搜档网
当前位置:搜档网 › 高功率脉冲电源word版

高功率脉冲电源word版

高功率脉冲电源word版
高功率脉冲电源word版

高功率脉冲电源

学院(系):电气工程学院

班级: 1113班

学生姓名:高玲

学号: 21113043 大连理工大学

Dalian University of Technology

1分类及结构原理

高功率脉冲最早始于30年代,随着用电容器放电产生X射线的出现,经过了几十年的发展,目前高功率脉冲电源应用范围非常广泛,例如用于闪光X射线照相、高功率激光、大功率微波、电磁脉冲、电磁发射(或推进)、粒子束武器和电磁成形等离子体物理与受控核聚变研究、核爆炸模拟等方面。‘

如图1所示。高功率脉冲电源包括初级能源、中间储能脉冲成形系统及转换系统等几个部分。

图1. 高功率脉冲电源组成框图

脉冲功率的形成过程是:首先经过慢储能,使初级能源具有足够的能量;其次,向中间储能和脉冲形成系统注入能量;再次,能量经过储存、压缩、形成脉冲或转化,等复杂过程之后,最后快速释放给负载。

(1)初级能源为小功率的能量输入设备,如电容器的充电机、电感线圈的励磁电源、飞轮电机的拖动电机,其能源来在电网。

(2)中间储能设备有以电容器和Marx发生器为例的电场储能,以常温或超导电感线圈为例的磁场储能,以各类具有转动惯量的脉冲发电机为主的机械储能,以蓄电池、磁流体发电机、爆炸磁通压缩发生器为代表的化学储能,以及以核能磁流体发电机为例的核能初级能源,等等。

(3)能量转换与释放系统主要包括各种大容量闭合开关和断路开关及各种波形调节技术设备。

脉冲功率装置初级能源的储能方式主要包括:以电场形式储能的电容器、以磁场方式储能的电感器、机械能发电机、化学能装置以及核能等。如表1所示。

(1)电容储能简单、技术成熟,因此它的应用最为广泛,如惯性约束、强激光、粒子束武器、大功率微波等。世界上一些著名的脉冲功率装置都采用电容储能放电回路,如美国的PBFA.II等。

(2)电感储能最大的优点是储能密度大,所以倍受研究者的关注。电感储能技术在诸如受控等离子体物理、受控核聚变、电磁推进等现代科学技术领域中,都有着极为重要的应用。

(3)机械储能具有储能密度高、结构紧凑、易做成移动式,且提取十分方便等优点,因此也得到了广泛的应用。目前,其主要的应用领域有:近代同步加速器、托卡马克热核装置、等离子体。箍缩、大型风洞装置、大截面金属对头焊接等。

表1. 脉冲功率电源组成及关键技术

三种常用储能方式的各种性能比较,如表2所示。

由于电容器在工业上得到了广泛应用,在电磁轨道炮发展的起步阶段,人们通常把电容器组作为提供电源的首选。利用闭合开关可以对脉冲的形状进行相对灵活的控制。重点实验室组建的高功率脉冲电源是电容器储能方式。

表2. 常用储能方式研究水平

2 国内外研究概况

高功率脉冲电源是为脉冲功率装置的负载提供电磁能量的装置,构成脉冲功率装置的主体。高功率脉冲电源是随着高功率脉冲技术的发展而发展的。

高功率脉冲技术发源于英国的阿尔马斯登(Aldermaston)原子武器研究中心的J.C.马丁及其领导的脉冲功率小组。他们的开创性研究工作闻名于世界,该小组的许多成员,如:I.D.Simith,T.H.Martin,ED.A.Champeny,EW.Spence 等为脉冲功率的发展都做出了很大的贡献。从20世纪60年代中期起,美国的圣地亚实验室一直领导了脉冲功率发展的世界新潮流。在国防部(DOD)和能源部(DOE)的支持下,许多与国防有关的研究所,一些著名的大学,还有几个公司都积极投入了这方面的研究工作。美国武器军事实验中心(ARL.WMRD)已经建造了4.5MJ的脉冲电源系统,早期场发射公司生产了一系列小型300kV-2MV,3-5kA,20ns闪光X射线机,离子物理公司将静电加速器对传输线直流充电,生产了FX.25至IJFX.100型脉冲功率装置,以后才建造了大批规模一个比一个大的油介质和水介质传输线装置,其研究处于世界领先。

美国的主要研究机构有:圣地亚实验室(Sandia),利弗莫尔实验室(Livemore),洛斯阿拉莫斯实验室(Los Alamos),海军研究实验室(NRL),海军水面武器中心(Nswc),空军武器实验室(NFWL),陆军实验室(HDL),康乃尔大学(Conell),马里兰大学(Malyland),德克萨斯大学(Texas),物理国际公司(PI),麦克斯韦公(Maxwell)等等。在美国,研究与制造分工明确,使用单位与研究单位关系也比较协调,技术也比较先进。

俄罗斯(前苏联)的重要研究机构有:库尔恰托夫原子能研究所,列别捷夫物理研究所,叶菲利莫夫电物理装置研究所,实验物理研究所(Arzamas-16),新西伯利亚的大电流研究所,电物理研究所和核物理研究所f121。俄罗斯在重复频率运行的脉冲功率装置和脉冲径向线加速器研究方面独具特色。所生产的基于Tesla变压器技术的“Sinus”和“Radan”系列脉冲功率装置,结构紧凑,易于重复频率工作,他们在高功率微波

(HPM)研究方面,在世界上处于领先地位。

欧洲的研究所使用单模块贮能的电容器建立了高效灵活的LRC脉冲成形单元,可以贮能50 kJ,峰值电流50KA。德国从1998年开始研究能量密度为214MJ/m3的高能放电电容器,并在2002年研制了紧凑式高功率放电装置。韩国在2000年建立了300kJ的脉冲电源模块,充电电压22kV,电流150kA,整个系统的总贮能214MJ。

我国的主要研究机构:中国工程物理研究院,中国原子能科学研究院,西北核技术研究所和长沙国防科技大学以及中国科学院的电子、电工所,清华大学电机工程系等。我们国家主要依靠自己的力量,建造了一些与国际上同类装置具有同等水平的机器,进行了许多有特色的物理实验,取得了一系列重大成果。从80年代以来,我国相继进行了集体离子加速、准分子激光、自由电子激光、高功率微波、电磁轨道炮、抗核加固、闪光X射线照相等高新技术研究,先后建造20余台强脉冲电子束加速器,为开展强流束物理及应用研究创造了良好条件。现在已经有几十台高功率脉冲装置在运行,如中国工程物理研究院的8MVl00kA,脉宽80ns的“闪光一号”相对论电子加速器以及12vM束流2kA的直线感应电子加速器,西北核技术研究所的1.47MV0.72MA,脉宽70~80ns的“闪光二号"相对论电子加速器等1161。弹道国防科技重点实验室自开展电热化学(Electrothermal Chemical,ETC)发射系统研究以来,经过多次改扩建,形成了目前用于中小口径电热化学发射研究的2MJ脉冲电源系统。这些都标志着我国在脉冲功率技术领域取得的进展。

为了适应脉冲功率技术的发展,1976年在美国举行了第一届电气与电子工程师协会(IEEE)脉冲功率技术国际会议,交流了研究工作的进展和成果。在1979年举行了第二届国际会议,之后,这类国际会议每两年举行一次,直至现在。同时,随着研究成果和参考文献的同益增多和丰富,美国在1981年就成立了脉冲功率技术文献中心,向有关研究人员和部门提供技术资料。由于脉冲功率技术在军事应用领域得到更为广泛的使用,北大西洋公约组织的研究和发展机构,1983年及以后,多次举办了关于脉冲功率技术的高级研究讲座,并出版了研究论文专集。

脉冲功率技术的研究和应用的迅速发展也给高等教育提出了要求。在美国、日本,德国等国家的一些研究部门和高等学校均已开设了脉冲功率技术专业系列课程、实验和设计。还不定期地举办国际性的有关脉冲功率技术的讲习班,编写了讲义和参考资料。

现在,高功率脉冲技术不只为国防科研服务,脉冲功率技术在国民经济中有着广阔的应用前景,如工业辐照加工,材料表面处理,工业烟气治理,食物消毒,保鲜等等。

高功率脉冲电源的今后发展方向,由以下几个重要方面构成:

(1)由单次脉冲向重复的高平均功率脉冲发展;

(2)储能技术——研制高储能密度的电源;

(3)开关技术——探讨新的大功率开关概念和研制高重复频率丌关;

(4)绝缘技术——满足设备和开关小型化的要求:

(5)开辟新的应用领域。

3 设计实例

3.1 应用场合及技术指标

高功率脉冲电源是将储存的高密度能量进行快速压缩、转换或直接释放给负载,主要应用在受控热核聚变研究和表面材料处理等领域。在表面材料磁控溅射研究中,高功率脉冲电源因其高脉冲峰值功率和低脉冲占空比在磁控溅射中产生高金属离化率、高能量离化粒子,从而使得沉积致密、薄膜能高。目前国内研制的高功率脉冲磁控溅射电源尚处于起步阶段,高峰值功率脉冲和重复频率工作性能是其设计难点。基于晶闸管触发真空开关的功率技术分别受关断性能、触发寿命等限制。现研制一台瞬时功率 1MW 的高功率脉冲电源样机,设计采用IGBT逆变技术、IGBT均流斩波技术和数字化控制技术,实现了应用于磁控溅射领域的高功率脉冲电源。具有高峰值功率、重复工作频率、小型化等特点。3.2 电源方案

为满足磁控溅射领域的应用要求,电源需具备连续可调稳压功能和过流过热打火保护功能。电压上升时间应小于 2μs。图2示出电源结构图。

图2. 电源结构图

设计电源为恒压控制方式,输出峰值电压、电流为2KV/500A,脉宽10~60 s,频率10Hz~1kHz。

3.2.1 主回路设计

图 3为主回路结构。初级能源部分是提供能量输入的“慢储能”过程,具体过程是:三相交流电经 EMI滤波、三相不可控整流后,进入工频滤波环节。其中滤波电容可通过放电回路实现安全放电。由两个半桥 IGBT模块搭建全桥逆变电路,通过变压器变频整流电路将能量快速传送到储能电容中,针对储能充放电流的特殊要求,采用PWM芯片SG3525和89F51作为控制系统的核心。

图3. 主回路电路图

中间能源部分为初级能源提供恒定的负载,为重复频率的功率脉冲提供能量。该设计选用高频低阻电解电容与高频高压大电流电容构成中间能源部分。既提高了电源系统的短时高功率输出能力,又具备持久的动力性能,可充分发挥高功率密度和高能量密度优势。斩波电路中,通过选用相同型号的器件,利用IGBT 均流特性及驱动信号间100ns范围内的延时,选择合适的栅极电阻和布局来实现静、动态均流。当电源主回路闭合运行后,中间能源经过短暂的预充电过程,控制器输出脉冲控制信号,经逻辑判断后驱动 IGBT均流斩波。针对负载装置的短路状态特性,将控制器输出的给定信号和脉冲信号与电流采样进行逻辑判断后驱动开关器件,该控制方式具有简单易行、保护动作快速响应、不易被干扰等优点。在 IGBT导通,可用二阶动态电路分析能量的传递过程。将负载侧阻抗并入回路阻抗中,则中间储能、脉冲输出、负载可用图4表示。当开关器件导通时,写出电路方程为:Ri+Ldi/dt+(1/C)∫idt=U

,将其微分可得Ld-

2i/dt2+Rdi/dt+i/c=0。初始条件为:I|

t=0=0,U

C

|

t=0

=U

,设阻尼参数α=R√/2,

设计电路使得电源工作在过阻尼状态(即α>1),则回路电流为:

图4. 脉冲输出简化图

则电流峰值为:

到达电流峰值的时间为:

可知,电容在整个斩波过程中一直在释放储存的电场能量,放电过程中i(t)要从小到大再缓慢趋于零的变化。IGBT斩波的最大脉宽出现在t

m

前,此间,电场能量一部分被负载消耗,另一部分转变为电感的磁场能量;IGBT关断时,电容继续存储能量,续流二极管将回路剩余的磁场能量释放。

3.2.2 控制系统设计

图 5示出系统控制框图。通过键盘将工作参数送到单片机,全桥逆变电路和并联均流电路的电压和电流信号经过光电隔离。采样到单片机后,输出全桥给定信号、斩波给定信号和斩波控制信号。针对高功率脉冲电源中储能电容充放电、重复工作频率的特点。单片机程序判断从而控制实现良好的工作特性。全桥给定信号与峰值电压信号通过

SG3525APWM.输出逆变全桥电路的控制脉冲信号,经过隔离、驱动电路,实现对开关器件IGBT的控制。该控制方式具有动态响应快。调压范围广,充电电流易于控制使得中间储能环节的充放电电流快速、稳定等优点。后级斩波电路由单片机控制给定信号。并与峰值电路信号进行逻辑判断。若电源输出电流在正常范围内,则输出脉冲控制信号。该控制方式具有简单易行,保护响应快速等优点。单片机采集工频状态信号,并根据输入设置和运行等参数控制主回路。

图 5. 控制系统原理图

3.2.3 保护电路设计

保护电路主要分为功率器件保护和主回路保护,前者防止功率器件过压和过流击穿。设计中通过电流传感器检测变压器初级和斩波输出处的电流,控制器判断电流大于保护设定值,则对全桥电路逐波关脉冲、并联斩波电路直接关脉冲,在极端情况下,直接做出跳闸动作,并采用RCD吸收电路防止过电压。后者主要从主回路短路、主回路隔离、安全接地三方面考虑。在磁控溅射辉光清洗过程中,电源会不断打火短路,负载侧短路瞬间,均流斩波电路快速响应。瞬间输出大电流,传感器采样后与给定脉冲进行逻辑比较,可在1s内迅速关断脉冲,该控制方式简单且快速。另针对电源的特性,对多台电容串并联构成储能单元的支路安装特殊设计的快速熔断器,防止单台电容短路对系统产生的强大冲击电磁力。

4 技术发展方向

随着电磁发射技术的迅猛发展,全世界的军事、航天、受控核聚变、材料状态研究均积极研究电磁发射器。这就使高功率脉冲电源向多样化、高比能、小体积和自动化控制发展。

目前,脉冲功率源控制系统有以下几方面:

(1)完全手动控制:充电装置和放电装置都需要操作人员现场操作。这种方法的缺点就是实时性、精确性比较差。

(2)单片机控制:这种方法虽然不需要操作人员现场操作,但还不能同时兼顾充电和放电系统,还需要手动控制。使用单片机作为控制器也在不断的发展中,基于16位单片机电源控制器及其外围电路,采用手动、自动工作方式以及电压、电流的调节方式,使得大功率脉冲电源能够工作于恒压、恒流两种方式,模糊控制算法的引入使得电源控制系统的稳态特性和动念品质有了较明显的提高。

(3)可编程计算机控制:现在国内已经出现了针对脉冲功率技术中对Marx 充电的能源设备及触发装置的自动化控制设备,采用新型PCC(可编程计算机控制器)作为电源控制器核心f20l。PCC是具有集计算机、通讯和自动控制技术为一体的新型工控装置,其硬件的模块化结构、丰富的I/O模块配置以及其软件丰富的函数库和以支持ANSIC高级语言的软件平台等均有明显优势。这也是高功率脉冲电源控制的发展方向之一。

(4)综合监控系统:基于虚拟仪器技术的高功率脉冲能源装置监控系统,采用可编程高功率交流电源产生连续可调工频电压,经过高压变压器及硅堆等装置变换为直流高压,对Marx进行双极性的线性充电。主控计算机通过RS.485串口方式对可编程交流电源及数字延时触发设备进行实时状念监测及远程控制,采用VB6.0软件作为开发平台,并利用NI控件等完成了能源设备的虚拟数字化调压测控和数字延时触发等功能设计。

(5)嵌入式控制:以嵌入式控制技术为核心,通过现场总线技术为脉冲电源系统提供集成化和智能化控制的平台,对系统中的测控器件进行集中控制和管理,同时可以解决系统扩展性问题。

随着计算机技术的发展,当今世界上基于PC的自动化方案己成为主流,PC 在自动化领域的应用正迅速增长,通过将所有的功能集成子这个统一开放的平台上,通过人机界面可以使复杂的控制和数据处理变得更加简单化。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您

的好评与关注!)

脉冲变压器的铁芯选材要求

脉冲变压器的铁芯选材要求 脉冲变压器是用来传输脉冲的变压器。当一系列脉冲持续时间为t d(m s)、脉冲幅值电压为U m(V)的单极性脉冲电压加到匝数为N的脉冲变压器绕组上时,在每一个脉冲结束时,铁芯中的磁感应强度增量ΔB(T)为:ΔB=U m t d/NS c′10-2其中S c为铁芯的有效截面积(cm2)。即磁感应强度增量ΔB 与脉冲电压的面积(伏秒乘积)成正比。对输出单向脉冲时,ΔB=B m-B r,如果在脉冲变压器铁芯上加去磁绕组时,ΔB=B m+B r。在脉冲状态下,由动态脉冲磁滞回线的ΔB与相应的ΔH p之比为脉冲磁导率m p。 理想的脉冲波形是指矩形脉冲波,由于电路的参数影响,实际的脉冲波形与矩形脉冲有所差异,经常会发生畸变。比如脉冲前沿的上升时间t r与脉冲变压器的漏电感Ls、绕组和结构零件导致的分布电容C s成比例,脉冲顶降l与励磁电感L m成反比,另外涡流损耗因素也会影响输出的脉冲波形。 脉冲变压器的漏电感L s=4b p N12lm/h 脉冲变压器的初级励磁电感L m=4mp p S c N2/l′10-9 涡流损耗Pe=U m d2t d lF/12N12S c r b为与绕组结构型式有关的系数,l m为绕组线圈的平均匝长,h为绕组线圈的宽度,N1为初级绕组匝数,l为铁芯的平均磁路长度,S c为铁芯的截面积,m p为铁芯的脉冲磁导率,r为铁芯材料的电阻率,d为铁芯材料的厚度,F为脉冲重复频率。 从以上公式可以看出,在给定的匝数和铁芯截面积时,脉冲宽度愈大,要求铁芯材料的磁感应强度的变化量ΔB也越大;在脉冲宽度给定时,提高铁芯材料的磁感应强度变化量ΔB,可以大大减少脉冲变压器铁芯的截面积和磁化绕组的匝数,即可缩小脉冲变压器的体积。要减小脉冲波形前沿的失真,应尽量减小脉冲变压器的漏电感和分布电容,为此需使脉冲变压器的绕组匝数尽可能的少,这就要求使用具有较高脉冲磁导率的材料。 为减小顶降,要尽可能的提高初级励磁电感量L m,这就要求铁芯材料具有较高的脉冲磁导率m p。为减小涡流损耗,应选用电阻率高、厚度尽量薄的软磁带材作为铁芯材料,尤其是对重复频率高、脉冲宽度大的脉冲变压器更是如此。 脉冲变压器对铁芯材料的要求为: 1、高饱和磁感应强度Bs值; 2、高的脉冲磁导率,能用较小的铁芯尺寸获得足够大的励磁电感; 3、大功率单极性脉冲变压器要求铁芯具有大的磁感应强度增量ΔB,使用低剩磁 感应材料;当采用附加直流偏磁时,要求铁芯具有高矩形比,小矫顽力Hc。 4、小功率脉冲变压器要求铁芯的起始脉冲磁导率高; 5、损耗小。

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

高功率IPG光纤激光器应用简介

高功率IPG光纤激光器应用简介 一、IPG光纤激光器简介 1.光纤激光器简介 光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 2.光纤激光器的优势 首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。第三,光纤激光器体积小,重量轻,工作位置可移动。第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。第五,在工业应用上比传统激光器表现更优越。它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。第六,一器多机,即一个激光器通过光纤分光成多路多台工作。第七,免维护,使用寿命长。最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。 3.IPG简介 全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。

十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。 高功率是IPG的优势。全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。这些激光器的成功应用,说明了IPG光纤激光已成熟,且成为制造业的技术工具之一。依近期国内各厂家、院校、集成商对IPG光纤激光器大量的订单来看,光纤激光在中国市场广泛应用的局面会很快到来,尤其是在金属加工(切割、焊接、熔覆、快速成型等)方面。 二、高功率光纤激光应用领域 1.激光焊接领域的应用 光纤激光器的光束质量好,连续功率大,适用于深熔焊和浅表热导焊。连续激光通过调制可提供激光脉冲,从而获得高峰值功率和低平均功率,适用于需要低热输入要求的焊接。由于高功率激光的调制频率高达1万赫兹,因而能够提高脉冲焊接的产能。光纤输送方式使激光能够灵活地集成在传统焊钳、振镜头、机器人和远程焊接系统内。无论采用何种光束输送方式,光纤激光器都具有无可比拟的性能。典型的点焊应用包括依靠振镜头传送光束,从而完成剃须刀片和硬盘挠曲的焊接,从而充分地利用光纤激光器的脉冲功能。光纤激光器的光斑小,焦距长,因而远距离激光焊接的能力大大提高。1-2米的工作间距与传统机器人相比使工作区域提高了数倍,配备光纤激光器的远程焊接工位包括车门焊接、多点焊接和整个车身框架的搭接焊接。光纤激光器焊接的其它例子包括传动部件全熔焊、船用厚钢板深熔焊、电池组密封焊接、高压密封等等。图1展示了光纤激光焊接的效果。

脉冲变压器

脉冲变压器 脉冲变压器是一种宽频变压器,对通信用的变压器而言,非线性畸变是一个极重要的指标,因此要求变压器工作在磁心的起始导磁率处,以至即使象输入变压器那样功率非常小的变压器,外形也不得不取得相当大。除了要考虑变压器的频率特性,怎样减少损耗也是一个很关心的问题。 与此相反,对脉冲变压器而言,因为主要考虑波形传送问题。即使同样是宽频带变压器,但只要波形能满足设计要求,磁心也可以工作在非线性区域。因此,其外形可做得比通信用变压器小很多。还有,除通过大功率脉冲外,变压器的传输损耗一般还不大。因此,所取磁心的尺寸大小取决于脉冲通过时磁通量是否饱和,或者取决于铁耗引起的温升是否超过允许值。 一、脉冲变压器工作原理 脉冲变压器利用铁心的磁饱和性能把输入的正弦波电压变成窄脉冲形输出电压的变压器。可用于燃烧器的点火、晶闸管的触发等。脉冲变压器结构为原绕组套在断面较大的由硅钢片叠成的铁心柱上,副绕组套在坡莫合金材料制成的断面较小的易于高度饱和的铁心柱上,在两柱中间可设置磁分路。电压和磁通的关系,输入电压u1是正弦波,在左面铁心中产生正弦磁通Φ1。右面铁心中磁通Φ2高度饱和,是平顶波,它只有在零值附近发生变化,并立即饱和达到定值。当Φ2过零值的瞬间,在副绕组中就感应出极陡的窄脉冲电动势e2。磁分路有气隙存在,Φσ基本上按线性变化,与漏磁相似,其作用在于保证Φ1为正弦波。 二、脉冲变压器的应用 脉冲变压器广泛用于雷达、变换技术;负载电阻与馈线特性阻抗的匹配;升高或降低脉冲电压;改变脉冲的极性;变压器次级电路和初级电路的隔离应用几个次级绕组以取得相位关系;隔离等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 三、脉冲变压器与一般变压器的比较 所有脉冲变压器其基本原理与一般普通变压器(如音频变压器、电力变压器、电源变压器等)相同,但就磁芯的磁化过程这一点来看是有区别的,分析如下: (1) 脉冲变压器是一个工作在暂态中的变压器,也就是说,脉冲过程在短暂的时间内发生,是一个顶部平滑的方波,而一般普通变压器是工作在连续不变的磁化中的,其交变信号是按正弦波形变化. (2) 脉冲信号是重复周期,一定间隔的,且只有正极或负极的电压,而交变信号是连续重复的,既有正的也有负的电压值。 (3) 脉冲变压器要求波形传输时不失真,也就是要求波形的前沿,顶降都要尽可能小,然而这两个指标是矛盾的。 本文由https://www.sodocs.net/doc/ec7875575.html,整理。

脉冲功率技术

脉冲功率技术 摘要:脉冲功率技术是以较慢的速度将能量储藏在电容器中或者电感线圈中,然后将此电场能获磁场能迅速的释放出来,产生幅值极高的,但持续时间极端的脉冲电压及脉冲电流,从而导致极高功率的脉冲。 关键词:脉冲功率,储能技术 引言:脉冲功率技术中的储能技术包括惯性储能,电容储能,电感储能 一.、脉冲功率技术的发展 脉冲功率技术正式作为一个独立的部门发展,还是近几年的事。事实上作为脉冲功率技术基础的脉冲放电, 早就存在于大自然中。而对脉冲放电的研究则开始于研究天然雷电特性, 以及它对输电线路、建筑物危害及其防护措施。当时这种放电仅限于毫秒级和微秒级。四十年代末期, 就有人开始注意到亚微秒及毫微秒级的高压强流脉冲放电形式。但是, 一方面由于当时客观要求并不迫切;另一方面, 这样快的脉冲放电, 无论在产生技术上, 或者在测量技术上都存在着一定的困难。因此, 其后十多年,这种技术发展并不迅速。六十年代初期, 由于闪光辐射照相和瞬时辐射效应研究的需要, 英国原子能武器研究中心的J.C.马丁所领导的研究小组,开拓了称之为脉冲功率加速器的研究领域, 使毫微秒级脉冲功率技术往前推进了一步。同时, 一些科学技术在发展中受到障碍, 急需找寻新的途径。以微波和激光的发展为例, 利用速调管、行波管等原理去产生大功率高效率毫米或亚毫米微波已经不可能。利用一般方法产生大功率、高效率、波长可调的激光束也不可能。正当人们探索和寻找新的解决途径的时候, 他们发现脉冲功率技术是解决这些问题的良好途径。为此, 美国许多单位, 为桑地亚实验室、物理国际公司、海军研究实验室、康乃尔大学、加利福尼亚大学和斯坦福大学等单位, 对脉冲功

2010最新脉冲光纤激光器说明书(一体机)

脉冲光纤激光器使用说明书

安全信息 在使用该产品之前,请先阅读和了解这份用户手册并熟悉我们为您提供的信息。 这份用户手册提供了重要的产品操作,安全以及其他信息给您以及所有将来的用户作参考。为了确保操作安全和产品的最佳性能,请遵循以下注意和警告事项以及该手册的其他信息去操作。 ●锐科公司脉冲光纤激光器是IV级的激光产品。在打开24VDC电源前,要确保连 接是正确的24VDC的电源并确认正负极,错误连接电源,将会损坏激光器。 ●该激光器在1064nm波长范围内发出超过5W、10W、15W、20W、25W、30W(根 据不同激光器型号)的激光辐射。避免眼睛和皮肤接触到光输出端直接发出或散射出来的辐射。 ●不要打开机器,因为没有可供用户使用的产品零件或配件。所有保养或维修只能在 锐科公司内进行。 ●不要直接观看输出头,在操作该机器时要确保长期配戴激光安全眼镜。 安全标识及位置 上面二个安全标识符号表示有激光辐射,我们把这符号标在产品光纤盒体盖顶上。

目录 1.产品描述 (1) 1.1 产品描述 (1) 1.2实际配置清单 (1) 1.3使用环境要求及注意事项 (1) 1.4技术参数 (2) 2.安装 (3) 2.1 安装尺寸图 (3) 2.2 安装方法 (4) 3.控制接口 (5) 4.操作程序 (6) 4.1 前期检查工作 (6) 4.2 操作步骤 (6) 4.3打标过程中应注意的事项 (6) 5.质保及返修、退货流程 (7) 5.1一般保修 (7) 5.2保修的限定性 (7) 5.3服务和维修 (7)

1.产品描述 1.1 产品描述 锐科脉冲激光器是是为高速和高效的激光打标系统而专门发展的。为工业激光打标机和其它应用提供了一款理想的高功率激光能量源。 脉冲激光器相对于传统的激光器,能够对每瓦的泵浦光转换效率提高10倍以上,低能量消耗的自动设计,适合实验室或室外操作。精巧,可独立放置,可随时使用,能够直接嵌入用户的设备上。 激光器可发出1064nm波长的脉冲激光,通过工业激光器标准接口来控制,激光器需要使用24V直流供电。 1.2实际配置清单 请根据图表1参考所包括的清单。 表1 1.3使用环境要求及注意事项 脉冲激光器需使用24VDC±1V直流电。 1)注意:使用激光器时要将接地线可靠接地。 2)没有内置可供使用的零件,所有维修应由合格的锐科人员来进行,为了防止电击, 请不要损坏标签和揭开盖子,否则产品的任何损坏将不被保修。 3)激光器的输出头是与光缆相连接的,使用时请小心处理输出头,防止灰尘或其它污 染,清洁输出端透镜时请使用专用的镜头纸。激光器没有安装在系统设备上且不 出光的时候,请将光隔离器保护罩盖好以免灰尘污染。

关于脉冲功率电源的介绍

关于脉冲功率电源的介绍 在全球化的发展环境下,各国为了提高自身的综合竞争力,均十分关注科学技术的应用。脉冲功率技术作为重要的技术之一,该技术的发展始于20世纪60年代,在多个领域均有着较为广泛的应用,其中在国防领域扮演着重要的角色。文章主要研究了脉冲功率电源的概况,并分析了其发展的技术阻碍,为了实现其快速的发展,要对其中存在的问题进行有效处理,在此基础上,脉冲功率技术的发展才能够更加稳定,同时,我国的国防竞争力也将不断增强。 标签:脉冲功率电源;电容器组;发电机系统;电池组;技术阻碍 当前,电源的相关问题得到了广泛的关注,其中最敏感的为小型化电源问题。在科学技术的支持下,电源的小型化得到了快速的发展,此类电源的应用是广泛的,其作用日益显著。但小型化电源的发展也存在不足,为了促进其发展,需要对先进的技术进行积极的、全面的运用。在此背景下,文章研究了脉冲功率电源,该电源是借助不同方式进行提供的,具体的方式有电容器组、发电机系统、电感储能系统与蓄电池组等。脉冲功率电源的应用满足了国防武器系统的电能需求,为我国国防工作的开展奠定了坚持的基础。 1 脉冲功率电源的概况 1.1 电容器组 目前,在工业、军事等领域对电容器的应用具有一定的普遍性,其中在电磁炮中的应用取得了良好的效果。随着电磁炮的快速发展,对电容器组的要求不断提高,在脉冲形状控制方面,利用了闭合开关;在能量存储密度方面,利用了新的介电材料,在此基础上,电容器组得到了进一步的发展,进而适应了实际应用的需求[1]。 对于脉冲功率电源而言,作为电源的电容器组存在一定的不足,主要为偏低的转化效率,同时,其充电状态未能保持长期性。为了有效解决此问题,需要借助高功率的大型充电设备,以此保证充电的快速与便捷,与此同时,工作电压也将得到控制。在此基础上,电容器组拥有较大的体积,但在军事领域对于武器系统的体积有着严格的要求。因此,在轨道炮系统中,电容器组的应用缺少针对性与时效性,此时的电源未能适应军事发展的需要。 在对电容器组展开设计过程中,要关注其热量的控制。对于电容器的介电材料而言,通常情况,均属于电绝缘体与热绝缘体。在炮弹发射时,电容器内部的热量将不断升高,为了保证电容器组的安全性,要对其给予高度的重视[2]。 1.2 发电机系统 关于电磁炮发电机的研究,其应用的类型较多,主要有单极脉冲发电机、补

脉冲变压器设计

脉冲变压器设计

目录 前言 ......................................... 错误!未定义书签。 1 脉冲变压器设计要求和原始数据 ............... 错误!未定义书签。 脉冲变压器计算程序设计要求................. 错误!未定义书签。 计算原始数据:............................. 错误!未定义书签。 2 脉冲变压器的设计 ........................... 错误!未定义书签。 线路的计算................................. 错误!未定义书签。 绝缘的设计................................. 错误!未定义书签。 铁心和绕组的选择........................... 错误!未定义书签。 铁心的设计要求............................ 错误!未定义书签。 铁心的去磁电路............................ 错误!未定义书签。 绕组的选择............................... 错误!未定义书签。 脉冲变压器的脉冲的计算..................... 错误!未定义书签。 脉冲平顶降落的验算....................... 错误!未定义书签。 脉冲的前沿畸变验算....................... 错误!未定义书签。 脉冲后沿宽度的检查....................... 错误!未定义书签。 脉冲变压器的整体结构....................... 错误!未定义书签。 脉冲变压器的温升与经济指标................. 错误!未定义书签。 脉冲变压器的温升和经济指标................ 错误!未定义书签。 脉冲变压器的温升和经济指标的验算......... 错误!未定义书签。 3 脉冲变压器的试验 ........................... 错误!未定义书签。 脉冲变压器的初次试验....................... 错误!未定义书签。 加压试验................................. 错误!未定义书签。 改变回路参数的试验....................... 错误!未定义书签。 “+/-极性”的试验....................... 错误!未定义书签。 脉冲变压器的负荷试验....................... 错误!未定义书签。 脉冲波形的检查........................... 错误!未定义书签。 漏感和电容............................... 错误!未定义书签。 变比的测量............................... 错误!未定义书签。总结 ........................................ 错误!未定义书签。致谢 ....................................... 错误!未定义书签。参考文献 ..................................... 错误!未定义书签。

光纤激光器工作原理及发展

光纤激光器的工作原理及其发展前景 1 引言 光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的技术优势。光纤激光器有很多独特优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。近年来光纤激光器的输出功率得到迅速提高。已达到10—100 kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。本文简要介绍了光纤激光器的结构、工作原理、分类、特点及其研究进展,最后对光纤激光器的发展前景进行了展望。 2 光纤激光器的结构及工作原理 2.1光纤激光器的结构 和传统的固体、气体激光器一样。光纤激光器基本也是由泵浦源、增益介质、谐振腔三个基本的要素组成。泵浦源一般采用高功率半导体激光器(LD),增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发辐射所产生的自发辐射光经受激放大和谐振腔的选模作用后.最终形成稳定激光输出。图1为典型的光纤激光器的基本构型。 增益介质为掺稀土离子的光纤芯,掺杂光纤夹在2个仔细选择的反射镜之间.从而构成F—P谐振器。泵浦光束从第1个反射镜入射到稀土掺杂光纤中.激射输出光从第2个反射镜输出来。 2.2 光纤激光器的工作原理 掺稀土元素的光纤放大器促进了光纤激光器的发展,因为光纤放大器可以通过适当的反馈机理形成光纤激光器。当泵浦光通过光纤中的稀土离子时.就会被稀土离子所吸收。这时吸收光子能量的稀土原子电子就会激励到较高激射能级,从而实现离子数反转,反转后的离子数就会以辐射形式从高能级转移到基态,并且释放出能量,完成受激辐射。从激发态到基态的辐射方式有2种:自发辐射和受激辐射。其中,受激辐射是一种同频率、同相位的辐射,可

纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计 随着脉冲功率技术在军事、医疗、环保等领域的快速发展,对于大功率脉冲电源的上升沿宽度要求日益提高,高功率快脉冲也逐渐成为脉冲功率技术的研究热点和发展趋势。而如何以较低的成本在提高脉冲电源电压等级的同时陡化脉冲宽度也是研究的难点之一。 以高压快脉冲为技术核心,以小型化、高重频和高效率为发展方向,本论文提出了一种低成本对称式的脉冲发生拓扑,同时以磁压缩技术陡化脉冲宽度,并深入研究了磁开关的控制技术,以实现高稳定性的纳秒级脉冲电源的研制,论文主要内容分为以下三个部分:1、提出了一种具有对称串联结构的高压脉冲电源拓扑,大幅降低成本;基于这种新型的高压脉冲电源拓扑,分析并初步验证了各种工作环境下的可行性。搭建了该高压脉冲电源的仿真模型,仿真验证了在正常运行和发生闪络等不同状态下电路的工作原理。 在实验室完成了该高压脉冲电源的研制,实验验证了在正常运行和发生闪络等不同状态下对于电路的分析,并在实际应用中证明了该拓扑相对于现有研究的优越性。2、介绍了脉冲磁压缩技术的工作原理,分析了各个磁芯参数对磁开关性能的影响,基于此,确定了磁芯材料的选择,并搭建了磁芯检测平台测量磁芯的磁滞曲线,对比了不同磁芯材料的区别。 基于脉冲电源体积小型化原则,分析了影响磁开关体积的因素,并利用数学模型确定了磁开关参数的最优解。系统地分析了磁复位原理以及磁复位电路与脉冲电源的匹配问题。 最后搭建了30kV/3kW的纳秒级脉冲电源样机,验证了磁复位原理的可行性,以及在高压大功率应用场合可能遇到的问题及其解决方案。3、针对电流型磁复

位方式存在的不足,指出了对于磁开关控制的必要性,并系统地分析了磁开关控制原理,提出了相应的控制方案。 最后基于PLECS软件搭建了35kV的纳秒级脉冲电源的仿真模型,通过仿真验证了控制方案的可行性和稳定性,并从实际应用角度分析了磁开关的最佳工作区间。

连续或脉冲输出功率可调LD驱动电源设计

连续或脉冲输出功率可调LD驱动电源设计 LD(激光二极管)不仅具有一般激光器高单色性、高相干性、高方向性和准直性的特点,还具有尺寸小、重量轻、低电压驱动、直接调制等特性,因而广泛应用于国防、科研、医疗、光通信等领域。然而,由于LD 是一种高功率密度并具有极高量子效率的器件,对于电冲击的承受能力差,微小的电流波动将导致光功率输出的极大变化和器件参数的变化,这些变化直接危及器件的安全使用,因而在实际应用中对驱动电源的性能和安全保护有着很高的要求。在驱动电源的设计过程中,同时考虑对LD 进行安全有效保护,如防止浪涌冲击,慢启动等问题。1 电路结构及原理LD 是依靠载流子直接注入而工作的,注入电流的稳定性对激光器的输出有直接、明显的影响,因此,LD 驱动电源需要 为LD 提供一个纹波小,毛刺少的稳恒电流。该LD 驱动电源包括4 部分:基准电压源,恒流源电路,脉冲控制电路,保护电路。结构框图如图1 所示。 1.1 基准电压源电路基准电压源电路构成如图2 所示,其作用是为恒流源电路提供一个高精度,低温漂的电压参考,同时,为电路中的集成电路(如光耦合器、运算放大器、反相器等)提供稳定工作电压。 LM317 是美国国家半导体公司的三端可调正稳压器集成电路,输出电压范 围是1.2~37 V,负载电流最大为1.5 A,使用简单。其工作过程如下:输出电压Vout 通过R1、VQ1,对C2 充电,开始时VQ1 饱和导通,Vout 最低(约1.5 V)。随着C2 上电压的升高,VQ1 逐渐退出饱和并趋于截止,Vout 逐渐升高至额定电压。改变R1、C2 的常数可改变软启动的时间。改变可变电阻R2 的值,可调整输出电压Vout 的值。VD1 用于关机后使C2 上的电荷快速泄放。其输出电压为:1.2 恒流源电路为了实现高的电流稳定度,驱动电路

高功率脉冲光纤激光器的系列关键技术及其设备研究可行性报告

2009年度浙江省科技计划重大科技专项项目项目可 行性报告及经费概算 重大科技专项名称:重大应用电子技术和新型电子元器件 (一)光电子集成器件的研发 项目名称:高功率脉冲光纤激光器的系列关键技术及其设备研究 申请日期:2008年05月 一、项目可行性报告 (一)立项的背景和意义。 激光技术的发展自20世纪六十年代激光问世以来,已经极大地改变了现代人的思想观念和生活质量。大功率的光纤激光作为一种特殊的光源,近几年来其发展势头之猛,已经远远超出人们当初的想象。本项目将针对高功率脉冲光纤激光器在二个主要方面的应用,即作为精密微加工应用的激光光源和激光频率变换系统的泵浦光源开展工作,研制高品质的高功率脉冲光纤激光器,特别是线偏振输出的高功率脉冲光纤激光器。 随着科学的发展和社会的进步,高效、环保、精密的绿色加工正在从概念走向现实。作为一种蓬勃发展的高新技术,激光加工技术近年来已经在各方面显示绿色加工特有的优势,如采用高功率二氧化碳激光器的金属切割、焊接,采用高功率Nd:YAG激光器的钻孔、刻划、打标等等,都在所应用领域极大地提高了生产效率和产品的质量,降低了工作强度,减少了环境污染。典型的如,大家非常熟悉的原先采用传统手工刻制的公司和私人印章,其加工工艺已经毫无例外地被激光雕刻机加工所取代,其加工的时间也从原来的几天缩短到目前的不到半小时。国际上一些著名的飞机和汽车生产企业,如波音、空客、大众、奔驰等公司都已经在生产中引入了激光加工生产线,作为典型例子,空客公司的正在试飞、即将投入正式运营的空客

A380,正是由于其有效地采用了激光加工技术,提高了加工的精度,因此才能在进一步提高飞机机械强度的同时,大幅度地减少飞机本身的重量,从而为大幅度提高载客量奠定了基础。因为机体体积的显著增大,毫无疑问将使得对机身强度和重量的要求大幅度提高,很难想象,如果没有激光加工技术的广泛应用,空客A380能否实现从原来的载客300人左右提高到目前的580人。 与一般传统的加工用高功率激光器相比,近二年在国际上突飞猛进的光纤激光器具有独特的优点。由于单模光纤独特的光束限制作用,使得光纤激光的光束质量并不会由于激光功率的增加而降低,光纤本身特有的大表面积,又使得严重影响常规固体激光器光束质量的热畸变问题在光纤激光器中也不再是一个问题。非常清楚的是,光束质量的提高,使得激光能被光学系统聚焦到接近于衍射极限的极小斑点内,这使得高质量的精密加工成为可能。由于热控问题的简化, 高功率的光纤激光器在结构上可以得到很大的简化,整体成本大幅降低,这为光纤激光器进入实际生产过程创造了非常有利的条件。举个典型的例子,如果采用常规的Nd:YAG或Nd:YVO4激光器,60W的单横模输出,光束质量因子(M2)小于1.2,价格约为300万人民币,而采用光纤激光器,同样的技术指标,市场售价不到70万。同样,对于20W的高光束质量的固体激光器,价格不会低于35万人民币(此时,较低的价格只能保证光束质量在低于10W时接近单模),而同样功率的光纤激光器的价格低于10万人民币。正因为如此,高的性价比使得光纤激光在绝大多数的领域正在取代传统的常规灯泵和半导体泵浦的固体激光器。 长期以来,高功率的脉冲紫外激光器是精密激光微加工的首选光源。紫外激光加工相对应的激光处理表面可以具有特殊的完整性与光滑度,这主要源于紫外激光在与物质作用中,其过程是直接将分子撕裂、而并非依赖热作用。传统的灯泵或半导体泵浦的固体激光器,为实现高功率的优质基频光输出,需要极为复杂的热耗控制和热透镜畸变补偿系统,这使得整个激光器在结构上相当复杂,稳定性也成为问题。大功率的紫外激光器因此价格昂贵,这也制约了其在各个领域的广泛应用。若能采

浅析高功率光纤激光器

浅析高功率光纤激光器 高功率光纤激光器,是相对于光纤通讯中作为载波的低功率光纤激光器而言(功率为mW级),是定位于机械加工、激光医疗、汽车制造和军事等行业的高强度光源。高功率光纤激光器巧妙地把光纤技术与激光原理有机地融为一体,铸造了21世纪最先进和最犀利的激光器。即使是在激光技术发达的国家,光纤激光器也是尖端、神秘和充满诱惑的代名词。2002年6月,光纤激光器空降中国,震撼了中国激光学术和产业界,引起了尊至院士的深情关注! 一、光纤技术 光纤激光器的最大特点就是一根光纤穿到底,整台机器高度实现光纤一体化。而那些只在外部导光部分采用光纤传输或者LD泵浦源采用尾纤来耦合的激光器都不是真正意义上的光纤激光器。 光纤是以SiO2为基质材料拉成的玻璃实体纤维,主要广泛应用于光纤通讯,其导光原理就是光的全反射机理。普通裸光纤一般由中心高折射率玻璃芯(芯径一般为9-62.5μm)、中间低折射率硅玻璃包层(芯径一般为125μm)和最外部的加强树脂涂层组成。〈见图一〉光纤可分为单模光纤和多模光纤。单模光纤:中心玻璃芯较细(直径9μm+0.5μm),只能传一种模式的光,其模间色散很小,具有自选模和限模的功能。多模光纤:中心玻璃芯较粗(50μm+1μm),可传多种模式的光,但其模间色散较大,传输的光不纯。 用于高功率光纤激光器中的光纤不是普通的通讯光纤,而是掺杂了多种稀有离子、结构更为复杂、耐高辐射的特种光纤---双包层光纤。

双包层光纤比普通光纤在纤芯外多了一个内包层,对泵浦光而言是多模的,直径和受光角较大,能大肆吸收高亮度的多模泵浦光,在光纤内聚集大量的光子。实践证明:横截面为D型和矩形的双包层光纤具有95%的耦合效率因而得到广泛应用。对于脉冲光纤激光器而言,一个重大的课题就是如何提高光纤的耐辐射能力。目前世界上光纤激光器的单脉冲能力可以达到20,000W,一根头发丝大小的光纤如何能承受如此高的激光辐射?所以必须考虑在光纤内掺杂某种特殊离子防止光纤被烧坏。比如掺杂了铈离子的光纤就是在核辐射情况下,既不会因染色而失去透光能力,更不会受热变形。 二、传统固体激光器 激光器说白了就是一个波长转换器---波长短的泵浦光激励掺杂离子转换成长波长的光辐射,它一般由3部分组成:工作物质、谐振腔和泵浦系统。由于光纤激光器本质上属于固体激光器,所以在此仅比较一下传统Nd:YAG激光器的特性。 工作物质: 工作物质是固体激光器的心脏,它的物理性质由基质材料决定,光谱性质由激活离子内的能级结构决定。在YAG单晶体中掺入三价的Nd3+,便构成了目前广泛应用的YAG激光晶体。它主要有如下明显的特点: 1、YAG棒生长速度很慢,一般小于1mm/h。目前最大晶体棒的直径为40mm,长180mm,所以激光增益从根本上受到限制,无法实现特高功率激光输出。

基于SiCMOSFET的纳秒级脉冲电源研制

基于SiC MOSFET的纳秒级脉冲电源研制 脉冲功率技术广泛应用于军事、环境保护、生物技术等领域,比如脱硫脱硝、脉冲杀菌、激光管驱动、阴极射线管扫描电路等。传统脉冲电源的主放电开关主要以真空弧光放电管、氢闸流管、火花隙为主,存在成本高、寿命短、外围电路复杂等缺点。 随着电力电子技术的发展,功率MOSFET和IGBT的性能越来越高,众多研究学者利用MOSFET或IGBT串并联组成高压固态开关替代传统放电开关,进而设计出纳秒级上升沿的高重复频率脉冲发生器。本文以SiC MOSFET为核心功率器件,设计了一台纳秒级脉冲电源,电源主要技术指标为:输出脉冲峰值可调范围为 0~30kV,脉冲重复频率为10Hz~1kHz可调,最大输出电流为80A,脉冲上升时间小于100ns。 本论文的主要工作如下:设计了纳秒脉冲电源的拓扑结构,主电路采用三级Marx发生器结构,研究了SiC MOSFET串联开关的静态和动态电压不均衡机制,给出了影响SiC MOSFET串联均压的关键因素。针对静态均压电路的特性,明确了均压电阻的设计方法,对于动态均压电路,采用负载侧RCD电路作为均压措施,并确定了相应参数的选取依据。 对比分析了正激式驱动、半桥驱动、反激驱动三种驱动方式的优缺点,确定采用半桥驱动的方式作为SiC MOSFET的串联驱动电路,该电路的隔离强度高、驱动电路设计方便,其驱动变压器的原边和副边绕组匝数均为1匝,可减少其分布参数的影响。通过实验测试了驱动电路的同步性,其驱动的延迟时间差异小于 10ns,同步性良好。 采用Microchip公司的dsPIC33FJl28MC706作为主控制芯片,整个控制系统

大功率可控硅整流柜使用说明

STR-1500A大功率可控硅整流柜使用说明 一、适用范围: 本产品适用于电力生产用的水轮发电机或汽轮发电机的励磁系统,在系统中接受励磁调节器的控制,执行和完成励磁工作,本产品特别适用于静止自并励励磁系统。 二、使用技术条件: 1.海拔不超过1000米。 2.环境温度室内不低于-10℃,不高于+40℃。 3.空气最大相对湿度不大于95%(20℃)。 4.没有导电尘埃以及没用腐蚀性破坏绝缘的气体或蒸汽的场所。 5.无剧烈振动和冲击以及垂直倾斜度不超过5 的场所。 6.交流电源应符合三相对称,波形为正弦,频率变动范围不超过1%的场所。 三、产品技术指标(单柜): 1.额定交流三相输入电压550V,最大1500V。 2.额定直输出电压500V,最大1500V。 3.额定直流输出电流1500A,最大3000A(强迫风冷)。 半额定直输出电流900A,最大1000A(弱风冷却或停风运行时温升1.5℃/分)。 4.允许1.8倍的直流输出电流强励20秒(强迫风冷)。 5.功率柜额定风量(4500m3/H)。 6.功率柜采用空气进气过滤密封门结构,元件采用组件结构形式冷却。 7.柜体尺寸:2200×1000×1000(高×宽×厚),风道出风口:565mm×260mm 8.各项指标均符合GB7409--87及299—89、DL/T 650-1998标准的有关规定。 四、工作原理及操作程序: 1.主回路电联结采用三相全控桥式整流由六只φ77mm的大功率晶闸管分别压装在三只风冷组件上.三相交流进线端设有结构紧凑的QHD-01A-1600A/1500V 刀开关,直流输出端设有QHD-1600A/1500V双极刀开关.可以额定运行1500A。每个晶闸管都有NGT3B型快速熔断保护及吸收过电压的RC阻容回路,具有快熔熔断报警.电流表显示输出直流电流的数值。 2.每个柜子的顶部设有风道接口,便于联接空调或风机集中通风.并装设有风压继电器检测信号,考虑停风报警.而且风道罩及其柜前观察窗盖板均可拆卸,便于清扫及更换晶闸管、阻容元件.外部空气通过空气过滤网后进入柜体,以保证空气清洁.柜子前门上装设有输出电流表、及每个桥臂脉冲有显示信号.为方便起见,脉放电源投切开关MK则装在脉冲放大盒上。 3.脉放电源投切开关MK起切合末级直流电源的作用,指示灯显示直流电源的分,合状态.外部直流电源和同步方波信号通过19线航空插头送到脉冲形成回路中.六对脉冲触发线通过脉冲变压器隔离后,送到末极整流板上.脉冲形成回路包括:光电隔离、信号整形、脉冲列调制、功率放大、反向去磁、工作显示和稳压滤波等环节.末级整流板将脉冲变压器副边的脉冲信号进行整流、反向箝位、

脉冲功率技术

华中科技大学研究生课程考试答题本 考生姓名李猛虎 考生学号 M201371361 系、年级高电压与绝缘技术2013级类别硕士 考试科目脉冲功率技术 考试日期 2013年12月15日

脉冲功率技术是指把较小功率的能量以较长时间慢慢输入到能储存能量的设备中,然后通过动作时间在毫微秒左右的快速开关将此能量在毫微秒至微秒时间内释放到负载上,以得到极高的功率,实质上是输出功率对输入功率的放大。脉冲功率系统中能量的储存方式有许多种,如电容储能,电感储能,脉冲电机储能以及电池储能等。脉冲功率技术研究的技术指标为:电压1kV~10MV,电子能量0.3~15MeV(电子伏),述流大小1kA~10MA,脉冲宽度0.1~100ns,束流功率0.1~100TW,总能量:1kJ~15MJ。脉冲功率技术的特征是:高脉冲功率,短脉冲持续时间,高电压,大电流。 脉冲功率技术,是以电气科学技术为基础,把电工新技术和高电压-大电流技术融为一体的新型学科。脉冲功率技术在国防科研和高新技术领域有着极为重要的应用,而且现在已经越来越多地应用于工业和民用部门,它是高新技术研究的重要技术基础之一,有着极其广泛的发展和应用前景。 脉冲功率的发展历程 脉冲放电现象存在于大自然。人们最早是在20世纪30年代开始研究脉冲功率现象。1938年,美国人Kingdon和Tanis第一次提出用高压脉冲电源放电产生微秒级脉宽的闪光X 射线;1939年,苏联人制成真空脉冲X射线管,并把闪光X 射线照相技术用于弹道学和爆轰物理学实验。采用高压脉冲电容器并联充电、串联放电方式来获得较高电压脉冲。第二次世界大战期间,企图将脉冲功率技术应用于军事的电磁炮和其他研究再度兴起,也促进了脉冲功率科学技术的形成和发展。1947年,英国人A.D.Blumlien以专利的形式,把传输线波的折反射原理用于脉冲形成线,在纳秒脉冲放电方面取得了突破。1962年,英国原子能研究中心的J.C.Martin领导的研究小组,将Marx发生器与Blumlien的专利结合起来,建造了世界上第一台强流相对论电子束加速器SOMG(3MV,50kA,30ns),脉冲功率达TW(1012W)量级,开创了高功率脉冲技术的新纪元。1986年建成PBFA-II 装置,其峰值电压为12MV、电流8.4MA、脉宽40ns,其二极管束能为4.3MJ,脉冲功率1014W,是世界上第一台功率闯过100TW 大关的脉冲功率装置。 美国和俄罗斯目前在脉冲功率技术上处于领先地位。美国从事脉冲功率技术研究的机构有Sandia国家实验室、Lawrence Livermore国家实验室、Maxwell实验室、Los Alamos科学实验室、海军武器研究中心、Texas技术大学等。1967年在Sandia 实验室建成的Hermes2I 为当时最大的脉冲功率装置;1972年美国陆军的Hary Diamond实验室建成了Aurora装置,这个设备由4台Marx发生器组成,是脉冲功率史上的一个里程碑;1986年Sandia实验室又建成了FBFA2II,是世界上第1个闯过100TW 大关的装置。俄罗斯从事脉冲功率技术研究的机构有库尔恰托夫研究所、新西伯利亚核物理所、托姆斯科大电流电子学研究所、电物理装备所、列别捷夫所等, 建造了许多大型的Marx成形线型联合装置,1985 年建成的AHrapa25就是其中之一。日本的脉冲功率技术主要应用于强流粒子束加速器,特别重视轻离子的惯性约束聚变。从事脉冲功率技术研究的机构有东京大学、熊本大学、大阪大学、长岗技术大学等, 较著名的装置有大阪大学的Raiden2IV和1986年长岗技术大学建成ETIGO 2II。

高压脉冲发生器

FS系列直流高压发生器 一、产品概述: 高压脉冲发生器广泛用于电表、家用电器、低压电器、机电等相关行业进行绝缘性能试验。高压脉冲发生器主要包括充电电路、脉冲成形电路两大部分。此外,脉冲变压器是高压大功率脉冲发生器中的关键部件,其功率转换效率高并对减小脉冲发生器的体积和重量起到决定作用。 FS系列直流高压发生器是我公司根据中国行业标准BF24003-90《便携式直流高压发生器通用技术条件》的要求,重新设计制造的新一代便携式直流高压发生器。它适用于电力部门、企业动力部门对氧化锌避雷器、电力电缆、发电机、变压器、开关等设备进行直流高压试验和泄漏电流试验。 二、高压脉冲发生器设计的要点 1、充电电路 目前比较常见的高压脉冲发生器充电电路包括电阻充电电路和电感充电电路。电阻充电电路结构简单、技术成熟,但其充电效率低,一般适用于中小功率、脉宽窄或工作比很低的场合;电感充电电路,由于其效率较高,故在大功率、高频场合下经常使用。另外,还有回扫充电电路、阶梯充电电路等。实际应用中需根据具体要求选择合适的充电电路。

2、高压脉冲成形 高压脉冲成形是高压脉冲发生器的主要部分。对于一般的指数型脉冲,可以通过控制调制开关的导通,使储能电容通过调制开关对负载放电,从而在负载上得到输出脉冲。该方法简单、技术成熟,但其杀菌效率明显低于方波脉冲。目前高压方波脉冲的产生一般采用全桥逆变加脉冲变压器升压。这种脉冲成形电路的优点是降低了初级电路的设计难度,但也存在很大的缺陷,如初级的震荡会传递到次级,从而使输出波形变差,其占空比的调节也比较困难,在频率较低时脉冲变压器体积较大且难设计。随着高压大电流开关的发展,使用高压直流电源、高压调制开关,可以通过控制开关的导通和关断在负载上得到脉冲输出。 该开关通过简单的电路,将功率MOSFET或者IGBT串并联,通过选用低感元件及合理的布局,从而实现脉宽和频率宽范围可调的高压脉冲发生器,且寿命长易于维修,但串并联开关器件导通和关断的控制电路设计比较复杂,需考虑均压均流同步等问题。另外,还有一种线型脉冲调制器,其以人工线(脉冲形成网络)做储能元件,用氢闸流管或晶闸管SCR 做开关,实现全部放电的脉冲调制器。其中人工线由电容和电感组成,随着其级数的增加,输出脉冲的波形越趋于方波。但人工线参数一旦确定,其输出脉宽就基本确定,所以该方法不适用于要求输出脉宽大范围可调的场合。实际应用中根据实际输出脉冲的指标要求来选取合适的脉冲成形电路。 3、高压脉冲变压器的设计 高压脉冲发生器中为了解决调制开关器件的电压等级以及阻抗匹配等问题,一般采用脉冲变压器。脉冲变压器的使用会使其最大输出脉冲受限于脉冲变压器磁芯的可利用伏秒特性,为了增加输出脉宽,一般增加去磁电路,以使其磁芯复位。利用脉冲变压器升压的高压脉冲发生器,其初级电路电压等级降低、设计难度减小。但这种结构要求脉冲变压器初级必须流过较大的电流,在脉冲变压器升压比较大时初级电流更大。因此在设计中要根据输出电压幅值、功率大小、脉冲调制开关的开关能力和脉冲参数的要求等方面进行权衡以确定合适的脉冲变压器升压比。脉冲变压器的漏感以及回路分布电感会影响输出脉冲的前后沿,因此在对输出脉冲前后沿要求较高或要求输出窄脉冲时,应设法减小脉冲变压器的漏感以及合理布局放电回路。 三、工作原理

相关主题