搜档网
当前位置:搜档网 › 四轴飞行器动力学分析与建模

四轴飞行器动力学分析与建模

四轴飞行器动力学分析与建模
四轴飞行器动力学分析与建模

飞行器动力学与控制复习要点new

1. 卫星轨道六要素是哪些P2-7 ),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏心率,i 轨道倾角,Ω升交点赤经,ω近地点幅 角,p t 卫星经过近地点时刻。 2. 卫星发射三要素是什么P17-18 ),,(L t A ?,其中?发射场L 的地心纬度,A 发射方位角,L t 发射时刻。 3. 什么是太阳同步轨道P23 选择轨道半长轴a 和倾角i 的组合使d /)(9856.0?=?Ω,则轨道进动方向和速率,与地球绕太阳周年转动的方向和速率相同(即经过365.24平太阳日,地球完成一次360°的周年运动),此特定设计的轨道称为太阳同步轨道。 4. 什么是临界轨道、冻结轨道P24-25 若远地点始终处在北极上空,即拱线不得转动,轨道倾角满足02sin 5.22 =-i ,即 ?=43.63i 或?=57.116i 。此值的倾角称为临界倾角,此类轨道称为临界轨道。若选择合 适的偏心率及合适的近地幅角,使0==e ω ,近地点幅角ω被保持,或称被冻结在90°。轨道的倾角和高度可以独立选择,此类轨道称作冻结轨道。 5. 回归轨道的回归系数是什么P26 轨道经过N 天回归一次,在回归周期内共转R 圈,每天的轨道圈数(非整数)Q 称为回归系数。R C Q I N N ==±,+表示轨迹东移,-表示轨迹西移。I 为接近一天的轨道圈数, 为正整数。 6. 静止轨道的特点、三要素是什么P28 (1) 轨道的周期与地球自旋周期一致 (2) 轨道的形状为圆形,偏心率0e = (3) 轨道处在地球赤道平面上,倾角0i = 7. 星座轨道的全球覆盖公式 相邻卫星星下点之间的角距为2b ,覆盖带宽度为2c ,

四旋翼飞行器的建模与控制外文翻译

译文 四旋翼飞行器的建模与控制 摘要 迄今为止,大多数四旋翼空中机器人有是基于飞行玩具。虽然这样的系统可以作为原型,它们是不够健全,作为实验机器人平台。我们已经开发出了X-4传单,采用四旋翼机器人定制底盘和航空电子设备与现成的,现成的电机和电池,是一个高度可靠的实验平台。车用调谐厂带有板载嵌入式姿态动力学控制器以稳定飞行。线性单输入单输出系统控制器旨在规范传单态度。 1介绍 直升机的主要限制是需要广泛的,和昂贵,维护可靠的飞行。无人驾驶航空飞行器(无人机)和微型飞行器(MAV)旋翼机也不例外。简化了机械飞行机的结构产生明显的福利操作这些设备的物流。四转子是强大和简单的直升机,因为他们没有复杂的旋转倾转盘和联系在传统的旋翼机发现。多数四转子的飞行器从遥控玩具构建组件。其结果是,缺少必要的这些工艺可靠性和性能是切实可行的实验平台。 1.1现有的四旋翼平台 几个四转子工艺最近已开发用作玩具或进行研究。许多研究旋翼飞行器开始了生活作为市售的玩具,如作为HMX -4和Rctoys的Draganflyer 。未经修改的,这些工艺通常由光机身塑料转子。它们是由镍镉电池或锂聚合物电池供电,使用速度反馈的微机电系统陀螺仪。这些四转子一般没有稳定的稳态。 研究四旋翼添加自动稳定及使用各种硬件和控制方案。澳大利亚联邦科学与工业研究组织的如图1 :X-4传单型号2的。四旋翼飞行器,例如,是一个Draganflyer衍生使用视觉伺服和惯性测量单元(IMU ),以稳定的工艺在一个被做成动画的目标。其他四转子包括Eidgenossische TECHNISCHE Hochschule的苏黎世' OS4 '[ Bouabdallah等,2004 ] ,皮带驱动飞与低纵横比的叶片; CEA的“X4- flyer'1 ,小四转子电机每四个刀片[ Guenard等,2005 ]。和康奈尔大学的自治飞行器,采用的爱好飞机螺旋桨的大型工艺。

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.sodocs.net/doc/ef13182580.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

最新动态系统建模实验——四旋翼仿真

动态系统建模实验——四旋翼仿真

动态系统建模(四旋翼飞行器仿真) 实验报告 院(系)名称大飞机班 学号ZY11DF120 学生姓名叶心宇 任课教师马耀飞 2011年 12月

四旋翼飞行器的建模与仿真 一、实验原理 I.四旋翼飞行器简介 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前、后、左、右四端,如图1-1所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 在图1-1中,前端旋翼1 和后端旋翼3 逆时针旋转,而左端旋翼2 和右端的旋翼4 顺时针旋转,以平衡旋翼旋转所产生的反扭转矩。由此可知,悬停时,四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 图1-1 四旋翼飞行器旋翼旋转方向示意图 从动力学角度分析,四旋翼飞行器系统本身是不稳定的,因此,使系统稳定的控制算法的设计显得尤为关键。由于四旋翼飞行器为六自由度的系统(三个角位移量,三个线位移量),而其控制量只有四个(4 个旋翼的转速),这就意味

着被控量之间存在耦合关系。因此,控制算法应能够对这种欠驱动(under-actuated )系统足够有效,用四个控制量对三个角位移量和三个线位移量进行稳态控制。本实验针对四旋翼飞行器的悬浮飞行状态进行建模。 II .飞行器受力分析及运动模型 (1)整体分析 如图1-2所示,四旋翼飞行器所受外力和力矩为: ? 重力mg ,机体受到重力沿-Z w 方向 ? 四个旋翼旋转所产生的升力F i (i=1,2,3,4),旋翼升力沿Z B 方向 ? 旋翼旋转会产生扭转力矩M i (i=1,2,3,4), M i 垂直于叶片的旋翼平面,与旋转 矢量相反。 图1-2 四旋翼飞行器受力分析 (2)电机模型 ? 力模型 2i F i F k ω= (1.1) 旋翼通过螺旋桨产生升力。 F k 是电机转动力系数,可取82 6.1110/N rpm -?, i ω为电机转速。 ? 力矩模型

哈密顿系统的数学建模与动力学分析.

1 引言 Hamilton动力系统理论有着悠久而丰富的历史,它本身是Lagrange力学的升华与推广,从数学角度看又是一门内容精深的相空间几何学,如辛几何、辛拓扑等都源于此.近几十年来,随着纯数学理论的不断发展与计算机的普遍应用,Hamilton动力系统理论又成为当今非线性科学中极其活跃而富有魅力的研究领域.由于这类系统广泛存在于数理科学、生命科学以及社会科学的各个领域,特别是天体力学、等离子物理、航天科学以及生物工程中的很多模型都以Hamilton系统的形式出现,因此该领域的研究多年来长盛不衰.本文利用Hamilton原理推导出了Hamilton系统的正则方程.最后利用Hamilton正则方程给出一个具体物理实例的数学模型并对其进行动态模拟仿真.

2 预备知识 2.1 状态空间的基本概念 1)状态 任何一个系统在特定时刻都有一个特定的状态,系统在0t 时刻的状态是0t 时刻的一种信息量,它与此后的输入一起惟一地确定系统在0t t ≥时的行为. 2)状态变量 状态变量是一个完全表征系统时间域行为的的最小内部变量组. 3)状态向量 设系统有n 个状态变量,用()()()12,, ,n x t x t x t 表示,而且把这些状态变量看做向量 ()x t 的分量,则向量()x t 称为状态向量,记为 ()()()()12,, ,T n x t x t x t x t =????. 4)状态空间 以状态变量()()()12,,,n x t x t x t 为轴的n 维实向量空间称为状态空间. 5)状态方程 描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)称为系统的状态方程,它表征了输入对内部状态的变换过程,其一般形式为: ()()(),,x t f x t u t t =???? 其中,t 是时间变量,()u t 是输入变量. 6)输出方程 描述系统输出量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,它表征了系统内部状态变化和输入所引起的系统输出变换,是一个变化过程.输出方程的一

(完整版)航空知识手册全集3

第三章 - 飞行空气动力学 飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。作用于飞机的力 至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。 下面定义和平直飞行(未加速的飞行)相关的力。 推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。 阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。 重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。 升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。 在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升

力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下: ?向上力的总和等于向下力的总和 ?向前力的总和等于向后力的总和 对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

四旋翼无人直升机建模与控制理论研究

基于动力学模型的小型直升机控制研究 学生姓名:戴德松 班级:F0802004 学号:5080209100 指导老师:李劲松

摘要 微小型四旋翼无人直升机是一种外型新颖、性能卓越的垂直起降无人机,具有重要的军事和民用价值。本文主要讨论四旋翼小型无人直升机的建模与仿真。首先介绍小型无人机的历史、发展、特点和作用。其次对四旋翼小型无人直升机建立模型,进行物理分析,列出微分方程并线性化,得到四旋翼小型无人直升机系统的传递函数和状态空间方程。并用Matlab的Simulink仿真软件包测试各种算法对本系统的稳态和动态响应参数。考察各种算法下的系统的鲁棒性,快速性等性能并确定最优算法。最后讨论了自适应逆控制算法的可行性。 关键词:小型四旋翼直升机、建模、PID、自适应 ABSTRACT KEY WORDS:Mini quad rotor, Modeling, PID,adaptive filter Mini quad rotor is an excellent, novel vertical take-off and landing Unmanned Aerial Vehicle(UA V) for both military and civilian usages. This paper mainly investigates the Small Scale Helicopter system. First, it introduced the system to the reader about its history, development, character and why we should investigate this system. Second, it establishes the physics model for the system and use Laplace transform and state space formula to describe it. Then, use Matlab as a tool, we stimulate the response of the angle to the force when apply different methods and signals. At last, we apply adaptive filter into this system as an experiment.

飞行力学部分知识要点

空气动力学及飞行原理课程 飞行力学部分知识要点 第一讲:飞行力学基础 1.坐标系定义的意义 2.刚体飞行器的空间运动可以分为两部分:质心运动和绕质心的转 动。描述任意时刻的空间运动需要六个自由度:三个质心运动和三个角运动 3.地面坐标系, O 地面任意点,OX 水平面任意方向,OZ 垂直地面 指向地心,OXY 水平面(地平面),符合右手规则在一般情况下。 4.机体坐标系, O 飞机质心位置,OX 取飞机设计轴指向机头方向, OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 5.气流(速度)坐标系, O 飞机质心位置,OX 取飞机速度方向且重 合,OZ 处在飞机对称面垂直指向下方,OY 垂直面指向飞机右侧,符合右手规则 6.航迹坐标系, O取在飞机质心处,坐标系与飞机固连,OX轴与飞 行速度V重合一致,OZ轴在位于包含飞行速度V在内的铅垂面内,与OX轴垂直并指向下方,OY轴垂直于OXZ平面并按右手定则确定 7.姿态角, 飞机的姿态角是由机体坐标系和地面坐标系之间的关系 确定的:

8. 俯仰角—机体轴OX 与地平面OXY 平面的夹角,俯仰角抬头为正; 9. 偏航角—机体轴OX 在地平面OXY 平面的投影与轴OX 的夹角,垂直于地平面,右偏航为正; 10. 滚转角—机体OZ 轴与包含机体OX 轴的垂直平面的夹角,右滚转为正 11. 气流角, 是由飞行速度矢量与机体坐标系之间的关系确定的 12. 迎角—也称攻角,飞机速度矢量在飞机对称面的投影与机体OX 轴的夹角,以速度投影在机体OX 轴下为正; 13. 侧滑角—飞机速度矢量与飞机对称面的夹角 14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规气动舵面有三个升降舵、副翼、方向舵 15. 作用在飞机上的外力,重力,发动机推力,空气动力 16. 重力,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量 17. 空气动力中,升力,阻力,的计算公式,动压的概念。 18. 随迎角增大,升力曲线非线性,迎角分别经历抖动迎角,失速迎角,临界迎角等过程 19. 喷气发动机工作原理f k p ()P m V V =-, 20. 台架推力Pf ,发动机在试车台上测得的推力 21. 可用推力Pky ,飞行中发动机能够实际供给的用以推动飞机前进的推力 22. 推重比γfd ,耗油量qh ,单位时间消耗的燃油质量

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

四旋翼飞行器仿真 实验报告

动态系统建模仿真 实验报告(2)四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验内容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下内容:四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

四旋翼飞行器建模、控制与仿真

万方数据

万方数据

万方数据

万方数据

四旋翼飞行器建模、控制与仿真 作者:杨庆华, 宋召青, 时磊, YANG Qing-hua, SONG Zhao-qing, SHI Lei 作者单位:杨庆华,YANG Qing-hua(海装驻西安地区军事代表局,西安,710054), 宋召青,SONG Zhao-qing(海军航空工程学院,控制工程系,山东,烟台264001), 时磊,SHI Lei(防空兵指挥学院 作战指挥系,郑州,450052) 刊名: 海军航空工程学院学报 英文刊名:JOURNAL OF NAVAL AERONAUTICAL ENGINEERING INSTITUTE 年,卷(期):2009,24(5) 被引用次数:0次 参考文献(6条) 1.张天光.王秀萍.王丽霞捷联惯性导航技术 2007 2.钱杏芳.林瑞雄.赵亚男导弹飞行力学 2006 3.BOUABDELLAH S.SIEGWART R Backstepping and sliding mode techniques applied to an indoor micro quadrotor 2005 4.MOKHTARI A.BENALLEGUE A.BELAIDI A Polynomial linear quadratic Gaussian and sliding mode observer for a quadrotor unmanned aerial vehicle 2005(04) 5.BOUADI H.BOUCHOUCHA M.TADJINE M Sliding Mode Control based on Backstepping 2008(01) 6.BENCHAIB A.BOUDJEMA F.RACHID A Sliding mode flux observer based on backstepping approach for induction motor 1998 相似文献(2条) 1.学位论文周权四旋翼飞行平台飞行控制和惯性导航研究2008 微小型四旋翼飞行器是一种外型新颖,可垂直起降,通过改变四个桨的转速来进行飞行控制的特殊无人机。但它是一个非线性、多变量、高度耦合的欠驱动(四个PWM输入,六个自由度)系统,在其飞行时,受到气流、重力、陀螺效应和旋翼惯量矩等的影响,因此,要想实现稳定控制是比较困难的。为了研究四旋翼飞行器的控制规律,本文构建了四旋翼飞行试验平台,就悬停和低速水平飞行状态下的飞行控制和惯性导航进行了探索性研究。
首先选择合适的材料与元器件,制作了一架四旋翼飞行平台,测试了关键部件的性能。分别采用合适的试验方案测试转子升力、转速与PWM信号之间的关系,并对单通道进行系留试验,取得了较好的结果。
本文利用四旋翼飞行平台动力学原理,建立了基于VC++语言仿真的动力学模型。对飞行平台的高度阶跃响应和水平位移阶跃响应进行了仿真。根据仿真结果,分析了四个PWM的变化与飞行平台加速度的变化。根据单通道的受力分析,建立了单通道复数域数学模型。通过SIMULINK仿真研究,得到了各控制参数对控制系统的影响。然后将欧拉法应用于惯性导航,并试验验证了欧拉法计算姿态。简单分析了GPS定位原理与GPS/INS组合导航的方法。
最后对四旋翼飞行平台进行多次飞行试验,根据试验结果,调整控制参数和改进飞行平台结构,最终取得了初步的飞行成功。 2.学位论文黄牧基于反步法的微型四旋翼无人飞行器非线性自适应控制研究2009 无人机通常指无人驾驶、可以自主飞行或遥控操作、利用空气动力承载飞行并可回收重复使用的飞行器,主要包括固定翼式和旋翼式两类。
固定翼无人飞行器的技术已经比较成熟,并在实际应用中取得重大成功;和固定翼飞行器相比较,旋翼无人飞行器具有很多优势:比如能够适应各种环境;具备自主起飞和着陆能力,高度智能化:能以悬停、前飞、侧飞和倒飞等各种姿态飞行;但是旋翼无人飞行器因动力学特性远比固定翼飞行器复杂,发展就相对缓慢得多。近年来,旋翼无人机因其巨大的军用和民用价值,迅速成为控制领域内的研究热点。
四旋翼无人飞行器是一种常见的旋翼飞行器,其模型具有高度非线性、状态耦合、欠驱动等特点,飞行控制设计比较困难。本文的主要任务是在分析四旋翼无人飞行器动态特性的基础上,采用反步法结合非线性自适应控制进行控制器设计,使四旋翼飞行器保持稳定的飞行状态,并且位置输出和偏航角能够跟踪期望轨迹;主要内容如下:
第一,本文对四旋翼无人飞行器进行了建模;但是四旋翼无人飞行器动力学特性复杂,空气动力学系数容易变化,系统可能包含未知信息和噪声,所以其动力学模型中存在不确定性;这使控制器的设计变的更加困难。
第二,本文采用反步法和自适应控制设计控制器,使四旋翼飞行器系统保持了稳定。为了便于反步设计,本文把四旋翼模型划分为四个子系统;第一个是欠驱动子系统,表示系统关于水平位置,滚动角和偏航角的动力学方程;第二个和第三个是全驱动子系统,表示系统关于偏航角和垂直位置的动力学方程;第四个子系统是关于推进力的动力学方程。在完成控制设计之后,本文利用基于Lyapunov稳定性理论的分析方法,证明了论文中提出的非线性自适应控制能够保证闭环系统的稳定,并在飞行器质量参数未知条件下,实现了水平位置、垂直位置以及偏航角的渐近稳定轨迹跟踪。
最后,本文用MATLAB对四旋翼无人飞行器控制系统进行了仿真;仿真结果验证了使用反步法结合自适应控制能够使系统的位置输出和偏航角追踪期望轨迹,同时保持了滚动角和俯仰角的稳定。
本文的创新之处是设计了基于反步法的自适应控制器,解决了质量未知的情况下四旋翼无人飞行器的轨迹追踪问题,并保证了系统稳定和跟踪误差收敛。 本文链接:https://www.sodocs.net/doc/ef13182580.html,/Periodical_hjhkgcxyxb200905006.aspx 授权使用:李建平(wfnchkdx),授权号:e7083126-c414-4535-9e0d-9e9e00bddb36

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模及仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor

扑翼机飞行器传动机构动力学分析

扑翼机飞行器传动机构动力学分析 摘要 自古以来在天空中翱翔都是人们梦寐以求的,经历了几千年的研究,目前应用较为广泛的飞行器有固定翼飞行器、旋翼飞行器、扑翼飞行器。然而,扑翼飞行器多采用仿自然生物飞行特征研究得到,它具有良好的激动灵活性,很高的升阻比,而且尺寸相对较小,耗能较少,因此相比较固定翼和旋翼飞行器应用更加广泛,目前在民用、国防、军事领域中都有着很好的应用。 从国内外研究现状中显示,目前扑翼机都处于研究阶段,远没有达到推广和大范围应用阶段,存在的问题也相对较多。本文以此为出发点,主要对扑翼机飞行器机构的动力学进行研究,通过对常见扑翼机飞行器传动机构的研究、分析和比较,发现其中的不足,本文在传统的曲柄摇杆的基础上对其进行改进,验证曲柄中存在夹角的曲柄摇杆机构在提高两侧摇杆同步性方面的优势,并且证实了不对称摇杆机构中曲柄存在夹角的情况,相比曲柄中不存在夹角的机构在减少左右摇杆相位差角方面更有优势,能提高不对称机构的同步性。通过对鸟类、昆虫两类生物飞行机理的研究,本文从仿昆虫、仿鸟类、仿蜂鸟三种生物对扑翼几飞行器尺度律进行分析,研究结果表明,扑翼飞行器与真实鸟类的尺度律之间还存在较大程度的差异。通过对扑翼机飞行器传统机构数学模型的建立、模型的求解和推导,得出最佳模型,并从常定力、惯性力以及阻尼力三个方面对飞行器进行了动力学仿真,定常力情况时,弹簧的存在使输入功率的峰值降低了86%,惯性力情况时,弹簧的存在使功率峰值降低了20%,阻尼力情况时,弹簧的存在使功率峰值升高了56%。从整个系统角度来说,弹簧通过对能量的储存和释放两个过程减缓了输入功率的峰值。为了进一步验证安装弹簧在减少功率峰值上的优势,对

相关主题