搜档网
当前位置:搜档网 › 45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP_C3_Oleflex_工艺)

45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP_C3_Oleflex_工艺)

45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP_C3_Oleflex_工艺)
45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP_C3_Oleflex_工艺)

45万吨/年丙烷脱氢制丙烯(PDH)装置

工艺技术规程

(UOP C3 Oleflex 工艺)

2018年11月13日

目录

1 预处理工段 (1)

2 丙烷脱氢反应工段 (1)

3 催化剂再生工段 (4)

4 冷箱分离工段 (8)

5 SHP工段 (9)

6 精馏工段 (9)

7 PSA工段 (10)

8 全厂系统(蒸汽凝液系统) (12)

9 丙烷低温储罐及其辅助系统 (12)

10 中间罐区 (13)

11 火炬 (14)

12 空压站及氮气辅助系统 (17)

13 本项目涉及的主要化学反应 (19)

1 预处理工段

来自新鲜丙烷进料加热器(21E0601)新鲜丙烷原料先进入进料保护床(21D0101-1/2),在此用树脂吸附剂除去氮化物和有机金属化合物。这两台保护床可以通过调整进出料管道来改变两台保护床的前后。接着丙烷原料流过汞脱除器(21D0102)除汞,然后进入进料干燥器(21D0103-1/2))以脱除原料中水分(原料中如果含水将在分离系统结冰,就可能堵塞系统。这两台干燥器一般在系统开车时用来干燥进料,正常运行时可不用。进料干燥器装填分子筛以从丙烷中脱除水分。

进料干燥器设计为每周再生一次,再生用干燥的丙烷气来完成,丙烷在进料干燥再生蒸发器(21E0120)中用蒸汽先加热到60℃,然后用原料干燥再生过热器(21E0122)加热到232℃左右,以与丙烷进料相反的方向进入进料干燥器去再生干燥床层,然后进入进料干燥再生冷凝器(21E0102),被冷凝后送到进料干燥再生收集器(21D0104),在此水与再生丙烷分离,丙烷用进料干燥再生泵(21P0101)输送到在线操作的干燥器入口,废水送至反应工段与含硫废液混合后一并送至含硫/盐污水处理装置处理。

2 丙烷脱氢反应工段

(1)原料预热及反应

自冷箱分离工段回收冷量后的原料丙烷送至热联合进料换热器(21E0201-1/2/3/4)内与出反应器的粗产品气进行换热进一步提高进料温度同时降低粗产品的温度。预热后的原料气中注入少量的二甲基二硫。经预热的物料经过进料加热炉(21F0201),加热至~615℃后自反应器底部进入第一反应器(21R0201),原料气穿过反应器内件与反应器顶部流下的催化剂接触后发生脱氢反应。从第一反应器出来的物料进入第一中间加热炉(21F0202)。由于脱氢反应是吸热反应,因此需要在过程中补充物料放出的热量。物料再次被加热至~622℃后进入第二反应器(21R0202)继续进行脱氢反应,之后物料依次进入第二中间加热炉(21F0203)、第三反应器(21R0203)、第三中间加热炉(21F0204)、第四反应器(21R0204),从第四反应器出来的反应粗产品再次经过热联合进料换热器中与混合原料换热回收热量后,送至反应产物压缩部分。

在反应物料依次进入反应器的同时,来自催化剂连续再生工段的净化气(从

PSA来的经加热后的高纯氢)也从反应器的上部进入到反应器的中心“锥形塞管”内部进行连续吹扫,以尽量减少工艺气在中心“锥形塞管”内部的停留时间,防止其在此结焦或其它副反应的发生。

硫化物加注罐(21J0201)里的二甲基二硫化物用硫化物注入泵(21P0207-1/2/3)分别在混合进料进入热联合进料换热器前后注入其中。目的是为了保持加热炉及反应器内的不锈钢表面上形成铬的硫化层,以免不锈钢渗碳以及减少丙烷原料热裂解成乙烷和甲烷。同时,在本设计仍保留向反应器注水的管线作为备用,可以把少量水注入到反应器的入口中帮助扩展催化剂的稳定性和减少催化剂上的焦的形成。注入水采用蒸汽凝液,使用洗涤水补充泵(21P0209-1/2)注入。

(2)反应产物压缩

经回收热量的反应产物首先进入反应流出物冷却器(21E0202-1/2)中进一步冷却至~42℃, 随后进入反应流出物压缩机进口分离器(21D0201),罐顶的气相进入反应流出物压缩机第一段(21K0201),经压缩机绝热压缩后的气体温度升高,被送入反应流出物压缩机第一级间冷却器(21E0203)进行冷却,然后再进入反应流出物压缩机第一级间分离器(21D0202),罐顶的气相随后依次进入反应流出物压缩机第二段进行压缩,进入反应流出物压缩机第二级间冷却器(21E0204)冷却,再进入反应流出物压缩机第二级间分离器(21D0203),最后罐顶的气相进入反应流出物压缩机第三段压缩。经压缩升压的粗产品压力~36MPaG,温度~110℃自第三段压缩出口物料送去精馏工段脱丙烷塔进料预热器(21E0603)与脱丙烷塔进料换热以回收热量后温度~65℃,然后再进入反应流出物压缩机出口冷却器(21E0205)进一步冷却至~42℃,经反应流出物压缩机出口分离器(21D0204)后,罐顶的气相送去反应产品后处理部分进行除氯、除硫及干燥处理。

反应产物压缩部分还配有溶剂注入罐,在操作过程中需要间断批量的将重芳烃溶剂(对二乙基苯)分别送入物料冷却器的进口,将附着在换热器管内的结焦溶解带出,以保证换热器的换热性能,并在各段压缩机进口前的气液分离器内对溶剂进行收集。收集后的溶剂分批送回溶剂注入罐循环使用。定期检测溶剂中的杂质含量,当杂质含量高于允许值时则需要更换新的溶剂。

(3)反应产物后处理

由于用于在催化剂再生工段需要注氯,催化剂上的氯离子会随反应产物带入

下游。同时在原料气进入在反应器前加注的硫化物和丙烷原料中含有的硫化物均转化为硫化氢的形式随反应产物带出。催化剂还原过程中还会产生少量的水,其

S能使后面SHP单元的催化剂中毒并污染丙烯会在冷箱中会结冰造成堵塞,而H

2

产品和净气。故这些杂质均需要在进入冷箱分离前进行处理以保护后续设备的正常运行。

自反应流出物压缩机压缩后的粗产品气由氯化物处理器(21D0205)的顶部进入,底部送出。氯化物处理器内装填有活性氧化铝特制的非再生型吸附剂。反应产物经脱氯后,自上向下流过反应流出物干燥器(21D0206-1/2)。以脱除反应S和水。反应流出物干燥器为两台并联设备,其中一台正常工作,另

产物中的H

2

一台进行再生操作。大约48小时进行一次切换。

正常操作时,(以21D0206-1为例)产品气自顶部进入干燥器杂质在填料中被吸附,处理后的产品气自干燥器底部流出送至冷相分离工段进行分离。

再生加热时,自冷箱分离工段送来一股净气(主要为氢气)经过再生加热器(21E0206)加热后将净气预热至232℃送入再生中的干燥器(21D0206-2),气体自下而上经过干燥器,气体将吸附剂上的硫化氢及水带走由顶部排出后进入再生空冷器(21E0208)冷却后送入再生分离罐(21D0207)气相送入再生洗涤塔,液相重组分由再生分离罐底泵(21P0208)送入精馏工段脱丙烷塔塔釜液气提塔(21C0603)汽提回收气相组分,液相作为燃料油使用。

再生干燥器完成再生加热后继续进行再生冷却。每个再生周期大约需要再生加热7.6小时,冷却7.1小时。再生冷却时,仍使用自冷箱分离工段送来的净气温度~34℃,此时再生加热器(21E0206)不在工作,净气自下向上进入干燥器(21D0206-2)将再生后的床层进行冷却,冷却后的气体由干燥器顶部排出再经过再生空冷器及再生分离器后送入再生洗涤塔。

自再生分离器来的气体由再生洗涤器(21C0201)底部进入塔内,再生洗涤塔为填料塔,下部使用10wt%的氢氧化钠溶液进行循环洗涤除去气体中的硫化氢,上部使用蒸汽凝液作为洗涤水循环使用洗涤气体中夹带的微量碱液。经洗涤后的气相主要为含氢气,送往PSA工段进行提纯,一部分会用剩余部分作为产品送出。洗涤塔中循环的碱液定期进行成分分析,当氢氧化钠含量小于新鲜碱液量的~30%时需进行更换,废碱液由洗涤塔底部排出送至废碱液脱气罐(21D0208)以除去气体中进入的氢或烃,然后由废碱液输送泵(21P0205)送至含硫/盐污水处理装置进行处理。同时将配置好的新鲜碱液由加碱装置泵送至碱液循环泵

(21P0204-1/2)进口循环至洗涤塔内。上部循环的洗涤水也定期将部分含碱废水排放至碱液脱气罐(21D0208)中,同时将消耗的新鲜凝液经洗涤液补充罐(21D0209)及洗涤水补充泵(21P0209-1/2)补充至洗涤塔内。

(4)燃料气系统

本装置生产过程中可副产以氢气及轻烃类气体为主的可燃气体。此气体可作为装置加热炉及锅炉的加热的燃料气使用。燃料气主要由来自PSA工段的富氢尾气,脱乙烷塔塔顶放空气以及脱丙烷塔底部汽提气组成。混合气体进入燃料气分离罐(21D0211)初步分离后送入燃料气聚结器(21D0212)中将燃料气中夹带的液相进一步分离,然后送入燃料气加热器(21E0210)将燃料气预热至120℃后送入燃料气管网供加热炉及锅炉使用。

燃料气系统还设置一套原料丙烷气化系统,用于装置开车向燃料气管网提供开车用燃料。并且在装置正常操作时后系统副产燃料气不足以供装置使用时气化部分丙烷气作补充用。

(5)装置副产蒸汽

燃料气送至加热炉燃烧后将热量提供给反应进料以维持反应温度,燃料气在加热炉辐射段燃烧后的烟气经过集合管排放至加热炉的对流段,在对流段内设置了多组盘管以回收废热烟气的热量副产蒸汽供装置使用。

锅炉水自界外锅炉水泵分别送至进料加热炉(21F0201),第一中间加热炉(21F0202),第二中间加热炉(21F0203),第三中间加热炉(21F0204)对流段部分的预热管内预热,然后与循环段出口的饱和蒸汽(汽液两相)混合后进入汽包(21D0210)中。液相锅炉水经锅炉水循环泵(21P0206-1/2)加压后分别送至四台加热炉的蒸汽发生段,锅炉水依次经过下部蒸汽发生段及上部蒸汽加热段后吸收热量副产蒸汽压力~4.4MPaG,温度~256℃,汽水混合物再回到汽包内进行分离,自汽包顶部排出的蒸汽分别进入进料加热炉(21F0201)和第一中间加热炉(21F0202)的蒸汽过热段过热,过热蒸汽经过调温后压力~4.2MPaG,温度~420℃送至中压蒸汽管网供各用户使用。

3 催化剂再生工段

此工段的主要目的是在装置正常操作的情况下,将反应器部分来的因结焦而降低活性的催化剂进行再生,恢复其活性,然后再送回反应器,从而使反应得以性能良好的连续进行。

(1)反应器段

催化剂自第四反应器(21R0204)底部(22根3”/4”均布管)自流至4号催化剂收集器(21D0317)中。自吹扫气总管来的吹扫气经过除硫加热器(21E0314)加热至~525℃送入4号催化剂收集器上部,吹扫催化剂以脱除固体颗粒上的硫化物(此电加热器为连续工作,然而在其出现故障时,系统可以容许在没有加热的情况下运行3~4天),吹扫气自4号催化剂收集器顶部排出,随反应产物送入REC 压缩机。来自第一反应器顶部的排放还原气进入4号催化剂收集器下部去冷却催化剂颗粒的温度至~150℃。与此同时用氮气对1号闭锁料斗(21D0318)进行冲压,至1号闭锁料斗与4号催化剂收集器压力一致时,开启VBB阀组(一个V型球阀+两个B型球阀),需要催化剂进入1号闭锁料斗(21D0318)。VBB阀组开启初始设定的时间后关闭,再用氮气对1号闭锁料斗进行吹扫,吹去氢气和碳氢化合物,将反应区的碳氢环境在此置换为氮气环境,置换气排放至进料加热炉(21F0201)作为燃料使用。下一步再开启1号闭锁料斗(21D0318)与4号提升料斗(21D0319)之间的VBB阀组,使催化剂流入4号提升料斗(21D0319)中。由提升气风机(21B0305)送来的提升气(主要为氮气)先将催化剂从4号提升料斗先提升至中间分离料斗(21D0322),中间分离料斗顶部分出的含有催化剂粉尘的气体去粉尘收集器(21D0302),中间分离料斗底部的催化剂再由提升气风机(21B0305)送来的提升气提升至催化剂再生段的分离料斗(21D0301)。

反应器段还包含两台换热器:净气预热器(21E0308)和CCR气预热器(21E0309)。净气预热器(21E0308)是将来自PSA的纯氢加热至145℃,升温后的纯氢一股去2号闭锁料斗(21D0305)去做置换气;一股去5号提升料斗(21D0306)做提升气;一股去反应装置的第一至第四反应器和4号催化剂收集器(21D0317)。去反应器的的纯氢一部分直接进入到反应器的中心管内,以尽量减少丙烷气在中心管内的停留时间,防止其在此结焦;一部分需要再经过电加热器加热到更高的温度去第一、第二、第三和第四反应器的上段。去第一反应器的纯氢由还原气加热器(21E0310)加热至520~550℃后进去第一反应器的还原区,将氧化态催化剂还原使其恢复活性后继续使用。去第二、第三和第四反应器上段的纯氢分别经过2号反应器净气加热器(21E0311)、3号反应器净气加热器(21E0312)和4号反应器净气加热器(21E0313)加热到600℃以上再进入反应器上段,但不做还原用途。去4号催化剂收集器(21D0317)的纯氢经过除硫加热器(21E0314)加热到~600℃后去4号催化剂收集器吹扫除硫。

CCR气预热器(21E0309)是将来自分离系统的纯度不是很高的氢气加热至145℃后,一股去1、2、3号提升料斗做提升气用,一股与反应装置的热联合进料换热器(21E0201-1~4)的壳程出料混合后循环进入进料加热炉(21F0201)。

(2)催化剂再生段

来自中间分离料斗(21D0322)需要再生的催化剂进入再生段的分离料斗(21D0301),进一步分离催化剂粉尘。分离料斗(21D0301)顶部循环气进入粉尘收集器(21D0302),粉尘收集器将粉尘及催化剂过滤收集至催化剂粉尘罐内(约7天换粉尘罐一次)。由粉尘收集器上部排出的淘析气一部分由除尘风机(21B0304)送回分离料斗(21D0301),另一部分(约循环风量的1/10)送至提升气风机(21B0305),加压后送至4号提升料斗(21D0319)作为提升气使用。在提升气风机(21B0305)的出口引一股提升气至提升气风机调温冷却器(21E0307),冷至44℃左右再返回提升气风机的入口,使得提升气温度不至于过高。

分离料斗(21D0301)与再生塔(21R0301)之间的要保证一定的压差使得再生塔内的气体不能倒流至分离料斗。催化剂由分离料斗进入再生塔(21R0301)中进行再生,再生塔内的气体自下而上逆流与催化剂接触,催化剂首先进入上部烧焦区,接着进入下部烧焦区,在此区域通过和含氧气体接触燃烧去除催化剂表面的结焦,经过冷却区冷却后再去氯化干燥区,最下段是脱氯区。再生完毕的催化剂由再生塔底部排出至流量控制料斗(21D0303)及缓冲料斗(21D0304)中。

上部再生气自再生塔顶部排出(~520℃)经过上部再生冷却器(21E0305)冷却后温度降为~478℃,与经过空气干燥器(21L0302)干燥后的补充空气混合由上部再生风机(21B0302)送回再生塔内进行烧焦循环。上部再生加热器(21E0303)仅开车时使用。下部再生气自再生塔内中部的收集管内收集后自塔顶排出,经过下部再生冷却器(21E0306)冷却后温度降为~550℃,与经过空气干燥器(21L0302)干燥后的补充空气混合后由下部再生风机(21B0303)送回再生塔内进行烧焦循环。下部再生加热器(21E0304)仅开车时使用。

自下部再生风机(21B0303)出口引出一股再生气送至冷却区冷却器(21E0301)冷至~477℃送入再生塔烧焦区下部的冷却区,将经过烧焦后的催化剂颗粒进行冷却。

再生塔(21R0301)的冷却区下段为氯化干燥区,一股经过空气干燥器(21L0302)干燥后的空气做抽吸气将氯气抽吸混合后送至空气加热器(21E0302)

丙烷脱氢制丙烯工艺流程(精)讲课稿

丙烷脱氢制丙烯工艺流程 丙烷脱氢制丙烯技术及经济分析<<隐藏 丙烷脱氢制丙烯经济及技术分析许艺〔金陵石油化工有限责任公司,106204摘要丙烯是重要的有机化工原料,除用于生产聚丙烯外,还是生产丙烯睛,丁醉、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、碳基醇及壬基酚等产品的主要原料,丙烯的齐聚物是提高汽油辛烷值的主要成分,丙烷催化脱氢制丙烯比烃类燕气裂解能产生更多的丙烯。当用燕气裂解生产丙烯时,丙烯收率最多只有3%、3而用催化脱氢法生产丙烯,总收率可达7%一6用唯一原料生产唯一产品,48%,催化脱氮的设备投资比烃类蒸气裂解低3%。并且采用催化脱氢的方法,3能有效地利用液化石油气资源使之转变为有用的烯烃。关健词丙烷丙烯脱氢丙烯是最早采用的石油化工原料,也是生产石袖化工产品的重要烯烃之一。各种分析表明,丙烯的需求增长速度已超过乙烯,而且这种趋势一直会延续。全球丙烯的消费量将由19年的49780万t0增加到20年的5 0万t000020及21年的7万t50。其中, 0亚洲的增长速度最高。19年到19年亚太地区丙烯91 96衍生产品的需求以年均9%的速度增长,而全球年均需求增长率为55.%a丙烯除用于生产聚丙烯外,还大量地作为生产丙烯睛、丁醇、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、拨基醇及壬基酚等产品的主要原料,另外丙烯的齐聚物是提高汽油辛烷值的主要成分。丙烯与其它化学品不一样,它一般是以联产品或副产品得到。目前全球丙烯大约有7%来自蒸气裂0解乙烯的联产,82%来自炼厂(主要是催化裂化装置精炼副产,0自2世纪9年代以来由于现有来源不敷0需要,丙烷脱氢已成为第三位的丙烯来源,9年丙189烷脱氢生产的丙烯约占世界丙烯总产量的2%。全、户、加‘小户,球现有丙烷脱氢生产装置概况见表l a丙烷催化脱氢制丙烯比烃类蒸气裂解能产生更多的丙烯。当用蒸气裂解生产丙烯时,丙烯收率最多只有3%、3而用催化脱氢法生产丙烯,总收率可达7%一9用唯一原料生产唯一产品,48%,催化脱氢的设备投资比烃类蒸气裂解低3。并且采用催化脱3氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃。衰1丙煌脱兔生产装i概况表t所在地2 0年第1卷第3037

丙烷提升管循环流化床催化脱氢制丙烯技术

丙烷提升管循环流化床催化脱氢制丙烯技术 一、前言 由天然气、液化石油气得到的丙烷经脱氢制取丙烯是目前新开辟、最受青睐的重要途径之一。丙烷脱氢制丙烯技术主要包括催化脱氢制丙烯、氧化脱氢制丙烯、膜反应器脱氢制丙烯以及CO2逆水煤气法脱氢制丙烯技术。由于氧化脱氢制丙烯技术现有选择性差、转化率不占优势,国内外未见工业化示范装置报道。膜反应器脱氢制丙烯以及CO2逆水煤气法脱氢制丙烯技术刚刚处于研究起步阶段,存在问题较多。丙烷催化脱氢制丙烯技术由于选择性和转化率较好,是当前的研究和应用重点。 丙烷催化脱氢制丙烯技术关键包括脱氢工艺和与之相配套的脱氢催化剂两部分。关于丙烷催化脱氢制丙烯工艺主要有固定床、移动床和流化床工艺。国外各研究单位在20世纪90年代开发丙烷催化脱氢制丙烯技术时就借鉴本研究单位的成熟技术开发了有自己特色的工艺和与之配套的催化剂,并很快进行了工业化。在20世纪90年代末国内也有大庆石油学院、大连物化所、天津大学等单位从事丙烷脱氢技术研究,但主要集中在脱氢催化剂的活性性能基础研究方面,工艺方面主要是对UOP公司的Oleflex工艺进行了模仿研究。由于催化剂研究并未结合工艺需要进行针对性开发,研究的脱氢催化剂缺乏实用性,至今未能有工业化示范装置。 世界上已工业化的脱氢工艺有菲利浦石油公司的STAR工艺、联合催化和鲁姆斯公司的Catofin工艺、1990年UOP公司的Oleflex工艺以及俄罗斯雅罗斯拉夫尔研究院与意大利Snamprogetti工程公司联合开发的Snamprogetti流化床脱氢工艺。STAR和Catofin工艺采用固定床间歇再生反应系统;Oleflex工艺采用移动床连续再生式反应系统;Snamprogetti 工艺采用流化床反应再生系统。另外,还有以及Linde公司的POH固定床间歇再生反应技术等。 1. Oleflex工艺 美国UOP公司开发的Oleflex工艺是由催化重整工艺发展而来,1990年实现工业化生产。Oleflex工艺是一个绝热连续工艺,反应所需热量由反应各步间的温差再经加热后提供。该工艺在微正压下进行操作,以钯为催化剂,对丙烯的选择性为89%~91%,脱氢催化剂经再生可循环使用,即失活催化剂在再生器中分离、燃烧,除去催化剂表面的结炭,再生的催化剂送回脱氢反应器。将所得丙烯经过连续脱乙烷塔、脱丙烷塔,可获得聚合级丙烯。Oleflex 工艺的优点:操作连续、负荷均匀、时空得率不变,反应器截面上的催化活性不变,催化剂再生在等温下进行。该工艺丙烯收率为86.4%,氢气收率为3.5%。 2. Catofin工艺 美国气体化学品公司开发的Catofin工艺采用绝热固定床多相反应器,在微负压、550~750温度下操作。脱氢催化剂为活性铝小球浸有18%~20%的铬。此工艺包括一个反应周期、反应器切换、催化剂再生,可循环进行。几个反应器并联,形成连续的生产过程。新鲜丙烷与循环丙烷经混合后预热至600~700℃进行反应,压力30kPa、反应器温度和压力都会影响到丙烯的收率。反应器中的催化剂用蒸汽再生,催化剂上的结炭发生燃烧时,所释放的能量可作为脱氢反应所吸收的热量。该工艺丙烯收率为83%。 3.菲利浦STAR工艺 美国菲利浦石油公司开发的菲利浦STAR工艺,即石脑油脱氢工艺是一等温操作。含蒸汽的原料预热后进入一组多相固定床反应器,每个反应器有许多根催化剂填充管。反应器操作是循环的(如:每个反应器可切换后去进行催化剂再生,保持脱氢过程连续进行)。蒸汽主要用于稀释,保持反应器内总压力不变,降低烃和氢的分压,可使反应平衡趋向于增加C5的转化率。反应器在线生产7h后即切换,失活催化剂经燃烧再生,1h后,催化剂可完全活化。据报道催化剂总寿命1到2年。该工艺丙烯对丙烷收率为80%。副反应产生的CO2必须在分离时从反应

45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP C3 Oleflex 工艺)

45万吨/年丙烷脱氢制丙烯(PDH)装置 工艺技术规程 (UOP C3 Oleflex 工艺) 2018年11月13日

目录 1 预处理工段 (1) 2 丙烷脱氢反应工段 (1) 3 催化剂再生工段 (4) 4 冷箱分离工段 (8) 5 SHP工段 (9) 6 精馏工段 (9) 7 PSA工段 (10) 8 全厂系统(蒸汽凝液系统) (12) 9 丙烷低温储罐及其辅助系统 (12) 10 中间罐区 (13) 11 火炬 (14) 12 空压站及氮气辅助系统 (17) 13 本项目涉及的主要化学反应 (19)

1 预处理工段 来自新鲜丙烷进料加热器(21E0601)的新鲜丙烷原料先进入进料保护床(21D0101-1/2),在此用树脂吸附剂除去氮化物和有机金属化合物。这两台保护床可以通过调整进出料管道来改变两台保护床的前后。接着丙烷原料流过汞脱除器(21D0102)除汞,然后进入进料干燥器(21D0103-1/2))以脱除原料中的水分(原料中如果含水将在分离系统结冰,就可能堵塞系统。这两台干燥器一般在系统开车时用来干燥进料,正常运行时可不用。进料干燥器装填分子筛以从丙烷中脱除水分。 进料干燥器设计为每周再生一次,再生用干燥的丙烷气来完成,丙烷在进料干燥再生蒸发器(21E0120)中用蒸汽先加热到60℃,然后用原料干燥再生过热器(21E0122)加热到232℃左右,以与丙烷进料相反的方向进入进料干燥器去再生干燥床层,然后进入进料干燥再生冷凝器(21E0102),被冷凝后送到进料干燥再生收集器(21D0104),在此水与再生丙烷分离,丙烷用进料干燥再生泵(21P0101)输送到在线操作的干燥器入口,废水送至反应工段与含硫废液混合后一并送至含硫/盐污水处理装置处理。 2 丙烷脱氢反应工段 (1)原料预热及反应 自冷箱分离工段回收冷量后的原料丙烷送至热联合进料换热器(21E0201-1/2/3/4)内与出反应器的粗产品气进行换热进一步提高进料温度同时降低粗产品的温度。预热后的原料气中注入少量的二甲基二硫。经预热的物料经过进料加热炉(21F0201),加热至~615℃后自反应器底部进入第一反应器(21R0201),原料气穿过反应器内件与反应器顶部流下的催化剂接触后发生脱氢反应。从第一反应器出来的物料进入第一中间加热炉(21F0202)。由于脱氢反应是吸热反应,因此需要在过程中补充物料放出的热量。物料再次被加热至~622℃后进入第二反应器(21R0202)继续进行脱氢反应,之后物料依次进入第二中间加热炉(21F0203)、第三反应器(21R0203)、第三中间加热炉(21F0204)、第四反应器(21R0204),从第四反应器出来的反应粗产品再次经过热联合进料换热器中与混合原料换热回收热量后,送至反应产物压缩部分。 在反应物料依次进入反应器的同时,来自催化剂连续再生工段的净化气(从

丙烷脱氢制丙烯工艺[要略]

丙烷脱氢制丙烯工艺[要略] 丙烷脱氢制丙烯工艺 三问“丙烷脱氢”——丙烯新工艺“丙烷脱氢”是现今国内丙烯生产新工艺的热点之一,备注市场的关注和青睐。“丙烷脱氢”是现今国内丙烯生产新工艺的热点之一,备注市场的关注和青睐。<<隐藏 国内丙烯市场存在较大的需求缺口,为了使得下游产品市场更健康长久发展,解决原料丙烯的缺量问题,市场中跃跃欲试的企业越来越多。目前有两个热点,其一煤化工路线,煤制烯烃;其二,丙烷脱氢。丙烷脱氢工艺因其丙烯收率相对较高,目前备受市场关注和青睐。目前较为成熟的丙烷脱氢工艺主要有三种:Oleflex 工艺、Catofin 工艺和 PDH 工艺。 Oleflex 工艺由 UOP 公司开发并于 1990 年实现工业化生产,工艺主要采用催化剂连续再生方法,该工艺制取丙烯的产率约为86×4%,氢气产率约为3×5%。 Catofin 工艺是由鲁姆斯等公司联合开发,可生产丙烯、异丁烯、正丁二烯等产品。该工艺采用固定床催化反应器,并用取切换操作的方法,丙烯转化率高达 90%左右。 PDH 工艺是由德国林德公司和巴斯夫公司合作开发,主要生产丙烯和异丁烯。该工艺采用装填催化剂的管式反应器。目前该项目在国内仍是一片空白。天津渤海化工集团投资建设目前国内首套、世界单套规模最大的丙烯生产装置——60 万吨/年丙烷脱氢制丙烯,项目引进鲁玛斯技术公司专有的 Catofin 脱氢技术,该项目位于天津临港工业园区内,投资 34.8 亿元,计划 2012-2013 年投产。原料丙烷将由日本丸红提供。面对新鲜事物,蜂拥者不乏少数,目前国内很多厂家也都在酝酿上马丙烷脱氢项目,特别是下游工厂,主要是应对棘手的原料供应问题。想法总是好的,但是笔者心存几个疑虑,想和大家分享一下。第一,国内尚没有成功案例。一切为新的事物,即便天津渤海化工集团项目真能如期投产,那么从试运行到商业化运作,

丙烷脱氢制丙烯.doc11讲解

丙烷脱氢制丙烯 丙烯是重要的有机化工原料,除用于生产聚丙烯外,还是生产丙烯睛,丁醉、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、碳基醇及壬基酚等产品的主要原料,丙烯的齐聚物是提高汽油辛烷值的主要成分,丙烷催化脱氢制丙烯比烃类燕气裂解能产生更多的丙烯。当用燕气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一86%,用唯一原料生产唯一产品,催化脱氮的设备投资比烃类蒸气裂解低33%。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃 丙烯是最早采用的石油化工原料,也是生产石袖化工产品的重要烯烃之一。各种分析表明,丙烯的需求增长速度已超过乙烯,而且这种趋势一直会延续。全球丙烯的消费量将由1997年的4 800万t增加到2000年的5200万t及2010年的7 500万t。其中,亚洲的增长速度最高。1991年到1996年亚太地区丙烯衍生产品的需求以年均9%的速度增长,而全球年均需求增长率为 5.5 %a 丙烯除用于生产聚丙烯外,还大量地作为生产丙烯睛、丁醇、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、拨基醇及壬基酚等产品的主要原料,另外丙烯的齐聚物是提高汽油辛烷值的主要成分。丙烯与其它化学品不一样,它一般是以联产品或副产品得到。目前全球丙烯大约有70%来自蒸气裂解乙烯的联产,28%来自炼厂(主要是催化裂化装置精炼副产,自20世纪90年代以来由于现有来源不敷需要,丙烷脱氢已成为第三位的丙烯来源,1998年丙烷脱氢生产的丙烯约占世界丙烯总产量的2%。全现有丙烷脱氢生产装置概况见表la 丙烷催化脱氢制丙烯比烃类蒸气裂解能产生更多的丙烯。当用蒸气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一89%,用唯一原料生产唯一产品,催化脱氢的设备投资比烃类蒸气裂解低33。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃丙烷脱氢制丙烯,原料丙烷主要来自液化石油气(LPG,目前国内的LPG主要作为民用燃料使用。1997年,用作民用燃料的LPG占LP(;商品总量的94.5%。已开工建设的长达4 212 km的“西气东输”管网工程将为长江中下游地区提供120亿扩/。的巨大天然气源;另外,中石化预计明年在东海开发新的天然气资

生产岗位安全操作规程

第一条、目的为保证生产员工按章操作,使生产作业安全文明,特制定本规程 第二条、范围本公司生产作业岗位 第三条、内容 一、公司招用生产员工,先进行“三级”安全培训和岗位操作安全培训,考核合格后方可上岗操作。 二、生产安全操作规程 1、裁床车间 1)裁床车间的生产操作机器是裁断机、电剪,操作手是公司危险系数最高的岗位,操作手分主、副手,主机手负责操作机器,副手负责装裁片。 2)裁断机操作规程 ①上岗操作前,主机手先检查裁断机的电路、防护装置、冲头、双制开关、机油等是否正常运行,确定正常后才可开机进行操作,发现问题必须及时通知机修工进行维修,严禁机器带病作业; ②裁断机必须使用双制开关(双手用开关),严禁做用单制开关或变相单制开关; ③严禁操作手用手扶置刀模放在机器压板下操作,或者在机器压板下用手拿出刀模。在操作过程中,只允许主机手一人操作和放置刀模,并由主机手负责开启运程开关。严禁主、副机手两人同时操作,或者一人放置刀模,一人启动运程开关的违章行为。开机器

时刀模放稳,防止刀模不稳而弹出伤人。严禁没进行岗位安全操作培训过的副手代替主机手进行操作; ④操作手向外拉布料时,拉板式机必须拉出拉板才可向外拉布料,摇摆机或油压机必须将冲头平移,保证手不在冲头垂直下方才可拉出布料; ⑤从裁床机身后向机内输送布料时,必须先切断总电源开关,确保机器处于完全静止的状态才可以输送; ⑥严禁边操作边送料或拉料; ⑦在操作过程中,发现机器运转有异常响声时,应立即切断电源停止操作,并及时向主管汇报情况。待机修确定无问题后,方可正常使用; ⑧下班时,必须切断一切电源开关,确定机器在完全静止的情况下,方可离开岗位。3)电剪操作规程 ①上岗操作前,操作手先检查电剪的电路、防护装置、刀片等是否正常运行,确定正常后才可进行操作; ②电剪操作时,要小心翼翼地平稳向前推动机器,严禁用手在刀片前按布。当机器出现故障或刀片夹布时,必须关机进行检查维修和清理。 ③当机器不工作时,必须关掉电源,放下压脚架,并收放好。 2、车缝车间

丙烷脱氢制丙烯

丙烷脱氢制丙烯 摘要: 丙烷广泛存在与天然气和原油中,利用方法一般都是直接做燃料,造成了资源的极大浪费,同时也污染了环境,对丙烷的资源化利用具有深远意义。丙烯是一种重要的有机化工原料,目前全球对于丙烯的需求量逐年上涨,传统的生产方法已不能满足要求,人们正在寻求更加广泛更加经济的丙烯来源。丙烷脱氢制备丙烯原料来源广泛,设备投资低,能够充分利用油田气,已经引起了重视。本文主要就几种丙烷脱氢制备丙烯的研究进展进行论述,介绍丙烷脱氢制备丙烯的各种工艺。 关键词:丙烷资源化利用;丙烯;丙烷催化脱氢 引言 原油或天然气处理后,可以从成品油中得到丙烷。丙烷通常用来作为发动机、烧烤食品及家用取暖系统的燃料。天然气和石油资源中含有大量的丙烷,油田气中丙烷约占6%,液化石油气约占60%,湿天然气约占15%,这些丙烷必须除去,因为丙烷缩合后会堵塞天然气管道,炼厂气为石油炼厂副产的气态烃,不同来源的炼厂气其组成各异,主要含有C4以下的烷烃[1]。这些来源广泛的丙烷大部分被用作民用燃气,浪费了资源并造成了污染,所以对丙烷的资源化利用引起了广泛关注。目前丙烷的利用主要为制备丙烯和丙烯衍生物如丙烯腈、丙烯醛、丙烯酸以及马来酸酐等,其中丙烯是三大合成原料的基本原料,通过丙烯的聚合、氧化、氨氧化、卤化、烷基化、水合、羰基化、齐聚等反应,可以得到大量的有机化工产品,如聚丙烯、环氧乙烷、丙烯腈、丙烯酸、丙烯醛、丙酮、甘油、乙丙橡胶等[2]。其中聚丙烯增长量最大,具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀,在工业界有广泛的应用[3]。目前生产丙烯的方法主要为蒸汽裂解乙烯联产丙烯和催化裂化炼厂气,已经不能满足丙烯市场的缺口,所以丙烷脱氢制丙烯具有广阔的发展前景和充分的现实意义。 表1 2010-2014年丙烯产品供需平衡表(单位:万吨/年)年份2010年2011年2012年2013年2014年 产能1610 1810 1888 2096.5 2501

丙烷脱氢制丙烯.doc11

丙烷脱氢制丙烯 丙烯是重要的有机化工原料,除用于生产聚丙烯外,还是生产丙烯睛,丁醉、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、碳基醇及壬基酚等产品的主要原料,丙烯的齐聚物是提高汽油辛烷值的主要成分,丙烷催化脱氢制丙烯比烃类燕气裂解能产生更多的丙烯。当用燕气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一86%,用唯一原料生产唯一产品,催化脱氮的设备投资比烃类蒸气裂解低33%。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃 丙烯是最早采用的石油化工原料,也是生产石袖化工产品的重要烯烃之一。各种分析表明,丙烯的需求增长速度已超过乙烯,而且这种趋势一直会延续。全球丙烯的消费量将由1997年的4 800万t增加到2000年的5200万t 及2010年的7 500万t。其中,亚洲的增长速度最高。1991年到1996年亚太地区丙烯衍生产品的需求以年均9%的速度增长,而全球年均需求增长率为5.5 %a 丙烯除用于生产聚丙烯外,还大量地作为生产丙烯睛、丁醇、辛醉、环氧丙烷、异丙醉、丙苯、丙烯酸、拨基醇及壬基酚等产品的主要原料,另外丙烯的齐聚物是提高汽油辛烷值的主要成分。丙烯与其它化学品不一样,它一般是以联产品或副产品得到。目前全球丙烯大约有70%来自蒸气裂解乙烯的联产,28%来自炼厂(主要是催化裂化装置)精炼副产,自20世纪90年代以来由于现有来源不敷需要,丙烷脱氢已成为第三位的丙烯来源,1998年丙烷脱氢生产的丙烯约占世界丙烯总产量的2%。全现有丙烷脱氢生产装置概况见表la 丙烷催化脱氢制丙烯比烃类蒸气裂解能产生更多的丙烯。当用蒸气裂解生产丙烯时,丙烯收率最多只有33%、而用催化脱氢法生产丙烯,总收率可达74%一89%,用唯一原料生产唯一产品,催化脱氢的设备投资比烃类蒸气裂解低33。并且采用催化脱氢的方法,能有效地利用液化石油气资源使之转变为有用的烯烃丙烷脱氢制丙烯,原料丙烷主要来自液化石油气(LPG),目前国内的LPG主要作为民用燃料使用。1997年,用作民用燃料的LPG占LP(;商品总量的94.5%。已开工建设的长达4 212 km的“西气东输”管网工程将为长江中下游地区提供120亿扩/。的巨大天然气源;另外,中石化预计明年在东海开发新的天然气资源。目前探明的可利用储量为190亿扩/a的巨大天然气源;安徽淮南又发现新的天然气资源,储量达5 928亿澎,为塔里木盆地天然气总储量的1.4倍;苏北油田新近探明储量达100亿时/a天然气资源,2001年内即将开

丙烷脱氢制丙烯工艺技术

??1丙烷脱氢制丙烯工艺技术多产丙烯的丙烷脱氢具有一系列的优点:首先一套装置只术技生产丙烯一种产品,因此可以直接用于生产丙烯衍生物;其次,该装置的生产费用只受制于丙烷的价格;最后,丙烯衍生物装置的最合适建造地点可以不临近丙烯,建设地点灵活。但是该也存在术技一定的缺点:丙烷脱氢是一种强吸热反应,受热力学平衡限制,单程转化率难以提高,高温又导致副反应增多,丙烯选择性低,催化剂容易结焦失活,需要及时再生,因此导致装置投资大,能耗高,生产成本高。为了解决这些问题,正在开发丙烷氧化脱氢和采用膜反应的。丙烷脱氢目前工业化不多,除了以上原因外,用术术技应技关键是必须有廉价的丙烷资源,否则将使该工艺无法与其他增产丙烯的相竞争。术技丙烷脱氢的最大优势在于只产丙烯,在丙烷资源较多、价术技格稳定的中东地区的发展前景很好,也是对中东乙烷裂解装置缺少丙烯的一种补充,如沙特阿拉伯Alujain公司将在Yanbu地区建一套42万t/a聚合级丙烷脱氢制丙烯装置。AI Zamil公司最近计划在AI Jubail地区建一套采用丙烷脱氢生产45万t/a丙烯的装置。因此,丙烷脱氢在特定的地区,如中东地区等,对特定的石化术技厂商,具有独特的竞争力。 目前韩国、马来西亚、泰国和沙特阿拉伯等已经建成或正在建设的丙烷脱氢工业化装置有l5套以上,总生产能力已超过300万t/a。最大丙烷脱氢装置规模为46万t/a,由沙特阿拉伯聚烯烃公司采用ABB鲁姆斯公司的Carotin工艺已于2004年在沙特阿拉伯的朱拜勒建成投产。 丙烷脱氢制丙烯一直在持续不断地改进。工艺方面,主要术技是通过优化设计降低投资和减少操作费用、通过操作条件和设计的优化提高工艺收率。催化剂方面,不断开发了新一代催化剂。如UOP公司已经开发出第四代、正在研制第五代催化剂体系。新的催化剂不也模规置装氢脱烷。丙高提命寿用使和率收,但低降量含铂系体. 断提高,工业化初期的规模为l0万t/a左右,20世纪末期达到25万t/a,到本世纪初期进一步提高到30~35万t/a,从2004年开始一些40万t/a以上的大型丙烷脱氢装置开始建设,UOP公[6]。上万t/a以3套装置其中有2套在40司正在建设的丙烷脱氢制丙烯工艺主要有UOP公司的Oleflex工艺、术技Lummus公司Catofin工艺、Uhde公司的Star工艺、linde公司的PDH工艺、Snamprogetti—Yarsintez公司的FBD-4工艺,其主要工艺特点见表l。术技[7]基本特点l丙烷脱氢工艺的表 1.1 UOP公司的Oleflex工艺 UOP公司的Oleflex工艺采用移动床工艺和Pt-Al0催化剂,32催化剂可连续再生,类似炼厂连续重整装置。反应温度550~600℃,反映压力>0.1MPa。丙烷单程转化率35%~40%,丙烯选择性为84%。该工艺包括反应、连续催化剂再生和产品分离工序。通常一套装置包括4台串联反应器,各反应器之间设有加热器。催化剂连续再生(CCR)单元有四项主要功能:烧掉催化剂上积炭,重新分配催化剂上的铂,除去过量水蒸气和还原催化剂。反应区和再生区各。1)图(行运续继可器应反时工停器生再证保以,立独自 Oleflex工艺最新的改进是实现反应工序较低压力降,以提高收率;采用较小的加热器,以降低反应工序的费用。近期工作集中在催化剂方面,其寿命更长,

国内丙烷脱氢制丙烯现状

三问“丙烷脱氢”—丙烯新工艺 “丙烷脱氢”是现今国内丙烯生产新工艺的热点之一,备注市场的关注和青睐。 国内丙烯市场存在较大的需求缺口,为了使得下游产品市场更健康长久发展,解决原料丙烯的缺量问题,市场中跃跃欲试的企业越来越多。目前有两个热点,其一煤化工路线,煤制烯烃;其二,丙烷脱氢。 丙烷脱氢工艺因其丙烯收率相对较高,目前备受市场关注和青睐。目前较为成熟的丙烷脱氢工艺主要有三种:Oleflex 工艺、Catofin 工艺和 PDH 工艺。Oleflex 工艺由 UOP 公司1开发并于 1990 年实现工业化生产,工艺主要采用催化剂连续再生方法,该工艺制取丙烯的产率约为86×4%,氢气产率约为3×5%。Catofin 工艺是由鲁姆斯等公司联合开发,可生产丙烯、异丁烯、正丁二烯等产品。该工艺采用固定床催化反应器,并用取切换操作的方法,丙烯转化率高达 90%左右。PDH 工艺是由德国林德公司和巴斯夫公司合作开发,主要生产丙烯和异丁烯。该工艺采用装填催化剂的管式反应器。目前该项目在国内仍是一片空白。 天津渤海化工集团投资建设目前国内首套、世界单套规模最大的丙烯生产装置—60 万吨/年丙烷脱氢制丙烯,项目引进鲁玛斯技术公司专有的 Catofin 脱氢技术,该项目位于天津临港工业园区内,投资 34.8 亿元,计划 2012-2013 年投产。原料丙烷将由日本丸红提供。面对新鲜事物,蜂拥者不乏少数,目前国内很多厂家也都在酝酿上马丙烷脱氢项目,特别是下游工厂,主要是应对棘手的原料供应问题。 想法总是好的,但是笔者心存几个疑虑,想和大家分享一下。第一,国内尚没有成功案例。一切为新的事物,即便天津渤海化工集团项目真能如期投产,那么从试运行到商业化运作,产品质量需要一个过程去赢得市场的认同,新的技术很有可能遇到这样或者那样的问题有待解决,这个过程可能会较长。第二,丙烯的质量和储存。质量,即包括丙烯及其他杂质含量的指标,是不是适用所有下游产品,或者什么适合,什么不适合。丙烷作为饱和烃本身化学活性很低,从单键到双键的转变过程中,对操作条件和催化剂都会有一个较高的要求,同时也会伴有多种副产物,副产物的品种和含量是否会对下游厂家产品的质量造成影响呢?1霍尼韦尔旗下同张家港扬子江石化

【CN109926038A】丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910148497.4 (22)申请日 2019.02.28 (71)申请人 高化学(江苏)化工新材料有限责任 公司 地址 226017 江苏省南通市经济技术开发 区通顺路6号 (72)发明人 张凌峰 陈广忠 张为民 姚斐  (74)专利代理机构 苏州广正知识产权代理有限 公司 32234 代理人 张汉钦 (51)Int.Cl. B01J 21/18(2006.01) C07C 5/333(2006.01) C07C 11/06(2006.01) (54)发明名称丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法(57)摘要本发明公开了一种丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法,使用生物质原料,采用预碳化与碱活化相结合的处理方式,而后经水洗,即得到良好的生物质碳基催化剂。制备丙烷脱氢制丙烯的催化剂的方法,采用预碳化与碱活化相结合的方式,具体为:(1)将废弃茶叶100℃烘干,破碎后于300~400℃氮气氛围下热处理1~3小时,即得到预碳化的茶叶;(2)然后粉碎,与适宜浓度的氢氧化钠溶液混合,烘干后再次碱活化。一种丙烷脱氢制丙烯的方法,所述方法包括:在催化剂存在的条件下,将丙烷进行脱氢反应,其创新点在于,所述催化剂为上述方案 披露的所述的丙烷脱氢制丙烯的催化剂。权利要求书1页 说明书4页 附图2页CN 109926038 A 2019.06.25 C N 109926038 A

1.一种丙烷脱氢制丙烯的催化剂,其特征在于:使用生物质原料,采用预碳化与碱活化相结合的处理方式,而后经水洗,即得到良好的生物质碳基催化剂。 2.根据权利要求1所述的丙烷脱氢制丙烯的催化剂,其特征在于:所述生物质原料为废弃茶叶。 3.一种制备权利要求1或2所述的丙烷脱氢制丙烯的催化剂的方法,其特征在于:采用预碳化与碱活化相结合的方式,具体为: (1)将废弃茶叶100℃烘干,破碎后于300 ~400℃氮气氛围下热处理1 ~ 3小时,即得到预 碳化的茶叶; (2)然后粉碎,与适宜浓度的氢氧化钠溶液混合,烘干后再次碱活化。 4.根据权利要求3所述的丙烷脱氢制丙烯的催化剂的制备方法,其特征在于:所述步骤(1)中预碳化的茶叶与氢氧化钠的质量比为1:1-4。 5.根据权利要求3所述的丙烷脱氢制丙烯的催化剂的制备方法,其特征在于:所述的步 骤(2)中碱活化温度为600 ~900℃,活化气氛为氮气。 6.根据权利要求5所述的丙烷脱氢制丙烯的催化剂的制备方法,其特征在于:所述的活化时间为1-3小时。 7.根据权利要求6所述的丙烷脱氢制丙烯的催化剂的制备方法,其特征在于:所述碱活化后的催化剂用蒸馏水洗涤至中性,干燥。 8.一种丙烷脱氢制丙烯的方法,所述方法包括:在催化剂存在的条件下,将丙烷进行脱氢反应,其特征在于,所述催化剂为权利要求1-7中任意一项所述的丙烷脱氢制丙烯的催化剂。 9.根据权利要求8所述的丙烷脱氢制丙烯的方法,所述脱氢反应的条件包括:反应温度为600-650℃,反应压力0.05-0.2MPa,丙烷质量空速2000-5000h-1。 权 利 要 求 书1/1页 2 CN 109926038 A

丙烷脱氢装置工艺流程

丙烷脱氢装置工艺流程 Prepared on 24 November 2020

本项是一台年产60 万吨丙烯的丙烷脱氢装置(PDH),采用的丙烷脱氢装置引进美国 CB&I LUMMUS 公司的 CATOFIN 丙烷脱氢制丙烯工艺,该工艺采用高效的铬系催化剂和 HGM 材料;具有丙烷转换率高、丙烯选择性好、原料适应性强及装置在线率高等优点,是目前丙烷脱氢制丙烯的先进技术之一。CATOFIN PDH工艺通过固定床反应器,在氧化铬-氧化铝催化剂上将丙烷转换为丙烯。未转化的丙烷将被分离并且循环利用,丙烯是唯一的主产品。 PDH装置规模大,PDH装置操作条件比较复杂,导致设备规格大型化。设备大型化对设备设计、制造、检验等都会带来很多不利问题。根据基础设计开工报告可知,PDH装置设备涉及反应器、塔器、容器、换热器、压缩机、透平、泵和过滤器等诸多类型。统计各设备的数量装置大型设备就有199台,并且绝大多数为国外进口设备。根据PDH的工艺物料的特性,本装置属于甲类生产装置,生产过程中涉及的主要物料为丙烷、丙烯、乙烯、装置尾气和天然气。这些物料都属于易燃、易爆的物质,乙烯、氢气、共聚单体均属甲类火灾危险物质。这些物质一旦泄漏与空气或氧化物接触,形成爆炸混合气体,极易引发火灾爆炸事故。因此,火灾、爆炸是本装置的主要危险,防泄漏、防火、防爆是装置安全生产工作的重点。 丙烯工艺流程主要包括物料反应,产物压缩分离及尾气回收和产品提纯三个大的部分。PDH装置规模大,PDH装置操作条件比较复杂,导致设备规格大型化。设备大型化对设备设计、制造、检验等都会带来很多不利问题。根据基础设计开工报告可知,PDH装置设备涉及反应器、塔器、容器、换热器、压缩机、透平、泵和过滤器等诸多类型。统计各设备的数量装置大型设备就有199台,并且绝大多数为国外进口设备。根据PDH的工艺物料的特性,本装置属于甲类生产装置,生产过程中涉及的主要物料为丙烷、丙烯、乙烯、装置尾气和天然气。这些物料都属于易燃、易爆的物质,乙烯、氢气、共聚单体均属甲类火灾危险物质。这些物质一旦泄漏与空气或氧化物接触,形成爆炸混合气体,

丙烷制脱氢丙烯工艺简介及发展概况分析

丙烷制丙烯工艺简介及发展概况分析 一、丙烷制丙烯简介 1.优点 比较传统的裂解技术制丙烯,丙烷脱氢技术具有三大优势: 首先是进料单一、产品单一(主要是丙烯); 其次,受原料价格波动影响小,其生产成本只与丙烷的市场价格有关,与石脑油价格、丙烯市场没有直接的关联,这可以帮助生产厂家合理调节原料的成本,规避市场风险; 第三,是对于外购丙烯的衍生物厂家,可以通过在市场波动时,低价购进丙烷生产丙烯,极大的节省了原料和运输成本。 除此之外,丙烷脱氢技术还有以下优点: (1)来源广,天然气和石油资源中含有大量的丙烷,油田气中丙烷约占6%,液化石油气约占60%,湿天然气约占15%。 (2)需求大,目前全球对于丙烯的需求量逐年上涨,传统的生产方法已经不能满足丙烯市场的缺口,所以丙烷脱氢制丙烯具有广阔的发展前景和充分的现实意义。 (3)意义大,丙烷广泛存在与天然气和原油中,利用方法一般都是直接做燃料,造成了资源的极大浪费,同时也污染了环境,丙烷制丙烯对丙烷的资源化利用具有深远意义。 (4)技术成熟,丙烷脱氢制丙烯技术问世迄今已有20多年历史,经过不断完善,工业应用日趋成熟。 2.缺点

(1)丙烷制丙烯装置的原料主要是以丙烷为主,而国内丙烷量有限,而且指标参差不齐,无法满足装置对丙烷的要求,装置原料需从国外进口。 目前国内进口气几乎全部是海运,而进口码头配套设施有限,要建设丙烷制丙烯装置,首先要解决的是丙烷供应。新建和规划丙烷制丙烯项目,要么有其配套码头设施,要么距离液化气码头较近。 (2)技术方面,目前用来丙烷脱氢制丙烯的两种技术均来自于国外,装置规模大,投资高,建设周期相对较长,因此准入门槛高。 (3)尽管大量的丙烷脱氢催化剂被开发出来,但是这些催化剂的性能(活性,选择性和稳定性)仍需要提高。 (4)生产过程中会生成一些易燃、易爆物质,主要有丙烷、丙烯、氢气以及甲烷、少量乙烷和乙烯。氢气作为甲类易燃物,爆炸范围宽,点火能量低,高压氢气泄漏遇静电就可能发生燃烧或爆炸;丙烷、丙烯比重较空气重,会在地面积累并向四周扩散,遇空气可形成爆炸性气体,遇高热、明火容易发生火灾爆炸。 此外,生产过程还会产生有毒有害物质,主要为氯气和硫化氢,氯气主要用在CCR再生时的Pt分散,氯为高毒物质,常温常压为气体,易经呼吸道,眼睛,皮肤等进入人体导致人中毒,严重时造成人员死亡;硫化氢主要来自于高温管道保护剂二甲.基二硫的分解,作为高毒物质,H2S易经呼吸道进入人体,引起中枢神经系统机能改变,导致人员中毒伤亡。 PDH主要物料危险特性见表1。

丙烷脱氢制丙烯各种工艺对比

烷丙脱氢耦合逆水煤气变换制丙烯催化反应在充分利用丙烷资源、拓宽丙烯生产途径方面确有很大潜力,虽然相关的研究已经取得了很大进展,但仍存在一些问题。如进一步开发新型的催化剂体系,解决活性和选择性之间的协调问题,即既要使丙烷充分转化(4O%以上转化率),又要保持较高的丙烯选择性(85%以上),以满足工业催化剂的要求。并且还需要加强该反应体系的工艺应用研究,包括反应条件优化、催化剂工艺放大、膜催化、反应器设计及其传热传质问题等。此外在CO 分子的作用机制、催化剂反应机理等方面仍需进行深入研究。 丙烷原料情况 丙烷脱氢制丙烯的原料主要来自液化石油气(LPG),液化石油气目前主要来源于炼油厂石油气和油田伴生气。(一)由炼油厂石油气中获取:炼油厂石油气是在石油炼制和加工过程中所产生的副产气体,其数量取决于炼油厂的生产方式和加工深度,一般约为原油质量的4%~10%左右。根据炼油厂的生产工艺,可分为蒸馏气、热裂化气、催化裂化气、催化重整气和焦化气等5种。这5种气体含有C1~C5组分,利用分离吸收装置将其中的C3、C4组分分离提炼出来,就获得液化石油气。目前,从炼油厂催化裂化中回收液化有油气是国内民用液化石油气的主要来源。(二)由油田伴生气中获取:在石油开采过程中,石油和油田伴生气同时喷出,利用装设在油井上面的油气分离装置,将石油与油田伴生气分离。油田伴生气中含有5%左右的丙烷、丁烷组分,再利用吸收法把它们提取出来,可得到丙烷纯度很高而含硫量很低的高质量液化石油气。欧美、日本等国家供应的液化石油气,多数属于这种。(三)由天然气中获取:天然气分为干气和湿气两种。湿气中的甲烷含量在90%以下,乙烷、丙烷、丁烷等烷烃含量在10%以上,若将湿气中的丙烷、丁烷等组分分离出来,就得到所需的液化石油气。据有关资料介绍,我国天然气产量由1949年的0.1亿立方米,上升到2002年的316亿立方米,居世界第16位,已成为世界石油天然气消费大国,预计到2020年,天然气在一次能源消费中,所占比例将由目前的2.7%增长到10%以上。此外,还可在燃料加氢和半焦化制取人造石油的工厂中获取液化石油气。从水煤气生产合成汽油的工厂中,也能回收液化石油气。 目前国内的LPG主要用作民用燃料使用。但是随着已开工建设的长达4212km的“西气东输”管网工程为长江中下游地区提供120亿m3/a的巨大天然气源;另外,在东海、苏北油田等探明的天然气储量丰富,势必造成LPG资源的相对过剩。目前,国内炼厂的丙烷规模一般在5~10万吨/年,布点分散,难以集中,而UOP公司的Oleflex工艺生产丙烯的工业平衡点在丙烷要求在20~30万吨/年,因此我们开发了适合我国国情、投资相对较低的具有自主知识产权的丙烷脱氢制丙烯的生产技术。 3、丙烷脱氢催化剂的研究情况 将低附加值丙烷通过脱氢催化反应制得市场紧缺的丙烯,是当前研究的热点和难点,其技术的关键在于丙烷脱氢催化剂的研制。丙烷脱氢反应为可逆、强吸热反应,需在700℃左右的高温下进行,必然导致丙烷的深度裂解和深度脱氢,使丙烯的选择性和反应活性低,因其受热力学平衡的限制,丙烷的收率难以提高。目前国内外对丙烷脱氢催化剂的研究,主要集中在临氢脱氢催化剂和氧化脱氢催化剂上面。临氢脱氢反应,由于氢气的存在,可以有效地抑制催化剂表面的积炭,提高催化反应的选择性和稳定性。国内主要研究单位中科院大连化学物理研究所等对负载型PtSn/Al2O3催化剂进行了系统的研究,得出了一系列重要的研究结论,可惜没有工业化的后续报道。氧化脱氢由于不可避免地存在深度氧化问题,导致丙烯的选择性较低,目前尚不具备工业化的条件。其他的反应工艺存在许多地方还不成熟,有待进一步的研究。总体来说,国内对丙烷脱氢催化剂的研究比较活跃,但是没有工业化的研究报道。 *Star、FBD-4 目前,国外工业化生产的主要有UOP公司的Oleflex工艺,其核心技术是研制了PtSn/Al2O3催化剂,该工艺结合了长链烷烃中的Pacol 工艺以及铂重整工艺中的催化剂连续再生技术,所用催化剂与Pacol工艺过程中所用的催化剂相似,即Pt/Al2O3系催化剂。脱氢工艺主要分为三部分:反应部分、产品回收部分和催化剂再生部分。其中的反应部分如图1所示。丙烷原料与富含氢气的循环丙烷气混合,然后加热到反应器所需的进口温度并在高选择性铂催化剂作用下反应,生成丙烯。反应部分由径向流动式反应器、级间加热器和反应器原料-排放料热交换器组成。脱氢反应是吸热反应,通过对前一反应器的排放料再加热,脱氢反应继续进行,反应排放料离开最后一台反应器后,与混合原料进行热交换,送到产品回收部分。Oleflex再生工艺采用连续再生,流程相对比较复杂(图2),常用的循环时间为5~10天,投资和再生成本高。

丙烷脱氢制丙烯技术研究

第36卷第4期辽 宁 化 工Vol.36,No.4 2007年4月L iaoning Che m ical I ndustry Ap ril,2007丙烷脱氢制丙烯技术研究 郭洪辉,陈继华 (大庆联谊石化股份有限公司,黑龙江大庆163852) 摘 要: 介绍了催化脱氢、氧化脱氢、膜反应器脱氢等几种丙烷脱氢制丙烯技术,综述了丙烷催化 脱氢制丙烯催化剂的研究现状,虽然丙烷催化脱氢生产丙烯已实现了工业化,但其催化剂的性能需进一 步提高;对丙烷氧化脱氢制丙烯反应催化剂的研究现状及膜反应器在丙烷脱氢反应上所具有的优越性 进行了描述,认为研发具有高稳定性和高透氢性能的氢分离膜,将有望能大幅度提高丙烯的收率。 关 键 词: 丙烷;丙烯;脱氢;膜反应器 中图分类号: T Q221.21+2 文献标识码: A 文章编号: 10040935(2007)04026605 低碳烷烃催化转化制烯烃一直是石油化工领域的研究热点,它将成为新世纪石油化工技术研究开发的重点之一。其中乙烷脱氢制乙烯、丙烷脱氢制丙烯是两个主要的研究方向。但是,乙烷催化脱氢反应条件苛刻,能耗高,反应严格地受到热力学平衡的限制,就目前催化剂水平,C 2 (乙烯和乙烷)单程收率只能在25%左右徘徊,离工业化甚远,近年来这方面的研究已趋于萎缩。 中国有丰富的液化石油气,它基本上由60%的丙烷和20%的丁烷组成,若能有效地将丙烷直接转化成丙烯,将可缓解丙烯来源不足的问题。近年丙烷、丁烷等低碳烷烃脱氢的研究已大规模展开。目前,丙烷脱氢制丙烯技术主要有:丙烷催化脱氢、氧化脱氢、膜反应器脱氢。 1 丙烷催化脱氢 丙烷催化脱氢反应在热力学上是吸热、分子数增加的可逆反应,平衡常数随温度的升高而增大,其转化率取决于热力学平衡,为使反应向脱氢方向进行,需要提高反应温度和降低压力。然而温度过高时,由于丙烷裂解反应及丙烷深度脱氢反应加剧,将导致选择性降低,而且高温下C-C 键断裂的裂解反应在热力学上比C-H键断裂的脱氢反应有利,将加剧催化剂表面积碳,导致催化剂迅速失活。 目前世界上有10套丙烷催化脱氢制丙烯装 置在运转,其中8套装置采用UOP公司的O leflex 技术,2套装置采用ABB Lummus公司的Cat ofin 技术。两种技术分别采用Cr系和Pt系催化剂[1]。 1.1 铬系催化剂 丙烷催化脱氢的Cat ofin工艺就采用Cr 2 O3/ A l2O3催化剂。该过程,通常在高于550℃进行,压力(3~5)×104Pa,单程转化率48%~65%,反应周期15~30m in。高温使催化剂迅速失活,其主要原因是大量的积炭覆盖了催化剂的活性位。因此每隔7~15m in需对催化剂进行氧化再 生。对Cr 2 O3/A l2O3催化剂,主要集中在丙烷脱氢 的活性位点的研究,因为Cr在A l 2 O3表面以多种价态和多种相态存在[2]。Gorriz[3]究指出,Cr3+、Cr5+和Cr6+形成多种化合物,并具有不同的还原性和催化行为。Cr5+物种和催化剂的初活性相关,但主活性中心是Cr2+,而丙烯的选择性主要由Cr3+物种决定[4]。 由于铬系催化剂稳定性差,且具有毒性,从环境保护的角度考虑,开发低Cr含量的催化剂前景看好。 收稿日期: 2006212215 作者简介: 郭洪辉(1969-),男,工程师。

丙烷制丙烯的最佳发展时期到了

丙烷制丙烯的最佳发展时期到了 近20年来,全球丙烯需求量逐年增长,我国丙烯的供需缺口也在逐年扩大。目前丙烯产量70%左右来源于蒸汽裂解,20%~25%来自催化裂化。然而,在美国页岩气革命和2013年我国实施油品消费税新政的背景下,我国丙烯供应量或会出现紧张,丙烷供给却将相对过剩。为此,业内人士将目光投向了丙烷制丙烯这条路。 从丙烷到丙烯,如果问一个学化学的学生,他会告诉你,这就是一个简单的脱氢反应;但如果将这个问题抛给企业人士,他则会考虑:丙烷原料充足吗?丙烯下游是否过剩?技术团队是否完备?这条工艺会带来多少收益?一些分析人士认为,企业考虑的这些因素在当前都已不成问题,丙烷制丙烯的最佳发展时期到了! 原料有保障: 进口丙烷来源充足 原料的价格和供应量是丙烷脱氢制丙烯装置前景的核心。目前,丙烷的主要来源有炼油厂液化气、油田伴生气和湿性天然气凝析液,国内几乎全部来源于炼油厂。作为国内的两大炼油集团,

中石化和中石油在近两年开始珍惜手中的液化气资源,认为将其富含的碳资源烧掉可惜,都提出了要加强轻烃资源的综合利用。中石化曾在去年启动了炼油轻烃资源综合利用调研,旨在摸清旗下34家炼油企业的轻烃资源总量,找出中石化系统内轻烃资源最有效的整体利用路径;中石油也曾提出,要在2015年前解决液化气碳资源利用的问题。在此背景之下,其他企业的丙烷脱氢装置想要从两大集团手中拿到原料,难度可想而知。 但是,在联想控股战略投资总监严乐平看来,国内建设丙烷脱氢装置,其资源供应是完全可以保证的。他给出的理由是:国内炼油厂丙烷供应量较少且分散,硫含量还较高,因此国内丙烷脱氢企业多数还是要从进口市场采购丙烷,以保证装置的连续稳定运行,而目前液化丙烷市场的贸易量完全可以满足丙烷脱氢装置的原料需求。 中信建投证券研究发展部行业分析师胡??给出的数据证实了严乐平的观点。据统计,当前全球液化丙烷每年的贸易量为3500万~4000万吨,中国每年的进口量仅在150万~300万吨。“以国内所有丙烷脱氢项目100%负荷投产需求估算,我国新增的丙烷需求也只占全球丙烷贸易量的1/6。” 胡??说。

相关主题