搜档网
当前位置:搜档网 › 7、为什么采用Box-Cox幂指数模型(Box-Cox power exponential distribution, BCPE)拟合生长百分位数曲线,制

7、为什么采用Box-Cox幂指数模型(Box-Cox power exponential distribution, BCPE)拟合生长百分位数曲线,制

7、为什么采用Box-Cox幂指数模型(Box-Cox power exponential distribution, BCPE)拟合生长百分位数曲线,制
7、为什么采用Box-Cox幂指数模型(Box-Cox power exponential distribution, BCPE)拟合生长百分位数曲线,制

骨发育成熟度得分数据为非正态分布,因此应以百分位数法制订骨龄评价标准,但不同研究所采用的百分位数曲线平滑方法却不尽相同。在早期,Tanner曾经使用了目测方法绘制骨成熟度得分百分位数曲线,在1997年所制订的美国欧洲后裔儿童的(US90)骨龄标准中,以二次曲线拟合年龄组的成熟度得分中位数曲线,以一次曲线拟合成熟度得分标准差的方法构建了百分位数曲线(Tanner et al., 1997)。而日本(Ashizawa et al., 1996),比利时(Beunen et al., 1990)则采用三次样条函数拟合骨成熟度得分百分位数曲线。

近年来,关于估价生长学测量数据百分位数数学模型的研究有了较大进展。1988年,Cole等提出了构建百分位数标准曲线的LMS方法(Cole et al., 1988; 1990)。该方法通过Box-Cox幂转换使各年龄组偏态分布的数据近似正态,以各年龄组数据的L(lambda λ,幂转换)、M(μ,中位数)和S(δ变异系数)拟合百分位数曲线。美国疾病控制预防中心(CDC)曾使用该方法对1997年国家卫生统计中心的生长图表进行了修正(Cynthia et al., 2000),国际儿童肥胖工作组(IOTF)也使用LMS方法制订了儿童体重指数(BMI)生长图表(Cole et al., 2000)。2004年,Rigby et al.(2004)将LMS方法广义化,提出了BCPE 分布模型,不仅可应用于偏态分布的数据,而且也可应用于峰态分布或同时呈现偏态和峰态分布的数据,而称为LMSP方法。1997年至2003年,为了制订儿童生长评价标准,世界卫生组织(WHO)进行了多中心生长标准研究,经过对30余种绘制生长曲线方法的讨论与检验,统计学专家组选择了三次样条函数对曲线进行平滑处理的BCPE模型来绘制生长标准百分位数曲线,于2006年发布了第一套世界卫生组织的儿童生长标准(Department of Nutrition for Health and Development,2006)。

BCPE分布模型是为表现出偏度和峰度的因变量Y所设计。这种模型由幂转换Y ν所定义,而Y ν则为含有参数τ的标准化幂指数分布。BCPE分布含有四个参数μ、σ、ν、τ,分别说明了数据分布的位置(中位数, Median)、尺度(变异系数, Coefficient of variation)、偏度(Box-Cox转换幂, Box-Cox transformation power)和峰度(幂指数参数, Parameter related to kurtosis)。以四个分布参数的非参数平滑函数建立模型,非参数模型的拟合使用Fisher评分算法(Fisher scoring algorithm),由最大惩罚似然法(Maximizing a penaltized lekelehood)完成。参数μ、σ、ν、τ曲线的平滑均采用三次样条函数。

在BCPE模型选择过程中,可应用标准化残差虫行图(Worm plots)、Q-统计量和百分位数曲线下样本例数的百分数进行模型诊断,检验模型拟合优度。

所以,《中国人手腕骨发育标准-中华05》课题组参照世界卫生组织建立生长图表的经验,采用了BCPE分布模型制订骨龄标准(张绍岩等, 2009)。

参考文献

Tanner JM, Oshman D, Bahhage F, et al. Tanner-Whitehouse bone age reference values for North American children. J Pediatr, 1997, 131:34-40.

Ashizawa K, Asami T, Anzo M, et al. Standard RUS skeletal maturation of Tokyo children.

Ann Hum Biol, 1996, 23;457-469.

Beunen G, Lefever J, Ostyn M, et al. Skeletal maturity in Belgian youths assessed by Tanner-Whitehouse method (TW2). Ann Hum Biol, 1990, 17:355-376.

Cole TJ. Fitting smoothed centile curves to reference data. J R Statist Soc. A, 1988, 15:385-415.

Cole TJ. The LMS method for contructing normabzed growth standards. Euro J Clin Nutr, 1990, 44:45-60.

Cynthia LO, Kuczmarski RJ, Flegal KM, et al. Centers for Disease Control and Prevention 2000 Growth Charts for the United States: Improvements to the 1977 National Center for Health Statistics Version. Pediatrics, 2002, 109: 45-60.

ColeTJ. Bellizzi MC, Flrgal KM, et al. Establishing a standard definition for child overweight and obesity worldwide : international survey. BMJ, 2000, 320:1240-1243.

Rigby RA, Stasinopoulos DM. Smooth centile curves for skew and kurtotic data modeled using the Box-Cox power exponential distribution. Stat Med, 2004, 23:3053–3076.

Department of Nutrition for Health and Development.WHO Child Growth Standards:length/height-for-age, weight-for-age, weight-for-length, weight-forheight and body mass

index-for-age : methods and development. ISBN 92 4 154693 X (NLM classification: WS 103) Geneva: World Health Organization.

张绍岩, 刘丽娟, 刘刚, 等. 中国人手腕骨发育标准-中华05 V. 骨成熟度百分位数曲线的修订.

中国运动医学杂志, 2009, 28(1):20-24.

整数指数幂及其运算(1)

整数指数幂及其运算 主备人季春鸿 教学目标 1.理解负整数指数幂的概念,了解整式和分式在形式上的统一 2.掌握整数指数幂运算的性质,会用性质进行简单的整数指数幂的相关计算 3.体验由正整数指数幂到负整数指数幂的扩充过程,体验数学研究的一般方法:由特殊到一般及转化思想 教学重点与难点 1.负整数指数幂的概念 2.理解整数指数幂的运算性质;会运用性质进行相关的计算 教学过程 一.复习引入: 1.计算:27÷23=_____,a9÷a4=_____; (由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零) 2.思考:22÷25=______;a2÷a4=_____; 在学生独立思考的基础上,让学生猜测计算的结果,并请学生讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用

幂的形式表示计算结果”的问题 222 12=-、331a a -= 二.学习新课:整数指数幂及其运算 1.负整数指数幂的概念:p p a 1a =-(a ≠0,p 是自然数) 2.整数指数幂:当a ≠0时,n a 就是整数指数幂,n 可以是正整数、负整数和零 将下列各式写成只含正整数指数幂的形式: 2210 110=-、551x x -= 变式训练1:221(10)(10)--= -、551(1)(1)x x --=- 变式训练2:13 2()23-=、2227()()72-= 通过变式训练2,学生同桌讨论当指数为负数,底数为分数时的情形,并总结出()()p p a b b a -= 判断正误: 02122 2271 (2)4 1(50)501 7729()34x x -----=-=-=- ==①②③④⑤

幂的运算

幂的运算 第一部分:知识归纳,要点总结 (什么是——幂?) n a 1、 同底数幂的乘法(重点) 法则:同底数幂相乘,底数不变,指数相加。 公式表示:m n m n a a a += (m 、n 都是正整数)。 推导过程:()()m n m n a a a a a a a a a +== 。 关键:找准底数。 注意:①底数必须相同;②相乘时,底数没有变化;③指数相加的和作为最终结果幂的指数。 例:计算351010?= ,3m m ?= ,()()32 b b --= ,21n n b b += 。 推广及逆用(难点) 同底数幂的乘法可推广到三个或三个以上同底数幂的情况,即:m n p m n p a a a a ++= (m 、n 、p 都为正整数), m n p m n p a a a a +++= (m 、n ,…,p 都为正整数)。 反之,m n m n a a a += (m 、n 为正整数)亦成立。 2、 幂的乘方与积的乘方 ⑴幂的乘方 意义:指几个相同的幂相乘。如:()n m a 是n 个m a 相乘,读作a 的m 次幂的n 次方。 推导过程:。 法则(重点):()n m mn a a =(m 、n 都是正整数)。 ⑵积的乘方 意义:是指底数是乘积形式的乘方。如:()3ab ,()n ab 。 推导过程:()()()()()()n n n ab ab ab ab a a a b b b a b === 。

法则(重点):()n n n ab a b =(n 为正整数)。 3、 同底数幂的除法 法则:同底数幂相除,底数不变,指数相减。 公式表示:m n m n a a a -÷=(0a ≠,m 、n 为正整数,且m>n )。 例:62x x ÷= ,()5 3a a -÷= ,41n n a a ++÷= ,()()3211a a +÷+= 。 零指数幂与负整数指数幂的意义(重、难点) (1)零指数幂 ()010a a =≠, 即任何不等于0的数的0次幂都等于1。 (2)负整数指数幂 1p p a a -=(0a ≠,p 是正整数) 即任何不等于零的数的-p (p 是正整数)次幂,等于这个数的P 次幂的倒数。 第二部分:考点精析,方法指导 【典型例题1】已知23x =,求32 x +的值。 【典型例题2】计算3534x x x x x += 【典型例题3】若236m m x x x -= ,求2112m m -+的值。 【典型例题4】若2m =-,求()()3 24m m m --- 的值。

整数指数幂的运算法则

整数指数幂的运算法则 教学目标:1、通过探索掌握整数指数幂的运算法则。 2、会熟练进行整数指数幂的运算。 3、让学生感受从特殊到一般的数学研究的一个重要方法。 重 点:整数指数幂的运算法则的推导和应用。 难 点:整数指数幂的运算法则的理解。 过 程: (一)课前检测 正整数指数幂运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( (二)新课预习 1、自主探究: 1)、阅读教材P41~42 2)、尝试完成下列练习,检查自学效果: 1、下列运算正确的是: A:632a a a =? B: 532a a --=)( C:22-a 412a --= D: 222a 3a a --=- 2、设a ≠0,b ≠0,计算下列各式: =?-25a a =-3-2a )( =-4-12b a b a )( =-33b 2a )( 3、计算下列各式: 23222x 3y x y -- 22 222 x 2()xy y x y --+- = = = = 3)、完成课后练习。 (三)、成果呈现 1)、抽查各小组预习答案,并请学生代表小组展示。 2)、其它小组质疑、辩论、点评。 3)、全班归纳总结本节知识。 (四):练习巩固:

A 1、计算 =?-38x x =--332y x )( =-3-24ab a )( =?-382-2)( =÷-2 35ab 2b -a )( =-+--2224x 4x 4x )( B 2、若27 13x =,则x= 3、一个分式含有x 的负整数指数幂,且当x=2时,分式没有意义,请你写出一个这样的分式 。 C 4、已知01132=++x x ,求1-+x x 与2 2-+x x 的值。 6、小结: 整数指数幂的运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( 错题更正:

幂的运算知识要点归纳及答案解析

幂的运算知识要点归纳及答案解析 【要点概论】 要点一、同底数幂的乘法特点 +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、 多项式. (2)三个或三个以上同底数幂相乘时,也具有这一特点, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数 与原来的底数相同,它们的指数之和等于原来的幂的指数。即 m n m n a a a +=?(,m n 都是正整数). 要点二、幂的乘方法则 ()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘. 要点诠释:(1)公式的推广:(())=m n p mnp a a (0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘 方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则 ()=?n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方, 再把所得的幂相乘. 要点诠释:(1)公式的推广:()=??n n n n abc a b c (n 为正整数). (2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其 是遇到底数互为倒数时,算法更简便.如:1010 101122 1.22???? ?=?= ? ????? 重点四、注意事项

中职数学基础模块上册实数指数幂及其运算法则word学案

§ 实数指数幂及其运算法则 导学案 目标要求:理解有理指数幂的含义,能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的相互转化;了解实数指数幂的意义,体会有理指数幂向无理指数幂逼近的过程.通过复习和练习,理解分数指数幂的意义和学会根式与分数指数幂之间的相互转化及有理指数幂运算性质的应用,培养学生的思维能力,注重学生数学思想的渗透。 重点:实数指数幂的概念及分数指数的运算性质。 难点:对非整数指数幂意义的了解,特别是对无理指数幂意义的了解。 学习过程 一、自主学习: 1.整数指数幂概念: n a a a a =?? ?个 )(*∈N n ; ()00a a = ≠; n a -= ()0,a n N * ≠∈. 2.整数指数幂的运算性质:(1)m n a a ?= (),m n Z ∈; (2)() n m a = (),m n Z ∈;(3)()n ab = ()n Z ∈ 其中 m n a a ÷= ,n a b ?? = ??? 3.复习练习: 求(1)9的算术平方根,9的平方根; (2)8的立方根,-8的立方根. 问:什么叫a 的平方根?a 的立方根? 二、合作探究: 1.有理指数幂 问题1:将下列根式写成分数指数幂的形式: 2,32,3)2(,35,325,23)5( 补充说明:0的正分数指数幂等于0,0的负分数指数幂没有意义。 2.有理指数幂的运算法则 问题2:计算(1)2 32 1x x ?; (2)2 34)(a ; (3)5 3)(xy 2 12, 2 32, 2 32, 3 15, 3 25, 3 25 公式:)0(1>= a a a n n ),,,0(为既约分数且 n m N n m a a a n m n m +∈>=

幂的运算

幂的运算 1、什么是幂 幂指乘方运算的结果. m n 指将n 自乘m 次.把m n 看作乘方的结果,叫做n 的m 次幂。其中,n 称为底,m 称为指数(写成上标)。 由幂的定义可以看出幂是乘方运算的结果而不是运算的过程。 m n 的亦可视为1×n ×n ×n...×n (注共m 个n 相乘)即起始值1(乘法的单位元)乘底数的指数次幂。这样定义了后,很易想到如何一般指数为0和负数的情况︰ 除了0之外所有数的零次方都是1,即n 0=1(n ≠0); 指数为负数的幂定义为m n - = m n 1; 分数为指数的幂定义为n m a = n m a 。 2、幂的运算 2.1、幂的运算公式 同底数幂的乘法m a ×n a =)(n m a + 幂的乘方:n m a )(=mn a 同指数幂的乘法:m b a )(?=m a ×m b 同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 这些公式也可以这样用: )(n m a += m a ×n a mn a =n m a )( m a ×m b =m b a )(? )(n m a -= m a ÷n a (a ≠0) 2.2幂的运算公式的运用 运用幂的运算公式前应先知道这些公式是怎么得来的,观察幂的运算公式有什么特点,这样才能更好的运用公式。 幂的运算公式都是由幂的定义推导而来,是为了方便特殊情况幂的运算。

2.2.1幂的运算公式推导 2.2.1.1同底数幂的乘法m a ×n a =)(n m a + 因为:m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘); n a 由幂的定义为a ×a ×a ×...a(n 个a 相乘); m a ×n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(n 个a 相乘)}为m+n 个a 相乘即)(n m a +; 所以:m a ×n a =)(n m a + 2.2.1.2幂的乘方: n m a )(=mn a 因为:n m a )(由幂的定义为m a ×m a ×m a ...×m a (n 个m a 相乘) 其中m a 由幂的定义为a ×a ×a ×...a(m 个a 相乘) 即n m a )(由幂的定义也可以为{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×{a ×a ×a ×...a(m 个a 相乘)}×...{a ×a ×a ×...a(m 个a 相乘)}(注:共n 个{a ×a ×a ×...a(m 个a 相乘)}) 所以:n m a )(=mn a 2.2.1.3同指数幂的乘法:m b a )(?=m a ×m b 因为:m b a )(?由幂的定义为(a ×b)×(a ×b)×(a ×b)×...×(a ×b)(共m 个a ×b 相乘)=a ×b ×a ×b ×a ×b ×...×a ×b(共m 个a ×b 相乘)=a ×a ×a ×...a(共m 各a 相乘)×b ×b ×b ×...b(共m 各a 相乘) 所以:m b a )(?=m a ×m b 2.2.1.4同底数幂相除:m a ÷n a =)(n m a - (a ≠0) 因为:当a=0时n a 意义; 当a ≠0时,m a ÷n a 由幂的定义为{a ×a ×a ×...a(m 个a 相乘)}÷{a ×a ×a ×...a(n 个a 相乘)} 所以:m a ÷n a =)(n m a - (a ≠0) 2.2.2幂的运算公式运用选择

幂的运算以及乘法公式练习

1,下列各式中,填入a 3能使式子成立的是( ) A .a 6=( )2 B. a 6=( )4 C.a 3=( )0 D. a 5=( )2 2,下列各式计算正确的( ) A.x a ·x 3=(x 3) a B.x a ·x 3=(x a )3 C.(x a )4=(x 4) a D. x a · x a · x a =x a +3 3,如果(9n )2=38,则n 的值是( ) A.4 B.2 C.3 D.无法确定 4,已知P=(-ab 3)2,那么-P 2的正确结果是( ) A.a 4b 12 B.-a 2b 6 C.-a 4b 8 D.- a 4 b 12 5,计算(-4×103)2×(-2×103)3的正确结果是( ) A .1.08×1017 B.-1.28×1017 C.4.8×1016 D.-1.4×1016 6,下列各式中计算正确的是( ) A .(x 4)3=x 7 B.[(-a )2]5=-a 10 C.(a m )2=(a 2)m =a m 2 D.(-a 2)3=(-a 3)2=-a 6 7,计算(-a 2)3·(-a 3)2的结果是( ) A .a 12 B.-a 12 C.-a 10 D.-a 36 8,下列各式错误的是( ) A .[(a+b )2]3=(a+b )6 B.[(x+y )n 2]5=(x+y )52+n C. [(x+y )m ]n =(x+y )mn D. [(x+y )1+m ]n =[(x+y )n ]1+m 9,2)2(n m +-的运算结果是 ( ) A 、2244n mn m ++ B 、2244n mn m +-- C 、2244n mn m +- D 、2242n mn m +- 10,运算结果为42421x x +-的是 ( ) A 、22)1(x +- B 、22)1(x + C 、22)1(x -- D 、2)1(x - 11,已知2 264b Nab a +-是一个完全平方式,则N 等于 ( ) A 、8 B 、±8 C 、±16 D 、±32 12,如果22)()(y x M y x +=+-,那么M 等于 ( ) A 、 2xy B 、-2xy C 、4xy D 、-4xy

幂的运算法则

幂的运算法则 1、同底数幂的乘法a a a n m n +=m ,即同底数幂相乘,底数不变,指数 相加。在考试过程中通常需要用其逆运算a a a n n m =+m ,即当在运算 中出现指数相加时,我们往往将其拆分成同底数幂相乘的形式。 2、同底数幂的除法a a a n m n -m =÷,即同底数幂相除,底数不变,指数 相减。在考试过程中通常需要用其逆运算a a a n n m ÷=-m ,即当在运算中出现指数相减时,我们往往将其拆分成同底数幂相除的形式。 3、幂的乘方a a mn m =)(n ,即当出现内、外指数(m 是内指数,n 是外指数)时,底数不变,指数相乘。在考试过程中通常需要用其逆运算)()(n m n a a a m mn ==,这时注意:具体用何种拆法要根据题目给出的是a m 还是a m 的形式。常在比较两个幂的大小等题目中出现。而在比较幂的大小类题目中,常用方法是转化为同底数幂或者同指数幂的形式。 如:(1)、化同指数比较。比较3275100与的大小,观察可以发现,底数2与3之间不存在乘方关系,因此,我们将其转化为同指数的幂进行比较,()1622225254251004===?,()2733325 25325753===?,因为27>16,所以16272525>,即2310075> (2)化同底数比较。比较934589与观察可以发现,底数9与3之间存 在着乘方关系即392=,因此,对于这样的题,我们将其转化为同底数幂进行比较,()33399045224545===?,而90>89,∴338990>即3989 45>。 规律小结:在幂的大小比较中,底数之间存在乘方关系时,化为同底数幂,比较指数大小;底数之间不存在乘方关系时,化为同指数

幂的运算及整体代入(讲义)

幂的运算及整体代入(讲义) ?课前预习 1.默写下面的法则、公式 幂的运算法则: (1)同底数幂相乘,_________,_________.即__________. (2)同底数幂相除,_________,_________.即__________. (3)幂的乘方,___________,_________.即___________. (4)积的乘方等于___________.即_____________. a0=_______(_________); a-p=______=______(___________________). 2.整体代入的思考方向 ①___________________,考虑整体代入; ②化简___________,对比确定________; ③_______________,化简. 3.若代数式2 238 a b ++的值为________. +的值是12,则代数式2 46 a b ?知识点睛 1.整体思想:整体思想就是通过研究问题的整体形式、结构、特征,从而对问 题进行整体处理的解题思想.如:整体代入、整体加减、整体代换、整体补

形等. 2. 幂的运算法则逆用 ①观察已知及所求,对比确定____________之间的关系; ②根据幂的运算法则对已知或所求进行等价变形,使之成为___________________________. 3. 降幂法整体代入 ①对比已知及所求,将已知中___________________当作整体; ②对所求进行变形,找到整体,进行代入; ③降幂化简,重复上述过程,直至最简. ? 精讲精练 1. 若35m =,32n =,则2313m n +-=____________. 2. 已知34x =,32y =,求2927x y x y --+的值.

指数运算法则

指数运算法则 指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单 调递减的函数。指数函数既不是奇函数也不是偶函数。要想使 得x能够取整个实数集合为定义域,则只有使得a的不同大小 影响函数图形的情况。 一、法则 在函数y=a^x中可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提 是a大于0且不等于1,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑,同时a 等于0一般也不考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0, 则单调递减。 (5)可以看到一个显然的规律,就是当a从0趋向于无 穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y 轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平 直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过定点(0,1) (8)指数函数无界。 (9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,此函数图像是 偶函数。例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数;⑵ y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对 数的概念如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那 么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对 数的底数,N叫做真数. 由定义知:①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特 别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化式子名称abN指 数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)loga(M/N)=logaM-logaN. (3)logaM n=nlogaM (n∈R). 二、记忆口决 有理数的指数幂,运算法则要记住。 指数加减底不变,同底数幂相乘除。 指数相乘底不变,幂的乘方要清楚。 积商乘方原指数,换底乘方再乘除。 非零数的零次幂,常值为 1不糊涂。 负整数的指数幂,指数转正求倒数。 看到分数指数幂,想到底数必非负。 乘方指数是分子,根指数要当分母。 看到分数指数幂,想到底数必非负。

幂的运算方法总结

幂的运算方法总结 幂的运算的基本知识就四条性质,写作四个公式: ①a m×a n=a m+n ②(a m)n=a mn ③(ab)m=a m b m ④a m÷a n=a m-n 只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。 问题1、已知a7a m=a3a10,求m的值。 思路探索:用公式1计算等号左右两边,得到等底数的同幂形式,按指数也相等的规则即可得m的值。 方法思考:只要是符合公式形式的都可套用公式化简试一试。 方法原则:可用公式套一套。 但是,渗入幂的代换时,就有点难度了。 问题2、已知x n=2,y n=3,求(x2y)3n的值。 思路探索:(x2y)3n中没有x n和y n,但运用公式3就可将(x2y)3n化成含有x n 和y n的运算。 因此可简解为,(x2y)3n =x6n y3n=(x n)6(y n)3=26×33=1728 方法思考:已知幂和要求的代数式不一致,设法将代数式变形,变成已知幂的运算的形式即可代入求值。 方法原则:整体不同靠一靠。 然而,遇到求公式右边形式的代数式该怎么办呢? 问题3、已知a3=2,a m=3,a n=5,求a m+2n+6的值。 思路探索:试逆用公式,变形出与已知同形的幂即可代入了。 简解:a m+2n+6=a m a2n a6=a m(a n)2(a3)2=3×25×4=300

方法思考:遇到公式右边的代数式时,通常倒过来逆用公式,把代数式展开,然后代入。 方法原则:逆用公式倒一倒。 当底数是常数时,会有更多的变化,如何思考呢? 问题4、已知22x+3-22x+1=48,求x的值。 思路探索:方程中未知数出现在两项的指数上,所以必须统一成一项,即用公式把它们变成同类项进行合并。由此,可考虑逆用公式1,把其中常数的整数指数幂,化作常数作为该项的系数。 简解:22x+3-22x+1=22x×23-22x×21=8×22x-2×22x =6×22x=48 ∴22x=8 ∴2x=3 ∴x=1.5 方法思考:冪的底数是常数且指数中有常数也有未知数时,通常把常数的整数指数冪化成常数作为其它冪的系数,然后进行其它运算。 问题5、已知64m+1÷2n÷33m=81,求正整数m、n的值。 思路探索:幂的底数不一致使运算没法进行,怎样把它们变一致呢?把常数底数都变成质数底数就统一了。 简解:64m+1÷2n÷33m =24m+1×34m+1÷2n÷33m=24m+1-n×3m+1=81=34 ∵m、n是正整数∴m+1=4,4m+1-n=0 ∴m=3,n=13 方法思考:冪的底数是常数时,通常把它们分解质因数,然后按公式3展开,即可化成同底数冪了。 问题6、已知2a=3,2b=6,2c=12,求a、b、c的关系。 思路探索:求a、b、c的关系,关键看2a、2b、2c的关系,即3、6、12的关系。6是3的2倍,12是6的2倍,所以2c=2×2b=4×2a,由此可求。 简解:由题意知2c=2×2b=4×2a ∴2c=2b+1=2a+2 ∴c=b+1=a+2

幂运算及相关公式#精选、

整数指数幂 教学目标: 1、 使学生掌握不等于零的零次幂的意义。 2、 使学生掌握n n a a 1= -(a ≠0,n 是正整数)并会运用它进行计算。 3、 通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。 重点难点: 不等于零的数的零次幂的意义以及理解和应用负整数指数幂的性质是本节课的重点也是难点。 教学过程: 一、讲解零指数幂的有关知识 1、 问题1 同底数幂的除法公式a m ÷a n =a m-n 时,有一个附加条件:m >n ,即被除数的指数大于除 数的指数.当被除数的指数不大于除数的指数,即m =n 或m <n 时,情况怎样呢? 2、探 索 先考察被除数的指数等于除数的指数的情况.例如考察下列算式: 52÷52,103÷103,a 5÷a 5(a ≠0). 一方面,如果仿照同底数幂的除法公式来计算,得 52÷52=52-2=50, 103÷103=103-3=100, a 5÷a 5=a 5-5=a 0(a ≠0). 另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1. 3、概 括 我们规定: 50=1,100=1,a 0=1(a ≠0). 这就是说:任何不等于零的数的零次幂都等于1. 二、讲解负指数幂的有关知识 1、探 索 我们再来考察被除数的指数小于除数的指数的情况,例如考察下列算式: 52÷55, 103÷107, 一方面,如果仿照同底数幂的除法公式来计算,得 52÷55=52-5=5-3, 103÷107=103-7=10-4. 另一方面,我们可利用约分,直接算出这两个式子的结果为 52÷55=5255=322555?=351, 103÷107=731010=433101010?=4101. 2、概 括 由此启发,我们规定: 5-3=351, 10-4=4 101. 一般地,我们规定: n n a a 1=-(a ≠0,n 是正整数)

(完整版)幂的运算总结及方法归纳

幂的运算 一、知识网络归纳 二、学习重难点 学习本章需关注的几个问题: ●在运用n m n m a a a +=?(m 、n 为正整数),n m n m a a a -=÷(0≠a ,m 、n 为正整数且m >n ),mn n m a a =)((m 、n 为正整数),n n n b a ab =)((n 为正整数),)0(10≠=a a ,n n a a 1 = -(0≠a ,n 为正整数)时,要特别注意各式子成立的条件。 ◆上述各式子中的底数字母不仅仅表示一个数、一个字母,它还可以表示一个单项式,甚至还可以表示一个多项式。换句话说,将底数看作是一个“整体”即可。 ◆注意上述各式的逆向应用。如计算20052004425.0?,可先逆用同底数幂的乘法法则将20054写成442004?,再逆用积的乘方法则计算 11)425.0(425.02004200420042004==?=?,由此不难得到结果为1。 ◆通过对式子的变形,进一步领会转化的数学思想方法。如同底数幂的乘法

就是将乘法运算转化为指数的加法运算,同底数幂的除法就是将除法运算转化为指数的减法运算,幂的乘方就是将乘方运算转化为指数的乘法运算等。 ◆在经历上述各个式子的推导过程中,进一步领悟“通过观察、猜想、验证与发现法则、规律”这一重要的数学研究的方法,学习并体会从特殊到一般的归纳推理的数学思想方法。 一、同底数幂的乘法 1、同底数幂的乘法 同底数幂相乘,底数不变,指数相加. 公式表示为:()m n m n a a a m n +?=、为正整数 2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 () m n p m m p a a a a m n p ++??=、、为正整数 注意点: (1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数. (2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算. 例题: 例1:计算列下列各题 (1) 34a a ?; (2) 23b b b ?? ; (3) ()()()2 4 c c c -?-?- 简单练习: 一、选择题 1. 下列计算正确的是( ) A.a2+a3=a5 B.a2·a3=a5 C.3m +2m =5m D.a2+a2=2a4 2. 下列计算错误的是( ) A.5x2-x2=4x2 B.am +am =2am C.3m +2m =5m D.x·x2m-1= x2m 3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b 5 ④ p 2+p 2+p 2=3p 2 正确的有( ) A.1个 B.2个 C.3个 D.4个 4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( ) A.100×102=103 B.1000×1010=103 C.100×103=105 D.100×1000=104 二、填空题 1. a4·a4=_______;a4+a4=_______。 2、 b 2·b ·b 7 =________。 3、103·_______=1010 4、(-a)2·(-a)3·a5 =__________。 5、a5·a( )=a2·( ) 4=a18 6、(a+1)2·(1+a)·(a+1)5 =__________。 中等练习: 1、 (-10)3·10+100·(-102 )的运算结果是( ) A.108 B.-2×104 C.0 D.-104

幂的运算习题精选及答案

《幂的运算》提高练习题 一、选择题 1、计算(﹣2)100+(﹣2)99所得的结果是() A、﹣299 B、﹣2 C、299 D、2 2、当m是正整数时,下列等式成立的有() (1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m. A、4个 B、3个 C、2个 D、1个 3、下列运算正确的是() A、2x+3y=5xy B、(﹣3x2y)3=﹣9x6y3 C 、D、(x﹣y)3=x3﹣y3 4、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是() A、a n与b n B、a2n与b2n C、a2n+1与b2n+1 D、a2n﹣1与﹣b2n﹣1 5、下列等式中正确的个数是() ①a5+a5=a10;②(﹣a)6(﹣a)3a=a10;③﹣a4(﹣a)5=a20; ④25+25=26. A、0个 B、1个 C、2个 D、3个二、填空题 6、计算:x2x3=_________;(﹣a2)3+(﹣a3)2= _________. 7、若2m=5,2n=6,则2m+2n=_________. 三、解答题 8、已知3x(x n+5)=3x n+1+45,求x的值。 9、若1+2+3+…+n=a, 求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x32y的值.

11、已知25m210n=5724,求m、n. 12、已知a x=5,a x+y=25,求a x+a y的值. 13、若x m+2n=16,x n=2,求x m+n的值. 14、比较下列一组数的大小.8131,2741,96115、如果a2+a=0(a≠0),求a2005+a2004+12的值. 16、已知9n+1﹣32n=72,求n的值. 18、若(a n b m b)3=a9b15,求2m+n的值. 19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)

6幂运算的三个公式

一、同底数幂的乘法 (一)、法则:__________________________________公式:__________________________ (二)、练习 1、 (1)=?64a a (2)=?5 b b (3)=??32m m m (4)=???9 53c c c c (5)=??p n m a a a (6)=-?1 2m t t (7)=?+q q n 1 (8) =-+??112p p n n n 2.计算: (1)=-?2 3b b (2)=-?3)(a a (3)=--?32)()(y y (4)=--?4 3)()(a a (5)=-?2 433 (6)=--?67)5()5( (7)=--?32)()(q q n (8) =--?2 4)()(m m (9)=-32 (10) =--?54)2()2( (11)=--?69)(b b (12) =--?)()(33a a 3、2 2+m a 可以写成( ). A .12+m a B .22a a m + C .22a a m ? D .1 2+?m a a 4、=?6 4a a ()()a a 1-2?=?a a 5、________)()()3 5=+?+?+y x y x y x ( 6、________)()()3 5=-?-?-y x x y y x ( 7、已知 4 3 m ==n a a ,那么 _________2==++n m n m a a 二、幂的乘方 (一)法则:_____________________________ 公式:_____________________________ (二)练习 1.计算(102)3=_______,(103)2=________. 2.计算(-x 5)2=_______,(-x 2)5=________,[(-x )2] 5=______ 3.下列运算正确的是( ). A .(x 3)3=x 3·x 3; B .(x 2)6=(x 4)4; C .(x 3)4=(x 2)6; D .(x 4)8=(x 6)2 4.下列计算错误的是( ). A .(a 5)5=a 25; B .(x 4)m =(x 2m )2; C .x 2m =(-x m )2; D .a 2m =(-a 2)m 5.计算下列各题: (1)(a 5)3 (2)(a n -2)3 (3)(43)3 (4)(-x 3)5 (5)[(-x )2] 3 (6)[(x -y )3] 4 6公式的另用 (1)x 3·(x n )5=x 13,则n=____.(x 3)4+(x 4)3=_____,(a 3)2·(a 2)3 =______. 已知164 =28m ,则m=________ (2)比较(27)4与(34)3的大小,可以得到( ). A .(27)4=(34)3 B .(27)4>(34)23 C .(27)4<(34)3 D .无法判断 (3)已知a m =3,a n =2,求a m+2n 和n m a 32+的值; (4)已知a 2n+1=5,求a 6n+3的值 (5)已知a=3555,b=4444,c=5333,试比较a ,b ,c 的大小 三、积的乘方 (一)法则:___________________________公式:______________ (二)练习 1.(ab )2=______,(ab )3=_______. 2.(a 2b )3=_______,(2a 2b )2=_______,(-3xy 2)2=_______ 3.判断题 (错误的说明为什么) (1)(3ab 2)2=3a 2b 4 (2)(-x 2yz )2=-x 4y 2z 2

指数与指数幂的运算(基础)

指数与指数幂的运算 A 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: 1.理解分数指数的概念,掌握有理指数幂的运算性质 (1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算; (2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化; (3)能利用有理指数运算性质简化根式运算. 2.掌握无理指数幂的概念,将指数的取值范围推广到实数集; 3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力; 4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质. 学习策略: 学习实数指数幂及其运算时,应熟练掌握基本技能:运算能力、处理数据能力以及运用科学计算器的能力. 二、学习与应用 (1 )零指数幂:a 0= (a 0) “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记. 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(2)负整数指数幂:a-p= (a0, p是数) (3)一般地,如果一个数x的等于a,即a x= 2,那么,这个数x就叫做a的平方根。也叫做二次方根.一个正数有个平方根,它们是互为;0只有个平方根,它是;负数平方根. (4)一般地,如果一个数的等于a,这个数就叫做a的立方根(也叫做三次方根). 要点一:整数指数幂的概念及运算性质 1.整数指数幂的概念 ( )* .................................... n a n Z =∈; () ...................................... a a =; ................................... (0,) n a a n Z* -=∈. 2.运算法则 (1)m n a a?=; (2)()n m a=; (3)() ............................ m n a m n a a =>≠ ,; (4)()m ab=. 要点二:根式的概念和运算法则 1.n次方根的定义: 若x n=y(n∈N*,n>1,y∈R),则x称为y的n次方根. n为奇数时,正数y的奇次方根有个,是数,记为n y;负数y的 奇次方根有个,是数,记为n y;零的奇次方根为,记为 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#10160#391630

(精品)初中数学讲义13整数指数幂及其运算(学生)

第13课时 整数指数幂及其运算 教学目标 理解整数指数幂的概念,掌握其运算法则. 知识精要 1.零指数 )0(10≠=a a 2.负整数指数 ).,0(1为正整数p a a a p p ≠=- 注意正整数幂的运算性质: n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(, )(), 0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是0或负整数. 3. 用科学记数法表示绝对值大于0而小于1的数的方法: 绝对值大于0而小于1的数可以表示为:10n a -?(其中110,a n ≤<为正整数) 热身练习 1. 当x ________时,2(42)x -+有意义? 2. 将代数式22 2332b a ----化成不含负指数的形式_______. 3. 将235()x y --+写成只含有正整数幂的形式是_______. 4. 计算: (1)03211(0.5)()()22 ---÷-+ (2)2574x x x x x ÷÷?? (3)2222()()a b a b -----÷+ (4) 32 3()xy -

(5)02140)21()31()101()21()2(?++------ (6) 52332()()y y y ---÷? 5. 用小数表示下列各数 (1)610- (2)31.20810-? (3)59.0410--? 6. 用科学记数法表示下列各数 (1)34200 (2)0.0000543 (3)-0.000789 7. 计算:22(2)2----=_______. 8.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米的长度为0.000000052米,用科学记数法表示此数为_________米. 精解名题 1. 用负整数指数幂表示下列各式

幂的运算例题精讲

幂的运算例题精讲 【知识方法归纳】 知识要点 主要内容 友情提示 同底数幂相乘 m n mn a a a ?= (m 、n 是正整数); a 可以多项式 幂的乘方 ()m n mn a a = (m 、n 是正整数) mn m n n m a a a ==)()( 积的乘方 ()n n n ab a b = (n 是正整数) n n n ab a )()(= 同底数幂的除法 m m n n a a a -=(m 、n 是正整数,m >n) n m n m a a a ÷≠÷ 方法归纳 注意各运算的意义,合理选用公式 注意:零指数幂的意义“任何不等于0的数的0次幂都等于1”和负指数幂的意义“任何不等于0的数的负次幂等于它正次幂的倒数” 知识点1 同底数幂的意义及同底数幂的乘法法则(重点) 同底数幂的乘法法则: +?=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即m n p m n p a a a a ++??=(,,m n p 都是正整数). (3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同, 它们的指数之和等于原来的幂的指数。即m n m n a a a +=?(,m n 都是正整数). 【典型例题】 例1:计算. (1)2 3 4 444??; (2)3 4 5 2 6 22a a a a a a ?+?-?; (3)1 1211()() ()()()n n m n m x y x y x y x y x y +-+-+?+?+++?+ 例2:辨析:下列运算是否正确?不正确的,请改为正确的答案。 (1)x 3 ·x 5 = x 15 ( ) ; (2) b 7 + b 7 =b 14 ( ) ; (3)a 5- a 2=a 3 ( ) (4) 2x 3+ x 3=2x 6 ( ) ; (5) (b- a)3=-(a- b)3 ( ) ; (6)(- a- b)4=(a- b)4 ( )

相关主题