搜档网
当前位置:搜档网 › 硬度 强度 刚度区别

硬度 强度 刚度区别

硬度 强度 刚度区别
硬度 强度 刚度区别

刚度、强度和硬度都是材料的力学性能(或称机械性能)指标。

弹性变形——当外力去掉后能恢复到原来的形状和尺寸的变形。

塑性变形——当外力去掉后不能恢复到原来的形状和尺寸的变形。

刚度——金属材料在受力时抵抗弹性变形的能力。

强度——金属材料在外力作用下抵抗塑性变形和断裂的能力。

硬度——金属材料抵抗更硬的物体压入其内的能力。

三者之间没有必然的联系,不过,硬度是一项综合力学性能指标,一般:硬度高的材料,其强度也高。

金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。按外力作用的性质不同,主要有屈服强度、抗拉强度、抗压强度、抗弯强度等,工程常用的是屈服强度和抗拉强度,这两个强度指标可通过拉伸试验测出

强度是指零件承受载荷后抵抗发生断裂或超过容许限度的残余变形的能力。也就是说,强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。强度是机械零部件首先应满足的基本要求。机械零件的强度一般可以分为静强度、疲劳强度(弯曲疲劳和接触疲劳等)、断裂强度、冲击强度、高温和低温强度、在腐蚀条件下的强度和蠕变、胶合强度等项目。强度的试验研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。

材料局部抵抗硬物压入其表面的能力称为硬度。试验钢铁硬度的最普通方法是用锉刀在工件边缘上锉擦,由其表面所呈现的擦痕深浅以判定其硬度的高低。这种方法称为锉试法这种方法不太科学。用硬度试验机来试验比较准确,是现代试验硬度常用的方法。常用的硬度测定方法有布氏硬度、洛氏硬度和维氏硬度等测试方法

硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。硬度试验根据其测试方法的不同可分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)及显微硬度、高温硬度等多种方法。

度、强度、刚度、塑性是常说的主要机械性能,另外还有弹性、冲击韧性、疲劳强度和断裂韧性等。要了解它们的区别,首先要了解相关概念:

1、硬度:金属材料抵抗更硬的物体压入其内的能力。硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。硬度试验根据其测试方法的不同可分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)及显微硬度、高温硬度等多种方法。

2、刚度:金属材料在受力时抵抗弹性变形的能力。刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的了或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤

为重要,如机床的主轴、导轨、丝杠等。

3、强度:金属材料在外力作用下抵抗塑性变形和断裂的能力。强度是指零件承受载荷后抵抗发生断裂或超过容许限度的残余变形的能力。也就是说,强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。强度是机械零部件首先应满足的基本要求。机械零件的强度一般可以分为静强度、疲劳强度(弯曲疲劳和接触疲劳等)、断裂强度、冲击强度、高温和低温强度、在腐蚀条件下的强度和蠕变、胶合强度等项目。强度的试验研究是综合性的研究,主要是通过其应力状态来研究零部件的受力状况以及预测破坏失效的条件和时机。

4、塑性:金属材料在外力作用下,产生永久变形而不致引起破华的能力。

延展性怎样叫韧性

抗拉抗压能力叫强度

工件的抗变形能力叫刚度

抗磨损能力叫硬度

韧度的典型指标是延伸率A(%)

强度的典型指标是屈服强度Rp0.2(MPa)和抗拉强度Rm(MPa)

刚度的典型指标是弹性模量E(MPa)

硬度的典型指标是洛氏硬度HRB

梁的强度和刚度计算.

梁的强度和刚度计算 1.梁的强度计算 梁的强度包括抗弯强度、抗剪强度、局部承压强度和折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定的相应的强度设计值。 (1)梁的抗弯强度 作用在梁上的荷载不断增加时正应力的发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁的抗弯强度按下列公式计算: 单向弯曲时 f W M nx x x ≤=γσ (5-3) 双向弯曲时 f W M W M ny y y nx x x ≤+=γγσ (5-4) 式中:M x 、M y ——绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴); W nx 、W ny ——梁对x 轴和y 轴的净截面模量; y x γγ,——截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;对其他截面,可查表得到; f ——钢材的抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,应取0.1=x γ。 需要计算疲劳的梁,按弹性工作阶段进行计算,宜取0.1==y x γγ。 (2)梁的抗剪强度 一般情况下,梁同时承受弯矩和剪力的共同作用。工字形和槽形截面梁腹板上的剪应力分布如图5-3所示。截面上的最大剪应力发生在腹板中和轴处。在主平面受弯的实腹式梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。因此,设计的抗剪强度应按下式计算

v w f It ≤=τ (5-5) 式中:V ——计算截面沿腹板平面作用的剪力设计值; S ——中和轴以上毛截面对中和轴的面积矩; I ——毛截面惯性矩; t w ——腹板厚度; f v ——钢材的抗剪强度设计值。 图5-3 腹板剪应力 当梁的抗剪强度不满足设计要求时,最常采用加大腹板厚度的办法来增大梁的抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。 (3)梁的局部承压强度 图5-4局部压应力 当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板的弹性地基梁。腹板计算高度边缘的压应力分布如图5-4c 的曲线所示。假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。梁的局部承压强度可按下式计算

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

液压机横梁的强度与刚度的计算

横梁的强度与刚度的计算 由于横梁是三个方向上尺寸相差不太多的箱体零件,用材料力学的强度分析方法不能全面地反应它的应力状况。目前,在进行初步设计计算时,还只能将横梁简化为简支梁进行粗略核算,而将许用应力取得很低。按简支梁计算出的横梁中间截面的应力值和该处实测应力值还比较接近,因此作为粗略核算,这种方法还是可行的。但无法精确计算应力集中区的应力,那里的最大应力要大很多。 有限单元法的以展提供了比较精确地计算横梁各部分应力的可能性,因此,目前在设计横梁时,普遍使用有限单元法计算。但作为分析强度的基础,下面将介绍支梁算法。 当上下横梁刚度不够时,会给立柱带来附加弯矩。上横梁刚度如太小,或两个方向上刚度不一样,在液压缸加载时,上横梁和工作缸法兰的接触面会形成局部接触,使工作缸过早损坏。一般对横梁的刚度要求为立柱间每米跨度上挠度不超过0.15mm。由于横梁均属于跨度比较小而高度相对比较大的梁,因此在计算挠度时,除了考虑弯矩引起的挠度外,还必须计算由于剪力引起的挠度。 一、上横梁的强度与刚度的计算: 由于上横梁的刚度远大于立太平的刚度,因此可以将上横梁简化为简支梁,支点间距离为宽边立柱中心距。 (1)单缸液压机工作的公称力简化为作用于法兰半圆环重心上的两个集中力,如下图:

单缸液压机上横梁受力简图 最大弯矩在梁的中点: M max =P/2(1/2-D/∏) 式中:P—液压机公称压力(N); D—缸法兰的环形接触面平均直径(cm); L—立柱宽边中心距(cm)。 最大剪力为: Q =P/2 最大挠度在梁的中点: ?0=P/48EJ×(L/2-D/∏)×[3L2-4(L/2-D/∏)2]+KPL/4GA[1-2(D/∏L)] =PL3/48EJ×[1-6(D/∏L)2+4(D/∏L)3]+KPL/4GA[1-2(D/∏L)] 式中:E—梁的弹性模量(N/㎝2); J—梁的截面惯性矩(cm2); G—梁的剪切弹性模量(N/㎝2); A—梁的截面积(cm2); K—截面形状系数,见式(2—80)。

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

桥式起重机主梁强度、刚度计算

桥式起重机箱形主梁强度计算 一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm )

梁的刚度计算

梁得强度与刚度计算 1.梁得强度计算 梁得强度包括抗弯强度、抗剪强度、局部承压强度与折算应力,设计时要求在荷载设计值作用下,均不超过《规范》规定得相应得强度设计值。 (1)梁得抗弯强度 作用在梁上得荷载不断增加时正应力得发展过程可分为三个阶段,以双轴对称工字形截面为例说明如下: 梁得抗弯强度按下列公式计算: 单向弯曲时 ?????(5-3) 双向弯曲时 ?????(5-4) y轴式中:M x 、M y——绕x轴与y轴得弯矩(对工字形与H形截面,x轴为强轴, 为弱轴); W nx、Wny——梁对x轴与y轴得净截面模量; ——截面塑性发展系数,对工字形截面,;对箱形截面,;对其她截面,可查表得到; f ——钢材得抗弯强度设计值。 为避免梁失去强度之前受压翼缘局部失稳,当梁受压翼缘得外伸宽度b与其厚度t之比大于,但不超过时,应取。 需要计算疲劳得梁,按弹性工作阶段进行计算,宜取。 (2)梁得抗剪强度 一般情况下,梁同时承受弯矩与剪力得共同作用。工字形与槽形截面梁腹板上得剪应力分布如图5-3所示。截面上得最大剪应力发生在腹板中与轴处。在主平面受弯得实腹式梁,以截面上得最大剪应力达到钢材得抗剪屈服点为承载力极限状态。因此,设计得抗剪强度应按下式计算 ???????(5-5) 式中:V——计算截面沿腹板平面作用得剪力设计值; S——中与轴以上毛截面对中与轴得面积矩;

I——毛截面惯性矩; t w——腹板厚度; f v——钢材得抗剪强度设计值。 图5-3腹板剪应力 当梁得抗剪强度不满足设计要求时,最常采用加大腹板厚度得办法来增大梁得抗剪强度。型钢由于腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力得计算。 (3)梁得局部承压强度 图5-4局部压应力 当梁得翼缘受有沿腹板平面作用得固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动得集中荷载时,应验算腹板计算高度边缘得局部承压强度。 在集中荷载作用下,翼缘类似支承于腹板得弹性地基梁。腹板计算高度边缘得压应力分布如图5-4c得曲线所示。假定集中荷载从作用处以1∶2、5(在h y高度范围)与1∶1(在hR高度范围)扩散,均匀分布于腹板计算高度边缘。梁得局部承压强度可按下式计算 ???????(5-6) 式中:F——集中荷载,对动力荷载应考虑动力系数; ——集中荷载增大系数:对重级工作制吊车轮压,=1、35;对其她荷载,=1、0; ——集中荷载在腹板计算高度边缘得假定分布长度,其计算方法如下

第四章 扭的强度与刚度计算

一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C m (d ) (e ) 图19-5 (b )

强度与硬度对照表

抗拉强度与硬度对照表 抗拉强度N/mm2 维氏硬 度 布氏硬度洛氏硬度 抗拉强度 N/mm2 维氏硬 度 布氏硬度洛氏硬度 Rm HV HB HRC Rm HV HB HRC 2508076122038036138.8 2708580.7125539037139.8 2859085.2129040038040.8 3059590.2132041039041.8 32010095135042039942.7 33510599.8138543040943.6 350110105142044041844.5 370115109145545042845.3 380120114148546043746.1 400125119152047044746.9 41513012415557480-45647 4301351281595490-46648.4 4501401331630500-47549.1 4651451381665510-48549.8 4801501431700520-49450.5 4901551471740530-50451.1 5101601521775540-51351.7 5301651561810550-52352.3 5451701621845560-53253 5601751661880570-54253.6 5751801711920580-55154.1 5951851761955590-56154.7 6101901811995600-57055.2 6251951852030610-58055.7

6402001902070620-58956.3 6602051952105630-59956.8 6752101992145640-60857.3 6902152042180650-61857.8 70522020966058.3 72022521467058.8 74023021968059.2 75523522369059.7 77024022820.370060.1 78524523321.372061 80025023822.274061.8 82025524223.176062.5 83502602472478063.3 85026525224.880064 86527025725.682064.7 88027526126.484065.3 90028026627.186065.9 91528527127.888066.4 93029027628.590067 95029528029.292067.5 96530028529.894068 99531029531 103032030432.2 106033031433.3 109534032334.4 112535033335.5 111536034236.6 119037035237.7

梁的强度与刚度

第八章梁的强度与刚度 第二十四讲梁的正应力截面的二次矩 第二十五讲弯曲正应力强度计算(一) 第二十六讲弯曲正应力强度计算(二) 第二十七讲弯曲切应力简介 第二十八讲梁的变形概述提高梁的强度和刚度

第二十四讲纯弯曲时梁的正应力常用截面的二次矩 目的要求:掌握弯曲梁正应力的计算和正应力分布规律。 教学重点:弯曲梁正应力的计算和正应力分布规律。 教学难点:平行移轴定理及其应用。 教学内容: 第八章平面弯曲梁的强度与刚度计算 §8-1 纯弯曲时梁的正应力 一、纯弯曲概念: 1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。 2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。 二、纯弯曲时梁的正应力: 1、中性层和中性轴的概念: 中性层:纯弯曲时梁的纤维层有的变长,有的变短。其中有一层既不伸长也不缩短,这一层称为中性层。 中性轴:中性层与横截面的交线称为中性轴。 2、纯弯曲时梁的正应力的分布规律: 以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。

3、纯弯曲时梁的正应力的计算公式: (1)、任一点正应力的计算公式: (2)、最大正应力的计算公式: 其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。 说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。

§8-2 常用截面的二次矩平行移轴定理 一、常用截面的二次矩和弯曲截面系数: 1、矩形截面: 2、圆形截面和圆环形截面: 圆形截面 圆环形截面 其中:

硬度对比和材料性能强度对照

洛氏硬度(HRC)、布氏硬度(HB)等硬度对照区别和换算 洛氏硬度(HRC)、布氏硬度(HB)等硬度对照区别和换算硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。最普通的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),橡胶塑料邵氏硬度(HA,HD)等硬度其值表示材料表面抵抗坚硬物体压入的能力。最流行的里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常 用。 ●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布 氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●HV-适用于显微镜分析。维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材 料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 ●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm 处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ VA(冲击速度)。 ●目前最常用的便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。时代公司生产的TH系列里氏硬度计就有此功能,是传统台式硬度机的有益补充!”(详细情况请点击《里氏硬度计TH140/TH160/HLN-11A/HS141便携式系列》)

强度计算和刚度计算

8 强度计算和刚度计算 8.1在图2.1所示的简易吊车中,BC 为钢杆,AB 为木杆。木杆AB 的横截面面积2 1100cm A =,许用 应力[]MPa 71=σ;钢杆BC 的横截面面积2 26cm A =,许用应力[]MPa 1602=σ,试求许可吊重P 。 图8-1 8.2图7.2所示的拉杆沿斜截面m-m 由两部分胶合而成。力。试问:为使杆件承受最大拉力N ,α角的值应为多少?若杆件横截面面积为2 4cm ,并规定 60≤α,试确定许可荷载P 。 图8-2 8.3 一矩形截面梁,梁上作用均布荷载,已知:l=4m ,b=14cm ,h=21cm ,q=2kN/m ,弯曲时木材的容许应 力 []kPa 4 101.1?=σ,试校核梁的强度。 图8-3 8.4 图示矩形截面木梁,许用应力[σ]=10Mpa 。 (1)试根据强度要求确定截面尺寸b 。 (2)若在截面A 处钻一直径为d=60mm 的圆孔(不考虑应力集中),试问是否安全。

图8-4 8.5欲从直径为d的圆木中截取一矩形截面梁,试从强度角度求出矩形截面最合理的高h和宽b。 8.6 图示外伸梁,承受荷载F作用。已知荷载F=20kN,许用应力[σ]=160Mpa,许用剪应力[τ]=90Mpa。请选择工字钢型号。 图8-6 8.7一铸铁梁,其截面如图所示, 已知许用压应力为许用拉应力 的4倍,即[σc]=4[σt]。 试从强度方面考虑,宽度b为何值最佳。 图8-7 8.8 当荷载F直接作用在简支梁,AB的跨度中点时,梁内最大弯曲正应力超过许用应力30%。为了消除此种过载,配置一辅助梁CD,试求辅助梁的最小长度a。 图8-8

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

硬度与抗拉强度对照表

钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表(2008-02-20 11:24:27) 标签:杂谈分类:资料 钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。 如果您要查的抗拉强度>1000N/mm2,或者维氏硬度>310HV,或者布氏硬度>300HB,或者洛氏 硬度>32HRC,请查本表 抗拉强度RmN/mm2维氏硬度HV 布氏硬度HB 洛氏硬度HRC 250 80 76.0 - 270 85 80.7 - 285 90 85.2 - 305 95 90.2 - 320 100 95.0 - 335 105 99.8 - 350 110 105 - 370 115 109 - 380 120 114 - 400 125 119 - 415 130 124 - 430 135 128 - 450 140 133 - 465 145 138 - 480 150 143 - 490 155 147 - 510 160 152 - 530 165 156 - 545 170 162 - 560 175 166 - 575 180 171 - 595 185 176 - 610 190 181 - 625 195 185 -

640 200 190 - 660 205 195 - 675 210 199 - 690 215 204 - 705 220 209 - 720 225 214 - 740 230 219 - 755 235 223 - 770 240 228 20.3 785 245 233 21.3 800 250 238 22.2 820 255 242 23.1 835 260 247 24.0 850 265 252 24.8 865 270 257 25.6 880 275 261 26.4 900 280 266 27.1 915 285 271 27.8 930 290 276 28.5 950 295 280 29.2 965 300 285 29.8 995 310 295 31.0 抗拉强度RmN/mm2维氏硬度HV 布氏硬度HB 洛氏硬度HRC 1030 320 304 32.2 1060 330 314 33.3 1095 340 323 34.4 1125 350 333 35.5 1115 360 342 36.6 1190 370 352 37.7

抗拉强度与硬度对照表_图文.

抗拉强度与硬度上海国华公司专营宝钢产品:冷板、热板、镀锌板. 电话:021-5678 9999 宝钢资源

所谓的各种硬度,是根据硬度的等级,采用不同的测量办法测到的数值,根据一些标准的整理,供参考,详细请读标准 ⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2。 ⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: 洛氏硬度的测量方法有三种: 1HRA,用带金刚石的压头,负荷60公斤的测量值; 2HRC,负荷150公斤的测量值; 3HRB,用带1/16寸钢球压头,负荷100公斤的测量值. ⑶维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 洛氏硬度中HRA、HRB、HRC的区别 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf,最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf;标尺B使用的是直径为1.588mm(1/16英寸的钢球作为压头,然后加压至980.7N(合100kgf;而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 但各种材料的换算关系并不一致硬度換算公式: 1.肖氏硬度(HS=勃式硬度(BHN/10+12 2.肖式硬度(HS=洛式硬度(HRC+15 3.勃式硬度(BHN= 洛克式硬度(HV 4.洛式硬度(HRC= 勃式硬度(BHN/10-3 硬度測定範圍:

硬度与抗拉强度的关系对照表

一、硬度与抗拉强度的关系 当钢的硬度在500HB以下时,其抗拉强度与硬度成正比,kg/m㎡(óB)=1/3 X HB=3.2 X HRC=2.1 X HS,但上述关系式也并非在什么场合都成立,从热处理方面说,回火温度低时,kg/m㎡与HRC时的相关关系便可能被破坏,钢的回火温度,硬度和抗拉强度的关系如图所示。 由此图可见硬度随回火温度的升高而下降,但在淬火状态以及300℃以下低温回火时,硬度与抗拉强度的关系难以成立。当回火温度在300℃左右时,kg/m ㎡与HRC具有相关关系,即硬度高,抗拉强度就高;硬度低,抗拉强度就低。在低温回火状态欲求出kg/m㎡值是很困难的,因为此时抗拉强度值分布很离散。 由于低温回火件的kg/m㎡不稳定而不能确定,故在日本工业标准(JIS)中也是通试验来测定400℃以上温度回火件的拉伸特性(也有300℃回火工件)。换言之是只对调质件(淬火+400℃回火)进行拉伸试验。在工业上只是在要求抗旋转弯曲疲劳和抗磨损时才使用低温回火件。高频淬火和渗碳淬火即为此适用例。受拉应力的零件不采用低温回火。不过在低碳钢中,但淬火M能发生自回火(故Ms点高)时,亦有在淬火状态下使用者。低碳钢的板条马氏体组织结构自回火,正可在工业上应用,但此时必须考虑淬透性和质量效应(必要时应添加B、Cr、Mn等金属元素)。

二、钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表 维氏布氏克罗普洛氏标尺肖氏拉伸强度HV HB HK HRA HRB HRC HS Kg/m㎡ 528 496 558 76.3 51 67.6 264 513 481 542 75.9 50 66.2 255 498 469 526 75.2 49 64.7 246 484 455 510 74.7 48 63.4 238 471 443 495 74.1 47 62.1 229 458 432 480 73.6 46 60.8 221 446 421 466 73.1 45 59.6 215 434 409 452 72.5 44 58.4 208 423 400 438 72.0 43 57.2 201 412 390 426 71.5 42 56.1 194 402 381 414 70.9 41 55.0 188 392 371 402 70.4 40 53.9 182 382 362 391 69.9 39 52.9 177 372 353 380 69.4 38 51.8 171 363 344 370 68.9 37 50.7 166 354 336 360 68.4 36 49.7 161 345 327 351 67.9 35 48.7 156 336 319 342 67.4 34 47.7 152 327 311 334 66.8 33 46.6 149 318 301 326 66.3 32 45.6 146 310 294 318 65.8 31 44.6 141 302 286 311 65.3 30 43.6 138 294 279 304 64.6 29 42.7 135 286 271 297 64.3 28 41.7 131 279 264 290 63.8 27 40.8 128 272 258 284 63.3 26 39.9 125 266 253 278 62.8 25 39.2 123 260 247 272 62.4 24 38.4 119

详细的材料硬度对照表

硬度对照表 硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用价值,但在要求数据比较精确时,仍需要通过试验测得。

布氏硬度: 测定布氏硬度较准确可靠,但一般HBS只适用于450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。布氏硬度试验还可用

于有色金属和软钢,采用小直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用于原材料和半成品的检测,由于压痕较大,一般不用于成品检测。 举例:120HBS10/1000/30:表示用直径10mm钢球在1000Kgf()试验力作用下,保持30s(秒)测得的布氏硬度值为120N/ mm2(MPa)。 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 洛氏硬度: 洛氏硬度试验采用三种试验力,三种压头,它们共有9种组合,对应于洛氏硬度的9个标尺。这9个标尺的应用涵盖了几乎所有常用的金属材料。最常用标尺是HRC、HRB和HRF,其中HRC标尺用于测试淬火钢、回火钢、调质钢和部分不锈钢。这是金属加工行业应用最多的硬度试验方法。HRB标尺用于测试各种退火钢、正火钢、软钢、部分不锈钢及较硬的铜合金。HRF标尺用于测试纯铜、较软的铜合金和硬铝合金。HRA标尺尽管也可用于大多数黑色金属,但是实际应用上一般只限于测试硬质合金和薄硬钢带材料。 表面洛氏硬度试验采用三种试验力,两种压头,它们有6种组合,对应于表面洛氏硬度的6个标尺。表面洛氏硬度试验是对洛氏硬度试验的一种补充,在采用洛氏硬度试验时,当遇到材料较薄,试样较小,表面硬化层较浅或测试表面镀覆层时,就应改用表面洛氏硬度试验。这时采用与洛氏硬度试验相同的压头,采用只有洛氏硬度试验几分之一大小的试验力,就可以在上述试样上得到有效的硬度试验结果。表面洛氏硬度的N标尺适用于类似洛氏硬度的HRC、HRA和HRD测试的材料;T标尺适用于类似洛氏硬度的HRB、HRF和HRG测试的材料。 HRC标尺的使用范围是20~70HRC,当硬度值小于20HRC时,因为压头的圆锥部分压入太多,灵敏度下降,这时应改用HRB标尺。尽管HRC标尺被规定的上限值为70HRC,但是当试样硬度大于67HRC时,压头尖端承受的压力过大,金刚石容易损坏,压头寿命会大大缩短,因此一般应改用HRA标尺。 HRA标尺的使用范围是20-88HRA,由美国标准ASTM E140可以获得以下换算关系: 27HRA≈30HRB 、60HRA≈100HRB≈20HRC、≈68HRC 可见,HRA标尺的测试范围涵盖了从软钢(HRB)、硬钢(HRC)到硬质合金的硬度范围。然而,事实上HRA标尺很少用于测试软钢,主要用于测试薄硬钢板、

抗拉强度与硬度对照表

抗拉强度与硬度对照表 钢轨还按抗拉强度的不同分为三个等级,有普通级钢轨(抗拉强度为586-785MPa),耐磨级钢轨(抗拉强度为883-1030MPa)以及特级钢轨(抗拉强度为1079-1226MPa)三种。 抗拉强度N/mm2 维氏硬度 布氏硬度 洛氏硬度 抗拉强度 N/mm2 维氏硬度 布氏硬度 洛氏硬度 Rm HV HB HRB Rm HV HB HRB 250 80 76 1125 350 333 35.5 270 85 80.7 1115 360 342 36.6 285 90 85.2 1190 370 352 37.7 305 95 90.2 1220 380 361 38.8 320 100 95 1255 390 371 39.8 335 105 99.8 1290 400 380 40.8 350 110 105 1320 410 390 41.8 370 115 109 1350 420 399 42.7 380 120 114 1385 430 409 43.6 400 125 119 1420 440 418 44.5 415 130 124 1455 450 428 45.3 430 135 128 1485 460 437 46.1 450 140 133 1520 470 447 46.9 465 145 138 1555 480 456 47 480 150 143 1595 490 466 48.4 490 155 147 1630 500 475 49.1 510 160 152 1665 510 485 49.8 530 165 156 1700 520 494 50.5 545 170 162 1740 530 504 51.1 560 175 166 1775 540 513 51.7 575 180 171 1810 550 523 52.3 595 185 176 1845 560 532 53 610 190 181 1880 570 542 53.6 625 195 185 1920 580 551 54.1 640 200 190 1955 590 561 54.7 660 205 195 1995 600 570 55.2 675 210 199 2030 610 580 55.7 690 215 204 2070 620 589 56.3

相关主题