a·R0,A fα-1(7.7)如果分馏产物聚集在某处,根据质量平衡原理,有

对于诸如海水蒸发成云、雨从云中形成这样一些过程而言,常常用到这种分馏公式,当然,这里要求α为常数,亦即T不

变。如果温度发生变化,要划定α不变的几个阶段来处理。

7.2.3同位素动力分馏

自然地质体系往往出现同位素不平衡现象,它可在二种情况下产生,其一是体系形成时本身就未达到同位素平衡。如晶出矿物的同位素均一化速度太慢,跟不上晶体生长的速度,致使先晶出部分与后晶出部分具有不同的同位素组成。其二是当体系形成时达到了同位素平衡,但体系形成后外界条件发生了变化,如温区的改变,新组份的加入或原有组份的逸散等,使体系产生同位素的再平衡,但这种再平衡作用还达不到新的平衡状态,因为它受反应速度控制。

同位素动力分馏是指偏离同位素平衡分馏的分馏现象。各种物理、化学、生物过程的动力学性质都能引起同位素的动力分馏。在动力分馏过程中同位素在不同物相间的分配随时间和反应程度而不断变化,这种变化是由反应速度不同引起的。

动力同位素分馏是一个很复杂的过程,如在化学反应中的单向不可逆过程,其进行的程度和反应物的消耗数量有关,轻同位素的反应速度比重同位素快,因而轻同位素在产物中要比反应物中富,但如果反应物全部耗尽,则产物的同位素组成和反应物的同位素组成相同,没有净分馏。如消耗反应物的数量少,则产物可产生较大分馏,因而观察到的动力分馏是不断变

化的。这种情况表明,在反应物转换成产物过程中,除动力分馏以外,实际上还存在一个由动力分馏向平衡分馏的转变问题。如果时间足够长,最后终究达到同位素平衡,或者反应物和产物同位素组成相同。

7.3 氢、氧同位素地球化学

自然界氢有H,D和极微量的氚三种同位素,相对丰度为99.9844%和0.0156%。氢同位素相对质量差最大,同位素分馏也最明显。氧有16O,17O,18O三种同位素,其相对丰度为99.762%、0.038%,0.200%。

氢、氧为分布最广的元素,氢、氧同位素研究涉及宇宙、月球、地球各层圈,包括岩石圈、水圈、气圈,特别是各种各样水的氢、氧同位素研究,它对多种成岩成矿作用过程及物质来源具有重要意义。

7.3.1水的氢、氧同位素组成

1.大气水

大气水、或雨水,是指新近参加大气循环的雨、雪、河、湖、地下水等一类水的总称。大气水的同位素组成变化幅度大,δD值从+50到-500‰(-350‰±100‰),δ18O从+10到-55‰(-50‰±5‰),总的讲大气水比海水贫D和18O。

大气水的同位素组成呈有规律的变化:从赤道到高纬度地区、从海洋到大陆内部、从低海拔到高海拔地区,重同位素的亏损依次递增,构成所谓的纬度效应,大陆效应和高度效应,以及季节效应,降水量效应等。这是由于水在蒸发、凝聚过程中的同位素分馏293效应,蒸发时轻同位素优先汽化,凝聚时重同位素优先液化,随着蒸发、凝聚过程的不断进行,造成轻同位素在逐渐增加。

大气水同位素组成的另一特点是δD和δ18O之间有明显线性关系,有

δD=8δ18O+10(7.9)

称为雨水线方程或Craig方程,如图7.1所示。这个方程的实质是:在T=25℃时,

亦即:δ18O水-δ18O汽=9.15

δD水-δD汽=71.4

将上两式相除,即可得Craig方程。因此方程中的斜率反映了同位素平衡条件下水汽二相氢、氧同位素富集系数之比,而截距则反映了汽相中

氢、氧同位素组成的绝对值差。但如果只考虑海水蒸发和大气凝聚的平衡过程,则δ18O海水≈0,δD海水≈0,处于平衡水汽中的δ18O汽=-9.14,δD汽=-74,应该是δD水=8δ18O,没有截距,不完全符合Craig方程,可见式(7.9)是考虑了分馏的动力学特征。由于温度及过程进行的程度不一,各地区的氢、氧同位素组成有时并不严格服从Craig方程,但原则上方程斜率可用特定温度下大气水凝聚过程同位素平衡交换结果解释,截距则包含了动力分馏结果,它是由同位素质量差、温度、环境等诸因素决定的。

2.温泉地热水、深成热卤水

根据对美国几个主要热泉和我国西藏地区地热田的工作表明,它们主要是大气降水经深部循环的加热产物。其δD值和纬度效应一致,δ18O值则变化较大,偏向更大值,这种氧同素和大气降水值的漂移取决于热水温度,围岩的δ18O值和水岩交换作用中水/岩的比值等。热卤水是富含金属成矿物质的高浓度盐水物质,热卤水的氢、氧同位素大致和大气水一致,部分来自深海水。

3.岩浆水、变质水

岩浆水是在高温岩浆状态下始终与岩浆保持化学和同位素反应与平衡的一种水。硅酸盐熔浆中水的重量可达5%,人们无法取得岩浆水的样品,只能根据岩浆矿物气、液包裹体的同位素组成来推断。岩浆大多形成于700—1000℃的高温,高温下岩浆与水之间的平衡分馏系数很小。所以也可根据火成岩和矿物的同位素组成来估算。大多数火山岩和深成岩具有比较一

致的同位素组成,其范围是:

δ18O:+5.5~+8.5‰(+5~+9‰),δD:-40~-80‰(-50~-85‰)。

变质水是指区域变质作用时存在于岩石孔隙或与岩石伴生的水,其同位素组成是通过矿物包体测温和平衡计算间接得出。在300—600℃变质温度下,变质水的δ18O=5‰~25‰(9‰~-41‰),δD=-20‰~-65‰

(-20‰~-140‰),主要受原岩性质和变质温度控制。

来自地幔的与超基性岩平衡的水称为原生水或初生水,由于温度很高,分馏系数α趋近于1。水的同位索组成接近岩石,其δ18O=6%~8‰,δ

D=-50‰±20‰,是根据幔源金云母的D/H比值估算的。

7.3.2岩石中的氢、氧同位素

1.火成岩

火成岩中氢主要存在于角闪石、黑云母等含水矿物。其δD值可从-30‰到-180‰,与岩石类型及成因没有简单的明确关系。火成岩中氧同位素组成总的变化范围约为δ18O从5‰~13‰。其变化趋势是从基性到酸性,δ18O值依次增大。

火成岩的δ18O值变化与其组成矿物的δ18O密切相关,其造岩矿物的δ18O同样反映了与岩浆结晶分异顺序相一致的变化规律。即从孤立岛状四面体的橄榄石到链状辉石、层状云母和架状长石、石英,δ18O依次升高。这种变化规律首先是与各矿物的结晶温度有关,温度越高,同位素分馏越弱,

δ18O越低,其次和矿物的晶体化学性质有关。因为硅酸盐中阳离子与氧结合力及阳离子的质量大小控制着分子的振动频率,键愈短,则键力愈大、振动频率就高,阳离子质量愈小,振动频率也愈高。而从同位素分馏理论来看,振动频率高的氧原子的硅酸盐富18O,这就说明为什么石英中δ18O 最高。

未遭受后期地质作用叠加的岩石中各种矿物的δ18O值亦成有规律变化,如花岗岩中达到氧同位素平衡时的δ18O值,依次有石英(8—11)、碱性长石(7—9)、斜长石(6—9)、白云母、角闪石(6—7)、黑云母(4—7)、磁铁矿(1—3)等。各矿物间相差1‰—2‰,如果不符合以上顺序或偏离太大,则说明平衡可能遭到了破坏。

幔源镁铁质岩石具有很窄的δ18O值,一般为5‰—7‰,与球粒陨石一致。愈向酸性,岩石中δ18O愈大且分散,这种变化可由诸多因素造成,如岩浆的结晶温度、岩浆水的δ18O、岩浆分离结晶作用、岩浆与围岩及水溶液的作用、以及在固相线下矿物重新平衡所产生的退化效应等。

2.沉积岩

沉积岩中的氢、氧同位素组成主要受二种因素控制:一是水岩同位素交换反应,低温下分馏强,如碳酸盐岩、粘土岩具高的δ18O和δD值。二是生物沉积岩中的生物分馏,往往造成岩石中很高的δ18O和δD值。总体上讲沉积岩以富18O和D为特征。

碎屑岩的同位素成分有时未与环境达到平衡,以石英为主的碎屑岩的

δ18O≈8‰—15‰。自生石英和碎屑石英组成不同。在沉积条件下,砂粒级石英的同位素交换很弱,在搬运、沉积和成岩过程中不会改变原来的同位素组成,因此碎屑石英的δ18O值可用来鉴别是火成成因还是变质成因。长石也有类似的情况。

粘土岩或粘土矿物主要是硅酸盐矿物化学风化产物,部分是沉积和成岩作用形成,其同位素组成取决于其粘土一水体系的平衡分馏,粘土矿物形成过程中介质水的组成和环境温度。研究表明,粘土矿物的氢、氧同位素关系可用下式表达:

δD=A·δ18O+B

其中A取决于氢、氧同位素分馏程度比,与环境温度有关,B取决于体系中水的同位素组成对

蒙脱石:δD=7.3δ18O-260

对高岭石:δD=7.5δ18O-220

该方程大致平行Craig线,但在相同δ18O情况下其δD值明显偏低。

3.变质岩

由于变质岩原岩物质的多样性和变质作用温度范围的宽广性,其同位素组成变化范围也很大。各种含羟基矿物的δD可从-30‰~-110‰。在许多情况下和火成岩含水矿物和沉积粘土矿物的δD值重叠。变质岩的δ18O

也介于火成岩和沉积岩之间,为6‰~25‰。变质岩及其矿物的氧同位素组成可提供有关原岩性质、变质温度、矿物反应机理、流体相(水蒸汽、CO2)的来源和数量、同位素交换的程度等方面的重要信息。

4.氧同位素地质温度计

同位素地质温度计测定的是地质体中同位素平衡的建立和“冻结”时的温度。由于同位素交换反应是等体积分子置换,并不引起晶体结构本身的变化,因而同位素地质测温不受压力变化的影响,无需考虑压力校正。

同位素交换反应的平衡分馏系数α是温度的函数,α和温度T之间关系的确定,既可从理论上计算,也可实验测定,但两者往往有较大不同,故常用实验法确定。一般有:

1000lnα=A/T2+B(7.10)

其中A,B为常数,与矿物种类有关,T是绝对温度,此式即为同位素地质温度计基本公式。公式的适用范围大致是100℃—1200℃。当温度接近或低于100℃时,下列关系更接近实验结果。

1000lnα=A'/T+B'

即简化分馏系数和温度的倒数呈线性关系。

实验测定时很难得到矿物与矿物之间的同位素交换反应数据,一般都是测定矿物与水之间分馏关系,然后根据同位素富集系数相加原理换算成

矿物与矿物之间分馏方程。表2.1和图7.2列出了某些矿物对的同位素计温方程和分馏系数与温度关系图。表2.1中A,B含义如公式(7.10)所示。

由图7.2和表2.1可知石英—磁铁矿矿物对具有最灵敏的氧同位素地温计。因为石英的δ18O最大而磁铁矿的δ18O最小,所以两者有最大的分馏系数,而且石英、磁铁矿分布比较广泛,在火成、变质、热液等各种矿床中紧密共生,所以石英磁铁矿氧同位素温度计应用最广,可靠性也较强。

氢同位素地温计无论在研究程度上还是地质应用上远不如氧同位素地温计。

表7.1 矿物—矿物氧同位素计温方程

据Bottinga和Javoy(1975)

《地球化学》练习题2剖析

恩《地球化学》练习题 第一章太阳系和地球系统的元素丰度(答案) 1.概说太阳成份的研究思路和研究方法。 2.简述太阳系元素丰度的基本特征。 3.说说陨石的分类及相成分的研究意义. 4.月球的结构和化学成分与地球相比有何异同? 5.讨论陨石的研究意义。 6.地球的结构对于研究和了解地球的总体成分有什么作用? 7.阐述地球化学组成的研究方法论。 8.地球的化学组成的基本特征有哪些? 9.讨论地壳元素丰度的研究方法。 10.简介地壳元素丰度特征。 11.地壳元素丰度特征与太阳系、地球对比说明什么问题? 12.地壳元素丰度值(克拉克值)有何研究意义? 13.概述区域地壳元素丰度的研究意义。 14.简要说明区域地壳元素丰度的研究方法。 15.岩浆岩中各岩类元素含量变化规律如何? 16.简述沉积岩中不同岩类中元素含量变化规律。 第二章元素结合规律与赋存形式(答案) 1.亲氧元素和亲硫元素地球化学性质的主要差异是什么? 2.简述类质同像的基本规律。 3.阐述类质同像的地球化学意义。 4.简述地壳中元素的赋存形式及其研究方法。 5.举例说明元素存在形式研究对环境、找矿或农业问题的意义。 6.英国某村由于受开采ZnCO3矿的影响,造成土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异,为什么? 第三章自然界体系中元素的地球化学迁移(答案) 1.举例说明元素地球化学迁移的定义。 2.举例说明影响元素地球化学迁移过程的因素。 3.列举自然界元素迁移的标志。 4.元素地球化学迁移的研究方法。 5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么? 6.解释络离子的稳定性及其在地球化学迁移中的意义。 7.简述元素迁移形式的研究方法。 8.什么是共同离子效应?什么是盐效应? 9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义? 10.举例说明Eh、pH值对元素迁移的影响。 11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用? 12.试述影响元素溶解与迁移的内部因素。 13.自然界中地球化学热力学体系基本特点是什么? 14.自然体系中哪些特征可作为体系达到平衡态的证据与标志? 15.讨论相律及其应用。

地球化学的学科特点

地球化学的学科特点

————————————————————————————————作者: ————————————————————————————————日期:

地球化学的学科特点 ●是地球科学的一部分:以地球、地壳及地质作用体系为研究对象。 ●研究的重点/方向:地球系统物质运动(含地质运动)中物质的运动规律。通过研究和 分析元素和同位素在地质体系中的行为和演变,应用地球化学的基本原理来示踪地 质体系运动的规律,例如:岩浆形成的深度、来源、矿床形成环境等等。 ●理论基础:化学类学科——无机化学、有机化学、物理化学、热力学、解析化学等, 此外还有物理性和数学等。 ●学科分支众多:海洋地球化学、生物地球化学、环境地球化学、区域地球化学、 个别元素地球化学、成岩成矿地球化学、同位素地球化学和地球化学热力学。 ●应用性强:比如环境地球化学是环境科学的核心(酸雨、臭氧空洞的形成、全球变暖 和温室效应),应用地球化学的方法和手段找矿。 ●年轻的发展中的科学(约100年的发展历史) 地球化学的基本问题 (1)地球系统中元素和同位素的组成(abundanceand distribution)问题(2)元素的共生组合和赋存状态问题 元素的共生组合:具有相同或相似迁移历史和分配规律的各种元素在地质体中有规律的组合。 (3)元素的迁移和循环 地球化学的迁移:元素的重新组合常伴随元素的空间位移及元素在系统不同部分状态的转化,该迁移涉及体系的物理化学条件和迁移介质特性等制约关系变化的动态过程。 (4)地球的历史和演化 通过元素或同位素的变异来揭示地质作用过程的特征,称为微量元素或同位素“示踪”。 ?X-射线荧光光谱(XRF) ?电感耦合等离子体发射光谱(ICP-AES) 丰度:指化学元素在地球化学系统(太阳、行星、陨石、地球、地圈、地壳)中的平均分布量。 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量。 分配:元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 太阳系元素丰度具有以下规律: (1).H和He是丰度最高的两种元素,这两种元素几乎占了太阳中全部原子数目的98% (2).原子序数较低的元素区间,元素丰度随原子序数增大呈指数递减,而在原子序数较大的区间(Z>45)各元素丰度值很相近 (3).原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。具有偶数质子数(P)或偶数中子数(N)的核素丰度总是高于具有奇数P或N的核素,这一规律称为Oddo -Harkins(奥多--哈根斯)法则,亦即奇偶规律。 (4).质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。此外还有人指出,原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大。例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度

稳定同位素应用

高精度稳定同位素技术 同位素指质子数相同而中子数不同的同种化学元素,最常用的稳定同位素有碳-13 (13C)、氮-15(15N)、氢-2 (2H即氘) 和氧(18O)等。因为这些同位素比普通元素重1到2个原子量单位,所以也叫作重元素。稳定同位素(stable isotope) 就是天然同位素或非放射性同位素(non-radioactive isotope),即无辐射衰变,质量保持永恒不变。稳定同位素在自然界无处不在,包括所有化合物、水和大气,所以也就自然地存在于动植物和人体内。其物理化学性质与普通元素相同,所以可用作示踪剂来标记化合物用于科学研究、临床医学和药物生产等几乎所有自然领域。由于没有辐射污染,稳定同位素示踪剂可以用于任何对象,包括孕妇、婴儿和疾病患者,无论是口服还是注射,都绝对安全。 稳定同位素技术的另一特点是其测试定量的高精度和超高精度,达到PPM级(即百万分之一精度),而且同时也测定了化合物的浓度,事半功倍,且降低了测试误差。现在,利用同位素技术人们可以同时测定多个不同的样品,从而提高测定效率。这些高效率、高精度的特点是放射性同位素等技术所不可比拟的。 稳定同位素技术的第三个特点是其示踪能力的微观性和灵活多变性。微观性是指它可以用来标记、追踪化合物分子内部某个或多个特定原子,比如葡萄糖分子中各个原子在人体内的不同代谢途径, 哪些原子进入三羧酸循环产生能量,而哪些原子进入脂肪代谢途径参与脂肪合成。多变性是指通过对同位素标记位点的合理选择和巧妙设计来追踪、定性定量测定化合物的不同代谢途径或者生成过程。 由于以上特性,自上世纪中叶特别是70年代以来稳定同位素技术在科技先行国家被广泛应用于医学、营养、代谢、食品、农业、生态和地质等研究和生产领域。近年来在药物研发生产以及新兴的基因工程、蛋白质组学(proteomics)、代谢组学(metabolomics) 和代谢工程(metabolic engineering) 等前沿领域,稳定同位素技术已成为一种应用广泛、独特高效甚至必须的技术,显著地提高了解决科学问题的能力和生产效率。最新近的例子是德国科学家用碳13氨基酸通过三代喂养成功地标记了动物全身的所有蛋白质而获得了细胞代谢的重要发现。这一崭新的技术堪比当年的聚合酶连锁反应技术(PCR), 必将迅速得到广泛的推广和应用,有力地推动生命科学的发展。稳定同位素在自然界的无所不在意味着该技术应用的普遍性,有大自然显微镜的独特功能,将揭开越来越多的大自然和人体的奥秘。

地球化学的学科特点

地球化学的学科特点 ●是地球科学的一部分:以地球、地壳及地质作用体系为研究对象。 ●研究的重点/方向:地球系统物质运动(含地质运动)中物质的运动规律。通过研 究和分析元素和同位素在地质体系中的行为和演变,应用地球化学的基本原理来 示踪地质体系运动的规律,例如:岩浆形成的深度、来源、矿床形成环境等等。 ●理论基础:化学类学科——无机化学、有机化学、物理化学、热力学、解析化学 等,此外还有物理性和数学等。 ●学科分支众多:海洋地球化学、生物地球化学、环境地球化学、区域地球化学、 个别元素地球化学、成岩成矿地球化学、同位素地球化学和地球化学热力学。 ●应用性强:比如环境地球化学是环境科学的核心(酸雨、臭氧空洞的形成、全球 变暖和温室效应),应用地球化学的方法和手段找矿。 ●年轻的发展中的科学(约100年的发展历史) 地球化学的基本问题 (1)地球系统中元素和同位素的组成(abundance and distribution)问题 (2)元素的共生组合和赋存状态问题 元素的共生组合:具有相同或相似迁移历史和分配规律的各种元素在地质体中有规律的组合。 (3)元素的迁移和循环 地球化学的迁移:元素的重新组合常伴随元素的空间位移及元素在系统不同部分状态的转化,该迁移涉及体系的物理化学条件和迁移介质特性等制约关系变化的动态过程。 (4)地球的历史和演化 通过元素或同位素的变异来揭示地质作用过程的特征,称为微量元素或同位素“示踪”。 ?X-射线荧光光谱(XRF) ?电感耦合等离子体发射光谱(ICP-AES) 丰度:指化学元素在地球化学系统(太阳、行星、陨石、地球、地圈、地壳)中的平均分布量。 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区等)的整体总含量。 分配:元素的分配指的是元素在各地球化学体系内各个区域或区段中的含量 分布是整体,分配是局部,两者是一个相对的概念,既有联系又有区别。 太阳系元素丰度具有以下规律: (1).H和He是丰度最高的两种元素,这两种元素几乎占了太阳中全部原子数目的98%(2).原子序数较低的元素区间,元素丰度随原子序数增大呈指数递减,而在原子序数较大的区间(Z>45)各元素丰度值很相近 (3).原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。具有偶数质子数(P)或偶数中子数(N)的核素丰度总是高于具有奇数P或N的核素,这一规律称为Oddo -Harkins(奥多--哈根斯)法则,亦即奇偶规律。 (4).质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。此外还有人指出,原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大。例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度 (5).Li、Be和B具有很低的丰度,属于强亏损的元素。 (6).而O和Fe呈现明显的峰,为过剩元素。 太阳系元素丰度与元素原子结构及元素形成的整个过程之间存在着某种关系

水文地球化学

水文地球化学研究现状、基本模型与进展 摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门 独立的学科得到长足的发展, 其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。水文地球化学在利用地下水化学成分资料, 特别是在查明地下水 的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。 1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。 1 应用水文地球化学学科的研究现状 1. 1 油田水研究 水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。早期油田水地球化学的研究只是对单个盆地或单个坳陷, 甚至单个凹陷进行研究, 并且对于找油标志存在不同见解。此时油田水化学成分分类主要沿用B A 苏林于1946 年形成的分类。1965 年, E C加费里连科在其所著5根据地下水化学组分和同位素成分确定含油气性的水文地球化学指标6中系统论述了油气田水文地球化学特征及寻找油气田的水文地球化学方法。1975 年, A G Collins 在其5油田水地球化学6中论述了油田水中有机及无机组分形成的地球化学作用( 汪蕴璞, 1987) 。1994 年, 汪蕴璞等对中国典型盆地油田水进行了系统和完整的研究, 总结了中国油田水化学成分的形成分布和成藏规律性, 特别是总结了陆相油田水地球化学理论, 对油田水中宏量组分、微量组分、同位素等开展了研究, 并对油田水成分进行种类计算, 从水化学的整体上研究其聚散、共生规律和综合评价找油标志和形成机理。同时还开展了模拟实验、化学动力学和热力学计算, 从定量上探索油田水化学组分的地球化学行为和形成机理。 1. 2 洋底矿藏研究

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

《水文地球化学》教学大纲

《水文地球化学》教学大纲 Hydrogeochemistry-Course Outline 第一部分大纲说明 一、课程的性质、目的与任务 《水文地球化学》是水文与水资源工程专业本科生必修的一门主要专业基础课。通过本课程的学习,使学生掌握水文地球化学的基本原理和学会初步运用化学原理解决天然水的地球化学问题和人类对天然水的影响问题的方法与手段,为学习后续课程和专业技术工作打下基础。 二、与其它课程的联系 学习本课程应具备普通地质学、综合地质学、工程化学和水文地质学的基础。后续课程为水质分析实验、铀水文地球化学、环境水文地质学和水文地质勘察。 三、课程的特点 1.对基本概念、基本规律与常见的应用方法的理解并重。 2.对基本理论与常见水文地球化学问题的定量计算方法的掌握并重。 3. 采用英文教材,中、英语混合授课。 四、教学总体要求 1.掌握水文地球化学的基本概念、基本规律与研究方法。 2.掌握控制地下水与地表水化学成分的主要作用:酸碱反应与碳酸盐系统;矿物风化与矿物表面过程;氧化-还原反应;有机水文地球化学作用等。 3.通过理论讲述、研究实例分析与习题课,使学生理解天然水中常见的化学组份与同位素组成,掌握最基本的地球化学模拟方法与整理水化学数据的能力。 五、本课程的学时分配表 编 号教学内容课堂讲 课学时 习题课 学时 实验课 学时 自学 学时 1 引言及化学背景 (Introduction and Chemical Background) 6 2 酸碱反应与碳酸盐系统 (Acid-Base Reactions and the Carbonate System) 4 2 3 矿物风化与矿物表面过程 Mineral weathering and mineral surface processes 6

同位素地球化学复习题

同位素地球化学复习题 1.1同位素地球化学的基本任务 1)研究自然界同位素的起源、演化和衰亡历史; 2)研究同位素在宇宙体、地球和各地质体中的分布分配、不同地质体中的丰度及典型地质过程中活化与迁移、富集与亏损、衰变与增长的规律;阐明同位素组成变异的原因。据此来探讨地质作用的演化历史及物质来源; 3)利用放射性同位素的衰变定律建立一套行之有效的同位素计时方法,测定不同天体事件和地质事件的年龄,并作出合理的解释,为地球和太阳系的演化确定时标。 4 )研究同位素分馏与温度的关系,建立同位素温度计,为地质体的形成与演化研究提供温标。 1.2 同位素地球化学的一些基本概念 核素同位素同量异位素稳定同位素放射性同位素重稳定同位素轻稳定同位素 2.1 质谱仪的基本结构 四个部分:进样系统离子源质量分析器离子接收器 2.2 衡量质谱仪的技术标准有哪些 质量数范围分辨率灵敏度精密度与准确度 2.3 固体质谱分析为什么要进行化学分离 具相同质量的原子和分子离子的干扰; 主要元素基体中微量元素的稀释; 低的离子化效率; 不稳定发射。 2.5 同位素稀释法是用于元素含量分析还是用于同位素比值分析?元素含量分析 2.6 氢气的制取方法?(有哪些还原剂) U-还原法Zn -还原法Mg -还原法Cr -还原法 2.7 氧同位素的制样方法有哪些? 1. 大量水样氧同位素制样方法? 2. 硅酸盐氧同位素的BrF5法制样原理? 3. 碳酸盐样品的磷酸盐制样法(McCrea法) 2.8 水中溶解碳的提取与制样McCrea法 2.9 硫化物硫同位素直接制样法 2.10硫酸盐的硫同位素制样法(直接还原法) 把硫酸盐、氧化铜、石英粉按一定比例混合(置于石英管中)在真空条件下加热到1120 ℃左右时,硫酸盐被还原而转变成二氧化硫。 2.11 了解下列质谱仪

水文地球化学习题讲解学习

水文地球化学习题 第一章 第二章水溶液的物理化学基础 1.常规水质分析给出的某个水样的分析结果如下(浓度单位:mg/L): Ca2+=93.9;Mg2+=22.9;Na+=19.1;HCO3-=334;SO42-=85.0;Cl-=9.0;pH=7.2。求: (1)各离子的体积摩尔浓度(M)、质量摩尔浓度(m)和毫克当量浓度(meq/L)。 (2)该水样的离子强度是多少? (3)利用扩展的Debye-Huckel方程计算Ca2+和HCO3-的活度系数。 2.假定CO32-的活度为a CO32- =0.34?10-5,碳酸钙离解的平衡常数为4.27?10-9,第1题中的水样25℃时CaCO3饱和指数是多少?CaCO3在该水样中的饱和状态如何? 3.假定某个水样的离子活度等于浓度,其NO3-,HS-,SO42-和NH4+都等于10-4M。反应式如下: H+ + NO3- + HS- = SO42- + NH4+ 问:25℃和pH为8时,该水样中硝酸盐能否氧化硫化物? 4.A、B两个水样实测值如下(mg/L): 组分Ca2+Mg2+Cl-SO42-HCO3-NO3- A水样706 51 881 310 204 4 5.请判断下列分析结果(mg/L)的可靠性,并说明原因。 组分Na+K+Ca2+Mg2+Cl-SO42-HCO3-CO32-pH A水样50 6 60 18 71 96 183 6 6.5 B水样10 20 70 13 36 48 214 4 8.8 6.某水样分析结果如下: 离子Na+Ca2+Mg2+SO42-Cl-CO32-HCO3-含量(mg/l) 8748 156 228 928 6720 336 1.320 试计算Ca2+的活度(25℃)。 4344 含量(mg/l)117 7 109 24 171 238 183 48 试问: (1)离子强度是多少? (2)根据扩展的Debye-Huckel方程计算,Ca2+和SO42-的活度系数? (3)石膏的饱和指数与饱和率是多少? (4)使该水样淡化或浓集多少倍才能使之与石膏处于平衡状态? 8.已知温度为298.15K(25℃),压力为105Pa(1atm)时,∑S=10-1mol/l。试作硫体系的Eh-pH图(或pE-pH图)。 9.简述水分子的结构。 10.试用水分子结构理论解释水的物理化学性质。 11.温、压条件对水的物理、化学性质的影响及其地球化学意义。 12.分别简述气、固、液体的溶解特点。

同位素水文地球化学

第四章同位素水文地球化学 环境同位素水文地球化学是一门具有良好的前景、发展迅速的新兴学科,也是水文地球化学的一个重要分支。目前,地下水资源可持续利用中的重要问题是地下水补给的更新能力及地下水污染程度的评价。用环境同位素技术研究地下水补给和可更新性,追踪地下水的污染是当前国内外较为新颖的方法之一。目前世界上许多国家已将同位素方法列为地下水资源调查中的常规方法。近年来,国内外环境同位素的研究从理论到实践都有较快的发展。除了应用氢氧稳定同位素确定地下水的起源与形成条件,应用氚、14C测定地下水年龄,追踪地下水运动,确定含水层参数等常规方法外;在应用3H-3He、CFCs示踪干旱、半干旱地区浅层地下水的补给,应用14C、36Cl确定深层地下水的年龄,追溯地下水的入渗史,应用34S研究地下水中硫酸盐的来源,分析地下水的迁移过程,应用11B/10B研究卤水成因等方面都有重要进展。 4.1 同位素基本理论 4.1.1 地下水中的同位素及分类 我们知道,原子是由原子核与其周围的电子组成的,通常用A Z X N来表示某一原子。这里,X为原子符号,Z为原子核中的质子数目,N为原子核中的中子数目,A为原子核的质量数,它等于原子核中的质子数与中子数之和,即: A=Z+N( 4-1-1 ) 为简便起见,也常用A X表示某一原子。 元素是原子核中质子数相同的一类原子的总称。同一元素由于其原子核中中子数不同可存在几种原子质量不同的原子,其中每一种原子称为一种核素,如C原子有12C、13C、14C等核素,氧原子有16O、17O、18O等核素。某元素的不同几种核素称为该元素的同位素(蔡炳新等,2002),或者说同位素指的是在门捷列耶夫周期表中占有同一位置,其原子核中的质子数相同而中子数不同的某一元素的不同原子。同位素可分为稳定同位素和放射性同位素两类,稳定同位素是指迄今为止尚未发现有放射性衰变(即自发地放出粒子或射线)的同位素;反之,则称为放射性同位素。 地下水中的同位素一方面包括水自身的氢、氧同位素,另一方面还包括水中溶质的同位素。

同位素地球化学作业

同位素地球化学论文 近年来,随着同位素样片制备技术的改进和高精度质谱的问世,大大地提高了同位素测试结果的精度和准确性,使同位素地球化学的理论和方法进一步成熟和完善,研究领域不断拓宽。 同位素地球化学研究内容 同位素地球化学是根据自然界的核衰变、裂变及其他核反应过程所引起的同位素变异,以及物理、化学和生物过程引起的同位素分馏,研究天体、地球以及各种地质体的形成时间、物质来源与演化历史。 同位素地质年代学已建立了一整套同位素年龄测定方法,为地球与天体的演化提供了重要的时间座标。比如已经测得太阳系各行星形成的年龄为45~46亿年,太阳系元素的年龄为50~58亿年等等。 另外在矿产资源研究中,同位素地球化学可以提供成岩、成矿作用的多方面信息,为探索某些地质体和矿床的形成机制和物质来源提供依据。 ①自然界同位素的起源、演化和衰亡历史。 ②同位素在宇宙体、地球及其各圈层中的分布分配、不同地质体中的丰度及其在地质过程中活化与迁移、富集与亏损、衰变与增长的规律;同位素组成变异的原因;并据此探讨地质作用的演化历史和物质来源。 ③利用放射性同位素的衰变定律建立一套有效的同位素计时方法,测定不同天体事件的年龄,并作出合理的解释,为地球和太阳系的演化确定时间坐标。 根据同位素的性质,同位素地球化学研究领域主要分稳定同位素地球化学和同位素年代学两个方面。稳定同位素地球化学主要研究自然界中稳定同位素的丰度及其变化。同位素年代学随研究领域的深入,又分为同位素地质年代学和宇宙年代学。同位素地质年代学主要研究地球及其地质体的年龄和演化历史。宇宙年代学则主要研究天体的年龄和演化历史。 自然界同位素成分变化

水文地球化学研究现状与进展

本文由国土资源部地质调查项目“全国水资源评价”和“鄂尔多斯自留盆地地下水赋存运移规律的研究”项目资助。改回日期:2001212217;责任编辑:宫月萱。 第一作者:叶思源,女,1963年生,在读博士生,副研究员,从事矿水、地热水及水文地球化学研究。 水文地球化学研究现状与进展 叶思源1) 孙继朝2) 姜春永3) (1)中国矿业大学,北京,100083;2)中国地质科学院水文地质环境地质研究所,河北正定,050803; 3)山东地质工程勘查院,山东济南,250014) 摘 要 1938年,“水文地球化学”术语提出,至今水文地球化学作为一门独立的学科得到长足的发展,其服务领域不断扩大。当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。其研究方法也日臻完善。随着化学热力学和化学动力学方法及同位素方法的深入研究,以及人类开发资源和保护生态的需要,水文地球化学必将在多学科的交叉和渗透中拓展研究领域,并在基础理论及定量化研究方面取得新的进展。关键词 水文地球化学 研究现状 进展 Current Situ ation and Advances in H ydrogeochemical R esearches YE Siyuan 1)  SUN Jichao 2)  J IAN G Chunyong 3 ) (1)Chi na U niversity of Mi ni ng and Technology ,Beiji ng ,100083;2)Instit ute of Hydrogeology and Envi ronmental Geology ,CA GS , Zhengdi ng ,Hebei ,050803;3)S handong Instit ute of Geological Engi neeri ng S urvey ,Ji nan ,S handong ,240014) Abstract Hydrogeochemistry ,as an independent discipline ,has made substantial development since the term “hydrogeochemistry ”was created in 1938.At present hydrogeochemical theories have been applied to various fields such as oil field water ,ocean water ,geothermal water ,groundwater quality ,endemic diseases and groundwater microorganism ,and related research methods have also become mature.With the further development of chemical thermodynamics ,kinetics method and isotope method ,hydrogeochemistry will surely extend its research fields in the course of multi 2discipline interaction and make new progress in basic theory and quantifica 2tion research ,so as to meet the demand of human exploration and exploitation as well as ecological protection.K ey w ords hydrogeochemistry current state of research advance 早期的水文地球化学工作主要围绕查明区域水文地质条件而展开,在地下水的勘探开发利用方面取得了可喜的成果(沈照理,1985)。水文地球化学在利用地下水化学成分资料,特别是在查明地下水的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。20世纪60年代后,水文地球化学向更深更广的领域延伸,更多地是注重地下水在地壳层中所起的地球化学作用(任福弘,1993)。1981年,Stumm W 等出版了《水化学———天然水化 学平衡导论》专著,较系统地提供了定量处理天然水环境中各种化学过程的方法。1992年,C P 克拉 依诺夫等著《水文地球化学》分为理论水文地球化学及应用水文地球化学两部分,全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题,以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等,概括了20世纪80年代末期水文地球化学的研究水平。特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解 答(谭凯旋,1998),逐渐构架起更为严密的科学体系。 第23卷 第5期2002210/4772482 地 球 学 报ACTA GEOSCIEN TIA SIN ICA Vol.23 No.5 Oct.2002/4772482

中国地质大学地球化学习题及答案

中国地质大学《地球化学》练习题及答案 中国地质大学《地球化学》练习题绪论 1. 概述地球化学学科的特点。2. 简要说明地球化学研究的基本问题。3. 简述地球化学学科的研究思路和研究方法。4. 地球化学与化学、地球科学其它学科在研究目标和研究方法方面的异同。第一章太阳系和地球系统的元素丰度 1.概说太阳成份的研究思路和研究方法 2.简述太阳系元素丰度的基本特征.3.说说陨石的分类及相成分的研究意义.4.月球的结构和化学成分与地球相比有何异同?5.讨论陨石的研究意义.6. 地球的结构对于研究和了解地球的总体成分有什么作用?7. 阐述地球化学组成的研究方法论.8. 地球的化学组成的基本特征有哪些?9. 讨论地壳元素丰度的研究方法.10.简介地壳元素丰度特征.11. 地壳元素丰度特征与太阳系、地球对比说明什么问题? 12.地壳元素丰度值(克拉克值)有何研究意义?13.概述区域地壳元素丰度的研究意义.14.简要说明区域地壳元素丰度的研究方法.15.岩浆岩中各岩类元素含量变化规律如何?16.简述沉积岩中不同岩类中元素含量变化规律. 第二章元素结合规律与赋存形式1.亲氧元素和亲硫元素地球化学性质的主要差异是什么? 2.简述类质同像的基本规律. 3.阐述类质同像的地球化学意义. 4.简述地壳中元素的赋存形式及其研究方法. 5.举例说明元素存在形式研究对环境、找矿或农业问题的意义. 6.英国某村由于受开采ZnCO3矿的影响,造成住宅土壤、房尘及饮食摄入Cd明显高于其国标,但与未受污染的邻村相比,在人体健康方面两村没有明显差异。为什么? 第三章水-岩化学作用和水介质中元素的迁移 1.举例说明元素地球化学迁移的定义. 2.举例说明影响元素地球化学迁移过程的因素。 3.列举自然界元素迁移的标志. 4.元素地球化学迁移的研究方法. 5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么? 6.解释络离子的稳定性及其在地球化学迁移中的意义. 7.简述元素迁移形式的研究方法. 8.什么是共同离子效应?什么是盐效应?9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义?10.举例说明Eh、pH值对元素迁移的影响. 11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用?12.试述影响元素溶解与迁移的内部因素。 第四章地球化学热力学和地球化学动力学 1.自然界中地球化学热力学体系基本特点是什么? 2.自然体系中哪些特征可作为体系达到平衡态的证据与标志? 3.讨论相律及其应用。 4.编制相图的原理和方法。 6.简述化学反应制动原理的宏观解释7.简述热力学在地球化学中的应用。8.简述地球化学热力学与地球化学动力学的异同。9. 简述水溶液中元素的迁移方式。第五章微量元素地球化学 1.什么是微量元素地球化学?其研究意义是什么? 2.了解微量元素地球化学的研究思路及研究方法。 3.什么叫微量元素、什么是主量(常量)元素?微量元素的主要存在形式有哪些? 4.阐述能斯特分配定律、能斯特分配系数的概念及其研究意义。 5.稀土元素的主要特点是什么?其在地球化学体系中行为差异主要表现有哪些方面?。 6.讨论稀土元素的研究意义。7.你认为岩浆作用过程中决定元素浓集成矿的主要机制和决定因素是什么?8 根据微量元素的特点,说明那些元素适合于研究沉积岩物源区特征,为什么? 第六章同位素地球化学 1. 同位素地球化学在解决地学领域问题中有何独到之处? 2. 何谓稳定同位素、何谓轻稳定同位素和重稳定同位素。 3. 选择同位素标准样品的条件。 5. 造成稳定同位素组成变化的原因是什么? 6. 放射性同位素年龄测定公式,各符号的含义。

碳同位素组成特征及其在地质中的应用

同位素地球化学

目录 一、碳的同位素组成及其特征 (1) 1.碳同位素组成 (1) Ⅰ、碳的同位素丰度 (1) Ⅱ、碳的同位素比值(R) (1) Ⅲ、δ值 (2) 2.碳同位素组成的特征 (2) Ⅰ.交换平衡分馏 (2) Ⅱ.动力分馏 (3) Ⅲ.地质体中碳同位素组成特征 (3) 二、碳同位素在地质科学研究中的应用 (8) 1. 碳同位素地温计 (8) 2.有机矿产的分类对比及其性质的确定 (9) Ⅰ.煤 (9) Ⅱ.石油 (9) Ⅲ. 天然气 (11)

碳同位素组成特征及其在地质科研中的应用 一、碳的同位素组成及其特征 1.碳同位素组成 碳在地球上是作为一种微量元素出现的,但分布广泛,在地质历史中有着重要作用。碳的原子序数为6 ,原子量为12.011,属元素周期表第二周期ⅣA族。碳在地壳中的丰度为2000×10-6,是一个比较次要的微量元素。在地球表面的大气圈、生物圈和水圈中,碳是最常见的元素之一,是地球上各种生命物质的基本成分馏。碳既可以呈固态形式存在,又能以液态和气态形式出现。它既广泛分馏布于地球表面的各层圈中,也能在地壳甚至地幔中存在。总之,碳可呈多种形式存在于自然界中。在有机物质和煤、石油中,以还原碳的形式存在,在二氧化碳气体和水溶液中,以氧化碳形式出现。碳还可呈自然元素形式出现在某些岩石中(如金刚石和石墨)。一般用同位素丰度、同位素比值和δ值来表示同位素的组成。 Ⅰ、碳的同位素丰度 同位素丰度指同位素原子在元素总原子数中所占的百分比,自然界中的碳有2个稳定同位素:12C和13C。习惯采用的平均丰度值分别为98.90%和1.10%。由此可见,在自然界中碳原子主要主要是以12C的形式存在。另外碳还有一个放射性同位素14C,半衰期为5730a。放射性14C的研究,目前已发展成为一种独立的同位素地质年代学测定方法,主要应用于考古学和近代沉积物的年龄测定。适合用于作碳稳定同位素分馏析的样品包括:石墨、金刚石等自然碳矿物,方解石、文石、白云石、菱铁矿、菱锰矿等碳酸盐矿物;石灰岩、白云岩、大理岩等全岩样品;各种矿物包裹体中的C O2和CH4气体以及石油、天然气及有机物质中的含碳组分馏等。 Ⅱ、碳的同位素比值(R) 同位素比值R=一种同位素丰度/另一种同位素丰度 对于非放射性成因稳定同位素比值: R=重同位素丰度/轻同位素丰度 由此可见,碳的同位素比值R=1.1%/98.9%=0.011

《地球化学》练习题

《地球化学》练习题 绪论 1.概述地球化学学科的特点。 2.简要说明地球化学研究的基本问题。 3.简述地球化学学科的研究思路和研究方法。 4. 地球化学与化学、地球科学其它学科在研究目标和研究方法方面的异同。 第一章太阳系和地球系统的元素丰度 1.概说太阳成份的研究思路和研究方法 2.简述太阳系元素丰度的基本特征. 3.说说陨石的分类及相成分的研究意义. 4.月球的结构和化学成分与地球相比有何异同? 5.讨论陨石的研究意义. 6. 地球的结构对于研究和了解地球的总体成分有什么作用? 7. 阐述地球化学组成的研究方法论. 8. 地球的化学组成的基本特征有哪些? 9. 讨论地壳元素丰度的研究方法. 10.简介地壳元素丰度特征. 11.地壳元素丰度特征与太阳系、地球对比说明什么问题? 12.地壳元素丰度值(克拉克值)有何研究意义? 13.概述区域地壳元素丰度的研究意义. 14.简要说明区域地壳元素丰度的研究方法.

15.岩浆岩中各岩类元素含量变化规律如何? 16.简述沉积岩中不同岩类中元素含量变化规律. 第二章元素结合规律与赋存形式 1.亲氧元素和亲硫元素地球化学性质的主要差异是什么? 2.简述类质同像的基本规律. 3.阐述类质同像的地球化学意义. 4.简述地壳中元素的赋存形式及其研究方法. 5.举例说明元素存在形式研究对环境、找矿或农业问题的意义. 6.英国某村由于受开采ZnCO3矿的影响,造成住宅土壤、房尘及饮食摄入Cd明显高于其国标, 但与未受污染的邻村相比,在人体健康方面两村没有明显差异。为什么? 第三章水-岩化学作用和水介质中元素的迁移 1.举例说明元素地球化学迁移的定义. 2.举例说明影响元素地球化学迁移过程的因素。 3.列举自然界元素迁移的标志. 4.元素地球化学迁移的研究方法. 5.水溶液中元素的迁移形式有那些?其中成矿元素的主要迁移形式又是什么? 6.解释络离子的稳定性及其在地球化学迁移中的意义. 7.简述元素迁移形式的研究方法. 8.什么是共同离子效应?什么是盐效应? 9.天然水的pH值范围是多少?对于研究元素在水介质中的迁移、沉淀有何意义? 10.举例说明Eh、pH值对元素迁移的影响. 11.非标准电极电位E及环境的氧化还原电位Eh,在研究元素地球化学行为方面有什么作用? 12.试述影响元素溶解与迁移的内部因素。

同位素地球化学 34

S TABLE I SOTOPES IN P ALEONTOLOGY AND A RCHEOLOGY I NTRODUCTION The isotopic composition of a given element in living tissue depends on: (1) the source of that ele-ment (e.g., atmospheric CO2 versus dissolved CO2; seawater O2 vs. meteoric water O2), (2) the proc-esses involved in initially fixing the element in organic matter (e.g., C3vs. C4photosynthesis), (3) subsequent fractionations as the organic matter passes up the food web. Besides these factors, the iso-topic composition of fossil material will depend on any isotopic changes associated with diagenesis, including microbial decomposition. In this lecture, we will see how this may be inverted to provide insights into the food sources of fossil organisms, including man. This, in turn, provides evidence about the environment in which these organisms lived. I SOTOPES AND D IET: Y OU ARE WHAT YOU EAT In Lecture 28 we saw that isotope ratios of carbon and nitrogen are fractionated during primary pro-duction of organic matter. Terrestrial C3 plants have d13C values between -23 and -34‰, with an av-erage of about -27‰. The C4 pathway involves a much smaller fractionation, so that C4 plants have d13C between -9 and -17‰, with an average of about -13‰. Marine plants, which are all C3, can util-ize dissolved bicarbonate as well as dissolved CO2. Seawater bicarbonate is about 8.5‰ heavier than atmospheric CO2; as a result, marine plants average about 7.5‰ heavier than terrestrial C3 plants. In contrast to the relatively (but not perfectly) uniform isotopic composition of atmospheric CO2, the carbon isotopic composition of seawater carbonate varies due to biological processes. Because the source of the carbon they fix is more variable, the isotopic composition of marine plants is also more variable. Finally, marine cyanobacteria (blue-green algae) tend to fractionate carbon isotopes less during photosynthesis than do true marine plants, so they tend to average 2 to 3 ‰ higher in d13C. Nitrogen isotopes are, as we saw, also fractionated during primary uptake. Based on their source of nitrogen, plants may also be divided into two types: those that can utilized N2directly, and those utilize only “fixed” nitrogen as ammonia and nitrate. The former include the legumes (e.g., beans, peas, etc.) and marine cyanobac-teria. The legumes, which are exclusively C3 plants, utilize both N2 and fixed nitrogen (though symbiotic bacteria), and have an average d15N of +1‰, whereas modern non-leguminous plants average about +3‰. However, it seems likely that prehistoric nonleguminous plants were more positive, averaging perhaps +9‰, because the iso-topic composition of present soil nitrogen has been affected by the use of chemical fer-tilizers. For both groups, there was proba-bly a range in d15N of ±4 or 5‰, because the isotopic composition of soil nitrogen varies and there is some fractionation involved in uptake. Marine plants have d15N of +7±5‰, whereas marine cyanobacteria have d15N of –1±3‰. Figure 34.1 summarizes the 15 10 5 --5 d13C PDB ‰ d15N ATM ‰ Figure 34.1. Relationship between d13C and d15N among the principal classes of autotrophs.

相关主题