搜档网
当前位置:搜档网 › PA6000功率分析仪助力赛宝实验室组建光伏逆变器防孤岛效应测试系统

PA6000功率分析仪助力赛宝实验室组建光伏逆变器防孤岛效应测试系统

PA6000功率分析仪助力赛宝实验室组建光伏逆变器防孤岛效应测试系统
PA6000功率分析仪助力赛宝实验室组建光伏逆变器防孤岛效应测试系统

PA6000功率分析仪助力赛宝实验室组建光伏逆变器防孤岛效应测试系统PA6000高精度功率分析仪在光伏逆变器测试领域的应用

赛宝计量检测中心是经国家授权认可的权威第三方校准检测机构,其名下的赛宝佛山实验室,主要面向光电显示、光伏、光照明产业,为其提供专业的计量、校准与标准评定服务。随着NB/T32004-2013、VDE-AR-N4105等新业界标准的执行,光伏逆变器的防孤岛效应保护性能、谐波含量等指标面临着新的测试挑战。为了给客户提供更准确的光伏逆变器标准检测服务,赛宝佛山实验室联合仪器厂商致远电子,在原有的防孤岛效应测试平台中加入PA6000功率分析仪,实现测试系统的优化升级。

注:防孤岛效应保护测试是光伏逆变器技术规范检验标准中一项非常重要的测试项目,是指通过对电网异常时的并网点状态进行仿真,检验光伏逆变器是否具备正常的防孤岛效应保护功能。

图1防孤岛效应测试平台

1.1如何实现防孤岛效应测试结果的准确测量?

当电网发生故障并电压跌落时,光伏逆变器仍保持对电网中的临近部分线路供电的现象称为孤岛效应。因为对于整个断电的电网,此时的光伏逆变器就像孤岛一样,只有自身附近存在电力供应。孤岛效应会造成配电设备故障和威胁到电网维修人员的安全,因此任何并网光伏逆变器都必须具备防孤岛效应保护功能。

根据NB/T32004-2013标准提出的防孤岛效应测试要求,光伏逆变器遇到电网电压异常跌落时,要在2s内将输出电流减少到正常输出额定值的1%以下,避免孤岛效应的发生。那么该如何准确测试光伏逆变器的防孤岛效应保护性能呢?

10ms数据刷新率准确测量光伏逆变器脱网时间

业界常见的功率分析仪最高只能提供50ms的数据刷新率,无法对周期为20ms的工频信号进行时域上的准确捕捉。如图2所示,PA6000功率分析仪具备业界唯一的10ms数据刷新率,可对光伏逆变器的输出工频信号进行半波分析,准确测量其防孤岛效应保护的脱网时间长度。

图2对工频信号进行半波分析

●0.02%测量精度准确测量光伏逆变器输出电流值

同时,PA6000功率分析仪具备高达0.02%的测量精度,能捕捉到电流跌落至1%额定值时的瞬态值,准确测量出光伏逆变器的脱网瞬态电流值。

通过10ms数据刷新率与0.02%测量精度两者结合,PA6000功率分析仪可实现光伏逆变器防孤岛效应保护功能的完美测试,避免了孤岛效应的危害。

1.2如何提高光伏逆变器测试的效率?

●数据波形同屏显示实现数据与波形的同步输出

传统的光伏逆变器测试需要用示波器测量信号的波形,同时用功率分析仪测量数值,然后通过人工对两者测量结果进行时间上的匹配,繁琐且容易出错。

PA6000功率分析仪可实现对工频信号进行实时无死区的瞬态波形记录。利用数据与波形同屏显示,测量人员可直接获取同一时间节点下的测量信号波形与数值数据,有效提升工作效率。

注:PA6000功率分析仪具备10ms数据刷新率与200KS/s采样率,可对周期为20ms的工频电压进行数值和波形图像的真实同步还原,所以能直接应用于防孤岛效应测试当中。

图3数值与波形同屏显示

●三相谐波参数同屏显示

PA6000原本配置有两路谐波测量参数同步显示功能,但根据赛宝实验室工程师的使用反馈,在实际测量光伏逆变器谐波时需要记录下三相输出线路在相同时间点下的谐波参数,所以两路谐波显示并不能满足其测量需要。致远电子在获取反馈后立刻响应客户需求,对软件的谐波测试模块进行升级,并在PA6000优秀的运算性能支持下,完美实现了同屏三相谐波参数显示,帮助赛

宝实验室实现对光伏逆变器三相输出的谐波测量。

图4三相谐波测量值同屏显示

1.3全面高效的本地化服务

致远电子是国内最早进入测量仪器行业的企业之一,拥有资深研究与开发工程师近400名,销售服务网点遍布全国各地,不仅极速响应客户要求,还根据行业用户的差异化需求提供个性定制服务。我们将坚持不懈的推动并引领中国高端测量仪器的发展与提升,相信由于我们的存在,世界将因此而不同。

太阳能逆变器的测试系统详解

太阳能逆变器的测试系统详解 太阳能逆变器测试系统详细描述: 1.防孤岛检测装置(手动型) ACLT-2210M RLC各11.1K,总装机容量33.3K,步进幅度0.001K,最大电流分辨率1mA,满足10K逆变器防孤岛保护试验检测需要 ACLT-3803M RLC各32.97K,总装机容量98.91K,步进幅度0.01K,最大电流分辨率1mA,满足30K逆变器防孤岛保护试验检测需要 ACLT-3820M RLC各66.97K,总装机容量200.91K,步进幅度0.01K,最大电流分辨率1mA,满足60K逆变器防孤岛保护试验检测需要 ACLT-3830M RLC各109.97K,总装机容量329.91K,步进幅度0.01K,最大电流分辨率1mA,满足100K逆变器防孤岛保护试验检测需要 ACLT-3840M RLC各139.97K,总装机容量419.91K,步进幅度0.01K,最大电流分辨率1mA,满足130K逆变器防孤岛保护试验检测需要 ACLT-3860M RLC各209.97K,总装机容量629.91K,步进幅度0.01K,最大电流分辨率1mA,满足200K逆变器防孤岛保护试验检测需要

ACLT-3880M RLC各269.97K,总装机容量809.91K,步进幅度0.01K,最大电流分辨率1mA,满足250K逆变器防孤岛保护试验检测需要 ACLT-38160M RLC各529.97K,总装机容量1589.91K,步进幅度0.01K,最大电流分辨率1mA,满足500K逆变器防孤岛保护试验检测需要 ACLT-38300M RLC各1079.97K,装机容量3239.91K,步进幅度0.01K,最大电流分辨率1mA,满足1000K逆变器防孤岛保护试验检测需要 太阳能逆变器测试系统 一、太阳能逆变器测试系统关于谐振频率的难点为了模拟孤岛运行环境,需要RLC负载能够精确产生一个稳定的基频频率(50Hz或60Hz),谐振频率公式,L与C一定要均衡,才能达到基频频率。为了高效率实施逆变器检测,防孤岛试验检测装置在选型时一定要注意选择一套可以稳定、快速、自动调试出基频频率的RLC负载。 二、太阳能逆变器测试系统关于逆变器输出无功对谐振频率的影响所有被测光伏逆变器一定会有无功输出,无功可能是容性,也可能也是感性。关键是在实施防孤岛效应保护试验时,逆变器输出无功功率一定要可以自动补偿到RLC 负载调试中,避免在试验过程过欠频触发保护,导致测量结果错误。所以一定要注意选择一套可以自动补偿逆变器输出无功功率的RLC负载。 三、太阳能逆变器测试系统关于寄生量对测量结果的影响如果试验的电感负荷比电容大,谐振频率会大于50Hz,电感负荷比电容小,谐振频率会小于

孤岛效应的原理

孤岛效应的原理 在电子电路中,孤岛效应是指电路的某个区域有电流通路而实际没有电流流过的现象。 在电容器串联的电路里,只有与外电路相连接的两个极板(注意:不是同一电容器的极板)有电流流孤岛效应动(电荷交换),其他极板的电荷总量是不变的,所以称为孤岛。孤岛是一种电气现象,发生在一部分的电网和主电网断开,而这部分电网完全由光伏系统来供电。在国际光伏并网标准化的课题上这仍是一个争论点,因为孤岛会损害公众和电力公司维修人员的安全和供电的质量,在自动或手动重新闭合供电开关向孤岛电网重新供电时有可能损坏设备。所以,逆变器通常会带有防止孤岛效应装置。被动技术(探测电网的电压和频率的变化)对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。现在已有许多防止的办法,在世界上已有16个专利,有些已获得,而有些仍在申请过程当中。其中的有些方法,如监测电网流过的电流脉冲被证明是不方便的,特别是当多台的逆变器并行工作时,会降低电网质量,并且因为多台逆变器的相互影响会对孤岛的探测产生负面影响。在另一些场合,对电压和频率的工作范围的限制变得宽了,而安装工人通常可以通过软件来设置这些参数,甚至于ENS(一种监测装置,在德国是强制性的)为了能在弱的电网中工作,可以把它关掉。 [编辑本段]孤岛效应实验室 一般是用谐振模拟负载电路,同时定义了一个质量因数,“Q-factor”。尽管如此,这些试验还是很难运行,特别是对于那些高功率的逆变器,它们需要很大的试验室。试验的电路和参数会根据不同国家有所不同,测试结果很大程度上取决于试验者的技术水平。 现已开展了一些研究,用来评估孤岛效应和它关联风险的各种可能性,研究表明对于低密度的光伏发电系统,事实上孤岛是不可能的,这是因为负载和发电能力远远不可能匹配。但是,对于带高密度光伏发电系统的电网部分,主动孤岛效应保护方法是必要的,同时辅以电压和频率的控制,来保证光伏带来的风险降到极其微小,这一数据须与不带光伏的电网的年触电预计数相比较。大多数光伏逆变器同时带有主动和被动孤岛保护,虽然没有很多光伏突入电网的例子,但对于这方面,国外的标准没有放松。 孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因

光伏逆变器安装施工方案计划

20MW太阳能发电项目光伏场区

一、工程概况 1、工程概况 华润安达1号太阳能发电项目位于安达市西南部约18km处,项目所在地北侧为规划高 速公路,东侧与中和砖厂相邻,项目所在地区平坦开阔,地势较低,无不良地质现象,场地布置条件较好。场地为盐碱地。施工时将场地挖填平整、并填土至沟塘形成相对平坦地貌以利于工艺布置及场地排水,即可形成良好的施工场地,场地布置条件较好。 本期光伏厂区内占地面积为633790㎡,共安装18组1MWp太阳能子阵,总容量为 20.16MWp。施工道路与永久道路可结合。通过平整场地,用砂石铺垫,作为施工道路使用。待施工结束后,完善道路二侧边沟系统、路面养护后可作为永久道路使用。 安达市位于黑龙江省西南部,地处大庆市与肇东市之间。属中温带大陆性季风气候,冬季(11月至次年3月)被强大的蒙古高压控制,在其影响下多偏北风,天气干燥严寒;夏季(6月至8月)受副热带海洋气团的影响,降水集中,光照充足气候温热、湿润。春季(4 月至5月)多偏南大风,降水较少,易发生春旱;秋季(9月至10月)天高气爽,降温较快,常有早霜危害。气候基本特点是:冬长雪少,天气寒冷;夏短湿热,降水集中;春季风大,气候干燥;秋凉气爽,时有早霜。全年降水较少,平均气温在3℃左右。年平均无霜期较短,在170d左右。 2、太阳能资源 黑龙江省年太阳总辐射量为4400~5400MJ/ m2(相当于1222~1500kWh/ m2)。太阳 直接辐射年总量为2526~3162 MJ/ m2,直接辐射在总辐射中所占比例较大,在0.57~0.63之间,年日照时数在2242~2842小时。 华润安达光伏发电项目所在地年均太阳辐射量1357.70kWh/m2,年均日照时数2681.97h,日照时间较长,利用太阳能资源的条件较好。场址地区水平面日平均辐照度为3.72 kWh/m2d,项目场址在我国属于太阳能“资源丰富”地区,具备一定开发价值。从太阳能资源利用角度说,此地区适合建设太阳能光伏发电站。 3、气象条件 安达市位于黑龙江省西南部、松嫩平原中部,东经124°53′至125°55′,北纬46°01′至47°01′,地势东部略高,西部略低,平坦开阔,平坦地面下沉积着新老地层,储藏着丰富的水、石油和天然气等资源。安达市地处中纬度寒温带大陆性季风气候,年平均气温为4.2℃,最热月(7月)平均气温为32.1度,最冷月份(1月)平均气温为-18.7度,历年极端气温最高为38.7度,历年极端气温最低为-37.9度;年平均降水量为432.5

光伏并网逆变器测试规范

深圳市晶福源电子技术有限公司 并网逆变器电性能测试规范 (此文档只适用于金太阳标准) 拟制:彭庆飞/丁川日期:2012.11.19 审核:石绍辉日期:2012.12.01 复审:石绍辉日期:2012.12.07 批准:石绍辉日期:2012.12.07 文件编号:20111219 生效日期:2013.1.1版本号:VA.1

文件修订记录

目录 1目的 (6) 2适用范围 (6) 3定义 (6) 4引用/参考标准 (6) 5测试基本原则及判定准则 (6) 5.1测试基本原则 (6) 5.2 测试问题分类的基本原则和标准 (6) 5.4 质量判定准则 (6) 6测试仪器、测试工具、测试环境 (7) 6.1 测试仪器 (7) 6.2 测试工具 (7) 6.3 测试环境 (7) 7测试项目、测试说明、测试方法、判定标准 (7) 7.1基本性能测试 (7) 7.1.1 直流输入电压范围和过欠压测试 (7) 7.1.2 电网电压响应测试 (8) 7.1.3 电网频率响应测试 (9) 7.1.4 并网电流直流分量 (10) 7.1.5 并网电压的不平衡度测试 (10) 7.1.6 功率因数测试 (10) 7.1.7 效率测试 (11) 7.1.8 最大功率点跟踪(MPPT)测试 (11) 7.1.9 并网电流谐波测试 (13) 7.1.10 噪声测试 (13) 7.1.11 检测和显示精度测试 (14) 7.1.12 母线软启动及浪涌电流测试 (15) 7.1.13 自动开关机测试 (15) 7.1.14 逆变软启动测试 (16) 7.1.16 PV输入限流测试 (16) 7.1.18 输出隔离变压测试 (16) 7.1.19 恢复并网保护测试 (17) 7.1.20 输出过流保护测试 (17) 7.1.21 防反放电保护测试 (18) 7.1.22 极性反接保护测试 (18) 7.1.23 输入过载保护测试 (19) 7.1.24 孤岛保护测试 (19) 7.1.25 逆向功率保护测试 (21) 7.1.26 EPO紧急关机测试 (22) 7.1.29 EPO关机驱动电压测试 (22) 7.1.30 电容放电时间测试 (23) 7.1.31 死区时间测试 (23) 7.1.33 母线电容纹波电流测试 (23) 7.1.34 逆变滤波电容纹波电流测试 (24) 7.1.35 逆变电感纹波电流测试 (24) 7.2 故障模拟测试 (24) 7.2.1 母线软启动失败测试 (24) 7.2.3 输出变压器和电抗器过温模拟测试 (25) 7.2.5 逆变晶闸管/接触器开路故障模拟测试 (25) 7.2.7 风扇故障模拟测试 (26) 7.2.8 输出相序接反保护测试 (26)

(完整word版)光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点 提出问题: 1.光伏发电系统并网时的主要部件是什么? 2.光伏逆变器如何分类?其电路如何构成? 3.IGBT是什么,有什么特点,主要参数? 4.电力MOSFET是什么,主要参数和特性? 5.逆变器的常用电路有哪些,各自的接线和特点是什么? 6.常用逆变器的形式有哪些,各自特点是什么,主要生产厂家? 1?光伏发电系统并网时的主要部件是什么? 光伏发电系统并网时的主要部件是逆变器。 无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。 逆变器乂称电源调整器、功率调节器,是光伏系统必不可少的一部分。通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。逆变器的名称由此而來。光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。 逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。

2.光伏逆变器如何分类?其电路如何构成? 光伏逆变器的分类如下图: 逆变器的分类 输出波形运行方式输出交流电相数功率流动方向方波逆变器阶梯波 逆变器正弦波逆变 器 离网逆变器并网逆 变器 单相逆变器三相 逆变器 单向逆变器双向逆 变器 功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。逆变器的显示功能主要包括:直流输入电斥?和电流的测量值,交流输出电床和电流的测最值,逆变器的工作状态(运行、故障、停机等)。 光伏逆变器的电路构成如下图所示: 控制电路: 逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲來控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。 辅助电路: 辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。辅助电路还包含多 并网逆变器 Sd Conriectca Convener s?. AC Elecincrty Q 电网s >

光伏并网逆变器调试报告

光伏并网逆变器系统 调试报告 项目名称________________ 报告编号________________ 拟制单位________________ 拟制日期________________ 阳光电源股份有限公司 SUNGROW POWER SUPPLY CO.,LTD.

一、系统调试整体信息 序号类别内容备注 1 调试日期 2 调试地点 3 调试人员 4 站房信息 5 系统配置逆变器主机台 调试记录表 共份直流配电柜台 交流配电柜台 光伏汇流箱台 环境检测仪台 数据采集器台 工控机台 二、系统调试结论 调试项目达标条件自检结果验收意见光伏汇流箱符合要求,功能正常 直流配电柜符合要求,功能正常 交流配电柜符合要求,功能正常 环境检测仪符合要求,功能正常 数据采集器符合要求,功能正常 并网逆变器符合要求,功能正常 系统通讯符合要求,功能正常 施工单位检查评定结果: 调试人员: (签字/单位公章) 日期:年月日 监理(建设)单位验收结论: 专业监理工程师或负责人: (签字/单位公章) 日期:年月日

并网逆变器调试记录表编号:项目名称产品型号 业主单位产品编号 设备厂家安装位置 调试步骤调试项目技术要求及调试内容 自检 结果 验收 记录 1 设备安装情况检查设备安装应牢固可靠,柜门开启方便 连接线情况检查连接线具有明确标识,接线牢固可靠,无松动连接线绝缘阻值检查进线、出线对地阻值大于10兆欧,无碰壳现象设备接地阻值检查接地电阻不应大于10欧(或符合设计要求) 2 逆变器运行参数 正常运行时逆变器运行数据记录 L1-L2\N电压V L1电流 A L2-L3\N电压V L2电流 A L3-L1\N电压V L3电流 A 电网频率HZ 直流电压 V 输出功率KW 直流电流 A 机内温度℃日发电量KWh 总发电量 KWh CO2减排Kg 3 逆变器LCD显示液晶屏显示正常,字符清晰时间校对 4 逆变器启动、停机、 待机试验 电网正常时,直流电压大于启动电压,等待1-5分 钟左右逆变器启动运行;当交流侧功率小于500W连 续10分钟机器待机;通过LCD上操作按键,执行启 停机命令,逆变器能正常启停机 紧急停机测试触动紧急停机按钮,机器立即停止工作 防孤岛效应保护电网失电,逆变器应在0.2秒内停止输出 上位机通讯测试逆变器和上位机通讯流畅,无数据丢失 施工单位检查评定结果: 项目专业调试人员: (签字/公章) 日期:年月日监理(建设)单位验收结论: 专业监理工程师: (签字/公章) 日期:年月日

光伏并网逆变器一个有效的反孤岛解决方案

反孤岛解决方案 1. 孤岛效应 所谓孤岛效应,是指当电力公司因故障或停电维修而停止供电时,用户端的并网逆变器系统仍处于工作状态,使得并网逆变器和周围的负载形成了电力公司无法控制的自供电网络。光伏并网发电系统处于孤岛运行状态时会产生严重的后果: (1)电网无法控制孤岛中的电压和频率,若电压和频率超出允许的范围,可能对用户的设备造成的损坏; (2)若负载容量大于光伏发电系统的容量,光伏发电系统过载运行,易被烧毁; (3)与光伏发电系统连接的电路仍会带电,对检修人员造成危险,降低电网的安全性; (4)对孤岛进行重合闸操作时会导致该线路再次跳闸,还有可能损坏光伏发电系统和其他设备。 因此,光伏并网逆变器具有孤岛检测和反孤岛的功能是很有必要的。 2. 孤岛检测 检测孤岛效应的方法有很多种,主要分为两种:被动检测和主动检测。 被动检测就是光伏并网逆变器检测与电网连接处的电网电压或频率的异常来检测孤岛效应。 主动检测是有意的引入一些扰动信号,来监控系统中的电压、频率和阻抗的相应变化,以确定电网的存在与否。 比较被动检测和主动检测的区别,被动检测的软件实现比较简单,但是检测范围有限,无法满足并网发电系统反孤岛保护安全标准的要求,因此我们选择用主动检测的方法;而主动检测可以使孤岛检测的盲区尽可能的小,孤岛检测比较有效,但是软件实现比较复杂,并且会使并网发电系统的发电效率有所降低。 国际上对反孤岛检测方案和响应时间没有明确的规定, IEEE Std.929[2]和IEEE Std.1547[3]根据孤岛效应发生时的具体情况推荐了不同的孤岛效应检测时间。表1为IEEE Std.1547[3]允许的孤岛效应检测时间。 n n n f 指电网电压的频率值。对于中国的单相市电,n f 为50Hz 。

光伏逆变器测试实验室 PV inverter testing lab

? T üV , T U E V a n d T U V a r e r e g i s t e r e d b r a n d m a r k s . A n y u s e a n d a p p l i c a t i o n r e q u i r e s p r i o r a p p r o v a l . P 1S B 046z h e n G C 12081.0 光伏逆变器测试实验室PV inverter testing lab 光伏逆变器一站式认证服务 One-stop PV Inverter Certification Service PRODUCTS ? ELECTRICAL TUVdotCOM,展示企业与产品的竞争优势TUVdotCOM.The visible difference. TUVdotCOM 使您的产品在激烈竞争中与众不同。您可以随时随地通过该平台进行查询,所有经德国莱茵TüV 测试的产品、服务、公司、体系或人员信息将一览无余,充分展示客户产品及公司体系的质量和安全性。 The TUVdotCOM Internet platform makes the difference visible: All products, services, companies, systems, personnel certifications tested by TüV Rheinland– extremely well documented and globally-accessible. 我们是全球光伏产品检测和认证的领导者,拥有近30年的丰富经验 我们全球光伏产品测试网络拥有250多名专家,为全球各个地区提供专业服务我们全球6所顶尖光伏产品检测中心拥有最强的测试能力和最大的测试容量我们的光伏逆变器实验室采用国际先进的自动化仪器设备实现快捷、高效、专业检测服务 我们光伏逆变器实验室通过了全球CB 认证体系IECEE 的认可,是中国第一家CBTL 认可的光伏逆变器测试实验室,同时获得CNAS 、CGC 、TAF 、OSHA 、SCC 、DAkkS 等多项资质认可 TüV Rheinland is a global leader in the provision of testing and certification services for PV products, with nearly 30 years of experience Our unique global network backed by more than 250 experts provides professional service to various regions of the world We have six world-class solar energy assessment centres with the strongest testing capabilities and capacity worldwide Our PV inverter testing lab uses advanced automatic equipment to achieve fast, efficient and professional testing results Our lab has been accredited by the IECEE under the CB scheme. It is the first CBTL certified testing laboratory for PV inverters in China, and is recognised by CNAS, CGC, TAF, OSHA, SCC, DAkkS, etc.

并网光伏逆变器效率现场试验技术分析

龙源期刊网 https://www.sodocs.net/doc/e416104610.html, 并网光伏逆变器效率现场试验技术分析 作者:刘书强董双丽林荣超 来源:《科技与创新》2016年第14期 摘要:光伏并网逆变器是光伏并网电站的核心设备,其效率是决定光伏并网发电系统整 体效率的重要参数。但是,目前,逆变器的性能试验绝大多数是基于实验室环境下的,缺乏并网光伏电站现场的性能试验。针对逆变器的实际运行环境搭建现场试验平台,进行24 h不间 断测试,以获取逆变器的全天运行数据,并计算欧洲效率、加州效率和中国效率,从而全面分析逆变器效率。 关键词:逆变器效率;欧洲效率;加州效率;中国效率 中图分类号:TM464 文献标识码:A DOI:10.15913/https://www.sodocs.net/doc/e416104610.html,ki.kjycx.2016.14.013 随着环境污染和资源枯竭问题的日益突出,近年来,太阳能作为可持续发展的清洁能源得到了世界各国的广泛支持。我国政府也不断加大对光伏产业的支持力度,使得国内光伏并网发电产业迅猛发展。其中,光伏并网逆变器是并网发电系统的核心部件之一,其性能关系着整个光伏并网发电系统的整体效率和质量。如何对其进行全面、有效的试验评估对于光伏并网发电系统中逆变器的选取有重要的技术支撑意义。 目前,国内并网光伏逆变器综合性能测试平台的主要技术方案是:利用光伏电池阵列模拟器模拟光伏电池阵列输出,以便在实验室中完成对光伏逆变器的测试。 然而,实验室环境下的试验是在特定的环境和电网条件下进行的。由于光伏电池阵列模拟器仅能进行离散负载点的模拟,而光伏并网逆变器的实际运行环境会受到辐照强度、温度等连续变量的影响,也会受到电能质量、电网调度、其他电气设施等综合因素的影响,这些都是在实验室中无法模拟出来的。 本文针对并网光伏逆变器实验室环境试验条件下的不足搭建了现场试验平台,24 h连续测试逆变器的运行参数,并计算和分析欧洲效率、加州效率和中国效率。 1 现场试验平台搭建 该试验平台是以佛山某并网光伏电站为基础搭建的,它主要是由三部分构成的,即并网光伏电站、测试设备和数据分析系统。其中,并网光伏电站包括光伏阵列、防雷汇流箱、并网逆变器、变压器和开关站等设备;测试设备包括功率分析仪、气象监控设备;数据分析系统是将功率分析仪采集的数据导出,并通过相应的计算、分析得出结果。整个平台的设计方案如图1所示。 2 效率对比分析

光伏发电系统调试报告

xxxx光伏发电系统 调试报告 项目名称: xxxx 建设单位: xxx 监理单位: xx 总包单位: xx 分包单位: xx 光伏并网系统调试过程记录表

1、调试前、对照附件A 光伏并网系统调试检查表、依次对照各个检查项目进行检查,要求所有项目都符合要求。 2、检查并确保逆变器电网开关(AC开关)设置为零(水平位置)。直流侧输入开关处于断开位置。 3、打开交直流配电柜,检查所有空开、刀闸开关都处于断开位置。 4、合上刀闸开关,然后再合上配电柜1AA6第五路开关,用万用表检查空开上端市网电压是否正常,记录数据。电压符合要求,合上市电输入空开,这时市电输入到逆变器,这时激活逆变器系统控制器,前面显示板亮起。 5、用完用表测试屋面两个区域太阳伏能光系统到交直流柜的开路电压,测试数值记录到附件B(汇流箱汇流后电压测试记录表)。通过测试,发现电压正常,符合逆变器输入要求。 6、闭合逆变器标记为H和L的开关,然后再闭合交直流配电柜内直流输入空开。 7、闭合逆变器AC开关,顺时针旋转AC开关至竖直位置。 8、逆变器正常启动,面板指示灯run亮起,风扇开始正常工作,交直流配电柜电能表、电流表都正常工作。系统调试完毕。

太阳能光伏并网系统调试结论 结论: 电气设备安装牢固,布线合理,电气连接正常,太阳能光伏系统输出电压在逆变器输入电压范围内,电流表、电能表都能正常显示,逆变器正常工作、风扇正常旋转,系统正常工作,整套系统运行正常,太阳能光伏并网系统调试成功。 建设单位:监理单位:总包单位:分包单位: 现场代表:现场代表:现场代表:现场代表 日期:2012年7月22日

光伏逆变器并网稳定控制与防孤岛保护技术研究

光伏逆变器并网稳定控制与防孤岛保护技术研究随着光伏发电的规模化应用,大量逆变器接入电网,由于电网阻抗的存在,使得逆变器与逆变器之间、逆变器与电网之间发生交互影响,产生了诸如公共耦合点谐波增大、逆变器脱网、非计划性孤岛运行等问题,对电网的安全可靠运行产生重大影响。为保证光伏逆变器安全可靠、灵活高效接入电网,本文在863课题的支持下,针对逆变器谐振脱网、传统锁相技术对异常电网电压适应性差、多逆变器防孤岛保护失效等问题,进行了系统的分析和研究,取得了一些创新性成果。揭示了数字控制时间延迟对逆变器稳定性影响的机理,得出了逆变器稳定运行的约束条件。 首先分别建立了逆变器侧电流反馈单环控制和网侧电流反馈单环控制下的逆变器模型,然后在不同数字控制时间延迟条件下,定量分析了控制频率和滤波器谐振频率之间的约束关系。同时,得出了逆变器稳定时对电流控制器比例增益的约束关系。揭示了逆变器与电网谐振的机理,提出重塑逆变器输出导纳抑制谐振的新方法。 首先在建立单/多逆变器与电网模型的基础上,发现逆变器等效输出导纳与电网导纳之比的频率特性不满足Nyquist稳定判据,这是引起逆变器-电网谐振的原因。然后通过数学分析的方法确定了逆变器侧电流反馈单环控制和网侧电流反馈单环控制下的逆变器输出导纳负实部所在的频率区间,得到了改变逆变器的控制频率和电流控制器控制参数均不能彻底消除逆变器输出导纳负实部的结论。最后提出了基于数字控制和无源阻尼相结合的输出导纳重塑方法,使逆变器等效输出导纳与电网导纳之比满足Nyquist稳定判据。 经仿真验证,所提方法有效抑制了逆变器与电网间相互作用所产生的谐振,

提高了逆变器稳定性和对电网的适应性。提出了一种适用于多逆变器并网系统的孤岛检测新方法。首先对现有孤岛检测方法进行综合比较分析,指出基于频率正反馈孤岛检测方法适合用来进行多逆变器并网系统孤岛检测。 然后提出了一种基于电力线载波通讯的Sandia频率偏移法,通过合理设计正反馈增益,实现孤岛检测性能与逆变器输出功率解耦,提高了多逆变器并网系统的孤岛检测能力,并且不受逆变器的频率测量误差和线路阻抗的影响。最后实验验证了所提方法无检测盲区,防孤岛保护时间短(小于200ms),可靠性高,并且对电能质量影响小。给出了一种电网电压适应能力强的锁相方法,提高了逆变器并网控制稳定性。 在SRF-PLL小信号模型的基础上,分析了电网电压中的负序分量和电压幅值对传统锁相环性能影响机理。通过采用解耦双同步坐标系得到电压正序分量,利用正序分量进行锁相,避免了负序分量对锁相效果的影响;通过采用归一化方法消除电压幅值变化对锁相环动态性能的影响。仿真及实验结果表明,所采用的增强型解耦双同步坐标系锁相环对电网电压的适应性好,鲁棒性强,动态响应快,不受异常电网电压的影响。 研制了 3台10kW三相光伏并网逆变器样机,并搭建了实验平台,验证了理论分析的正确性和所提方法的有效性。

孤岛保护

光伏并网逆变器防孤岛效应实验 摘要:所以,逆变器通常会带有防止孤岛效应装置。被动技术(探测电网的电压和频率的变化)对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。 关键字:逆变器、孤岛效应、实验 原理: 在电容器串联的电路里,只有与外电路相连接的两个极板(注意:不是同一电容器的极板)有电流流动(电荷交换),其他极板的电荷总量是不变的,所以称为孤岛。孤岛是一种电气现象,发生在一部分的电网和主电网断开,而这部分电网完全由光伏系统来供电。在国际光伏并网标准化的课题上这仍是一个争论点,因为孤岛会损害公众和电力公司维修人员的安全和供电的质量,在自动或手动重新闭合供电开关向孤岛电网重新供电时有可能损坏设备。所以,逆变器通常会带有防止孤岛效应装置。被动技术(探测电网的电压和频率的变化)对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。现在已有许多防止的办法,在世界上已有16个专利,有些已获得,而有些仍在申请过程当中。其中的有些方法,如监测电网流过的电流脉冲被证明是不方便的,特别是当多台的逆变器并行工作时,会降低电网质量,并且因为多台逆变器的相互影响会对孤岛的探测产生负面影响。在另一些场合,对电压和频率的工作范围的限制变得宽了,而安装工人通常可以通过软件来设置这些参数,甚至于ENS(一种监测装置,在德国是强制性的)为了能在弱的电网中工作,可以把它关掉。 孤岛效应实验室: 一般是用谐振模拟负载电路,同时定义了一个质量因数,“Q-factor”。尽管如此,这些试验还是很难运行,特别是对于那些高功率的逆变器,它们需要很大的试验室。试验的电路和参数会根据不同国家有所不同,测试结果很大程度上取决于试验者的技术水平。现已开展了一些研究,用来评估孤岛效应和它关联风险的各种可能性,研究表明对于低密度的光伏发电系统,事实上孤岛是不可能的,这是因为负载和发电能力远远不可能匹配。但是,对于带高密度光伏发电系统的电网部分,主动孤岛效应保护方法是必要的,同时辅以电压和频率的控制,来保证光伏带来的风险降到极其微小,这一数据须与不带光伏的电网的年触电预计数相比较。大多数光伏逆变器同时带有主动和被动孤岛保护,虽然没有很多光伏突入电网的例子,但对于这方面,国外的标准没有放松。孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆 变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆 变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输 入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一 光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制 以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际 市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的 影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发 电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的 电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

光伏并网逆变器的孤岛效应保护原理介绍(甘电投金塔)

光伏并网逆变器的孤岛效应保护原理介绍 所谓“孤岛效应”是指当电网的部分线路因故障或维修而停电时,停电线路由所连的并网发电装置继续供电,并连同周围负载构成一个自给供电的孤岛的现象。 一般来说,孤岛效应可能对整个配电系统设备及用户端的设备造成不利的影响,主要包括: 电力公司输电线路维修人员的安全危害; 影响配电系统上的保护开关动作程序; 电力孤岛区域所发生的供电电压与频率的不稳定现象; 当电力公司供电恢复时所造成的相位不同步问题; 太阳能供电系统因单相供电而造成系统三相负载的欠相供电问题。 防止孤岛效应的基本点和关键点是电网断电的检测,为了能快速检测到电网断电,通常需要采用被动式和主动式两种“孤岛效应”检测方法,一旦确认电网失电,均会在几个周期内将逆变器与电网断开并停止逆变器的运行。我司并网逆变器采用了主动式与被动式相结合的孤岛效应检测方法: 被动式孤岛效应检测方法:实时检测电网电压的幅值、频率和相位,当电网失电时,会在电网电压的幅值、频率和相位参数上,产生跳变信号,通过检测跳变信号来判断电网是否失电。 主动式孤岛效应检测方法:指对电网参数产生小干扰信号,通过检测反馈信号来判断电网是否失电。我司并网逆变器采用的是主动频移反孤岛策略,通过对输出电流在并网点的频率进行小的扰动,当电网有电时,该扰动对电网电压的频

率没有任何影响,当电网失电时,该扰动将会引起电网电压频率发生较大变化,从而判断电网是否失电。 当并网逆变器检测到电网失电后,在0.2秒内停止运行并与电网断开。当电网恢复供电时,并网逆变器并不会立即投入运行,而是需要持续检测电网信号在一段时间内完全正常(默认时间5分钟),才重新投入并网运行。 并网逆变器孤岛效应保护流程简图

光伏逆变器测试方法

光伏逆变器测试方法 测试端子说明: 逆变器的保护动作的信号主要是看逆变器的GB信号以及运转继电器信号。具体项目的保护动作的要求其中哪个信号,请查看下表1。 GB:在9脚和10脚间串接一电阻,观察电阻两端电压波形, RY:在1脚和2脚间串接一电阻,给2脚一5V电压,观察电阻两端的电压波形。

表1

1模拟测试 测试说明:a.由于逆变器并网工作时,以下项目无法进行实际测试,而在内部信号检测端施加等效信号进行模拟测试。 b.进行模拟测试之前,需把电感L2和L3的2脚从PCB上断开,如下图: 图3 1.1 交流过电流测试 测试方法: 图4 交流过电流测试图 a.按图3、4连接线路; b.把控制面板上的AC_I的端子拔掉,在AC_I的端子的2、4脚加入对应等效电流的交

流电压信号。如图4。电流等效电压的关系:5A=1V。交流过电流整定值24A对应的等效交流电压为4.8Vrms. c.电网频率为50Hz,加入对应频率的交流电压信号,从整定值的90%缓慢(0.1V 步长) 增加到过流保护点,记录此时电压V1,换算成电流值; d.交流电压信号跳变:从0V开始跳变到V1+0.2, 从0V开始跳变到过流保护整定值的110%, 从0V开始跳变到过流保护整定值的150%, 分别测量保护动作的时间; e.电网的频率设为60Hz,重复c~d步骤; 判定标准: 1、交流过流,保护装置能正常动作(查看GB信号变为高电平),并且LED屏上显示故障一致; 2、保护点在保护整定值的5%内,整定值最大不超过150%; 3、保护动作时间在0.5秒以内。 1.2 直流过欠压保护 测试方法: 图5 直流过欠压测试图 a.按图3、5接线路; b.把控制面板上的Solar_Vdc端子拔掉,从PV-OV/UV端子外加直流电压信号,1脚为正, 2脚为负。直流信号与实际直流电压关系:模拟信号1V=实际电压122.67V; c.电网频率为50Hz,直流电压从保护整定值的90%缓慢(0.01V步长)增加到保护点,记 录保护点的电压值V1,换算成实际电压值; d.直流电压过压跳变:从额定电压开始跳变增加到保护点电压V1+0.01,

解析史上最全的光伏并网逆变器保护功能

光伏群英汇解析史上最全的光伏并网逆变器保护功能 (1)输入过压保护 当直流侧输入电压高于逆变器允许的直流方阵接入电压最大值时,逆变器不得启动或在0.1s内停机(当正在运行时),同时发出警示信号。直流侧电压恢复到逆变器允许的工作范围后,逆变器应能正常启动运行。 (2)输入反接保护 逆变器的正极输入端与负极输入端反接时,逆变器应能自动保护。待极性正接后,设备应能正常工作。 (3)输入过流保护 当光伏组件串并联连接好后,每个组串接入光伏逆变器直流侧,在进行MPPT扰动后,其输入电流高于逆变器设定的允许的直流最大输入电流时,逆变器(当正在运行时)停止MPPT扰动并发出警示信号。直流侧电流恢复到逆变器允许的工作范围后,逆变器应能正常启动运行。(4)输出过电流保护 并网逆变器的交流输出侧应设置过流保护。当检测到电网侧发生短路时,并网逆变器应在0.1s内停止向电网供电,同时发出警示信号。故障排除后,并网逆变器应能正常工作。 (5)输出短路保护 当逆变器输出短路时,应具有短路保护措施。逆变器短路保护动作时间应不超过0.5s,短路故障排除后,设备应能正常工作。 (6)交直流浪涌保护 逆变器应具有防雷保护功能,其防雷器件的技术指标应能保证吸收预期的冲击能量。(7)防孤岛效应保护 并网逆变器应具有可靠而完备的防孤岛保护功能。并网逆变器通常有被动式或者主动式两种检测方法。被动式孤岛效应防护:实时检测电网电压的幅值、频率和相位,当电网失电时,会在电网电压的幅值、频率和相位参数上,产生跳变信号,通过检测跳变信号来判断电网是否失电;主动式孤岛效应防护:通过逆变器定时产生小干扰信号, 以观察电网是否受到影响作为判断依据, 如脉冲电流注入法、输出功率变化检测法、主动频率偏移法和滑模频率偏移法等,当电网有电时,该扰动对电网电压的频率没有任何影响,当电网失电时,该扰动将会

光伏逆变器测试解决方案

光伏系统是将太阳能直接转化为电能的一个能源系统。当太阳光线照射到太阳能电池(阵列),可产生直流电,收集后由光伏逆变器转换为交流电源。光伏逆变器不仅将直流电转换为交流电,也是光伏系统关键组成的一部份。目前主要有两种类型的光伏系统:市电并网型和独立型。市电并网型系统通常安装在塬有建设物,提供电力直接进入电网; 独立型逆变器直接提供电力,通常使用在电网无法提供的情况下。 Chroma基于二十五年来于电源供应器的测试经验,提供光伏逆变器测试的电力电子试解决方案,这些方案包括:

1.可程式控制直流电源供应器 62000H系列:替代太阳能电池板的直流电输出,它还提供了一个独特的功能叫做太阳能电池板的I-V 曲线的模拟功能(可选),提供给光伏逆变器做最大功率追踪(MPPT) 的性能评价测试。 2. 数字功率分析仪/功率表 6630/66200系列:测量光伏逆变器输出的参数,如电压,电流,功率,功率因素,各阶谐波成份及总谐波失真等。 3. 可编程交流电源供应器 6500/61500/61600系列:模拟电网的电压及频率变动的各种情况,但是交流源不能吸收电流(能源),因此一个外置电阻器是必要的装置。 4.可编程交流/直流电子负载 63800系列:可针对独立型光伏逆变器直接拉载,测试其电压输出特性。 Chroma整合了硬体仪器,加上弹性的控制软体平臺,开发出光伏逆变器的自动测试系统。除了适合于研发,项目验证及法规测试外,也适用大规模生产的测试。

可编程交流电源供应商

高性能的硬体设备和软体平台结构光伏逆变器自动测试系统

市电并网型光伏逆变器测试方块图

关于并网逆变器孤岛效应保护和低电压穿越的判断依据及功能介绍

关于并网逆变器孤岛效应保护和低电压穿越的 判断依据及功能介绍 阳光电源股份有限公司 2011.4

一、概述 低电压穿越功能是指当电网电压跌落时并网逆变器能够正常并网一段时间,“穿越”这个低电压时间(区域)直到电网恢复正常;孤岛效应保护是指当电网断电时并网逆变器应立即停止并网发电,保护时间不超过0.2秒。可以看出,孤岛效应保护与低电压穿越是相互矛盾的,两种功能不能同时并存,需要根据电站规模和要求进行选择,一般原则如下: ?对于小型光伏电站,并网逆变器在电网中所占的容量较小,对电网的影响较小,在 电网故障时不会对电网的稳定性产生实质性的影响,所以应具备快速监测孤岛且立即断开与电网连接的能力,即此时并网逆变器应选择孤岛效应保护功能。 ?对于大中型光伏电站,并网逆变器在电网中所占的容量较大,对电网的影响较大, 在电网故障时不会对电网的稳定性产生实质性的影响,所以应具备一定的低电压穿越能力,即此时并网逆变器应选择低电压穿越功能。 我司大功率并网逆变器同时具有孤岛效应保护与低电压穿越功能,在实际应用时可通过触摸屏菜单设臵,也可通过RS485通讯方式由上位机进行远程设臵。 二、低电压穿越功能介绍 如图1所示,当并网点电压在图中电压轮廓线及以上的区域内时,并网逆变器必须保证不间断并网运行;并网点电压在图中电压轮廓线以下时,并网逆变器立即停止向电网线路送电。其中T1=1秒,T3=3秒,也就是说,并网逆变器必须具有在电网电压跌至20%额定电压时能够维持并网运行1秒的低电压穿越能力,如电网电压在轮廓线内能够恢复到额定电压的90%时,并网逆变器必须保持并网运行。

图1:大型和中型光伏电站的低电压耐受能力要求 为了实现并网逆变器的低电压穿越功能,并网逆变器需要采用新的软件控制算法,软件控制算法需实时监测电网,并判断电网是否发生电压跌落(平衡或者不平衡跌落)。当CPU发现电网发生电压跌落故障时,立即启动低电压穿越功能,控制输出电流以及输出的功率,当电网电压在图1所示的曲线以内时,逆变器进入低电压穿越阶段;当电网进入电压恢复阶段,此时并网逆变器输出无功功率起到迅速支撑起电网电压的功能。如果电网跌落是不平衡跌落,逆变器会以输出三相平衡电流为目标函数,通过软件控制算法实现在电网电压不平衡阶段,逆变器的电流是平衡的;当电网恢复正常,逆变器迅速转入正常并网状态。 图2是并网逆变器低电压穿越控制流程简图:

相关主题