搜档网
当前位置:搜档网 › 第二章 声波的基本特性

第二章 声波的基本特性

第二章 声波的基本特性
第二章 声波的基本特性

膨胀土膨胀特性的变化规律研究_谭罗荣

第25卷第10期 岩 土 力 学 V ol.25 No.10 2004年10月 Rock and Soil Mechanics Oct. 2004 收稿日期:2003-11-04 修改稿收到日期:2004-03-25 基金项目:国家自然科学基金项目(No. 19972068),国家重大基础研究前期研究专项项目(No.2003ccA02233)。 作者简介:谭罗荣,男,1938年生,研究员,从事岩土材科的基本特性与其工程力学性状关系的学研究。 文章编号:1000-7598-(2004)10-1555-05 膨胀土膨胀特性的变化规律研究 谭罗荣,孔令伟 (中国科学院武汉岩土力学研究所 岩土力学重点实验室,湖北 武汉 430071) 摘 要:研究了击实膨胀土的膨胀压力p 与50 kPa 下的膨胀率50δ随干密度、饱和度及含水量的变化规律。结果表明:p 和50δ与干密度d r 、含水量w 、饱和度r s 的关系及p -50δ间的关系皆可用幂指数函数描述;在不同条件下,w ,d r ,r s 中的某一个或两个因素可更好地描述p 和50δ的变化规律,一般在高含水量范围含水量因素与干密度因素等价;在低含水量范围含水量因素与饱和度因素等价;含水量一定时干密度因素与饱和度因素等价;存在一临界干密度,干密度大于临介干密度时,膨胀力随饱和度的增加而减小,反之则增加。 关 键 词:膨胀土;膨胀压力;膨胀率;干密度;饱和度;含水量 中图分类号:TU443 文献标识码:A Study on variation regularity of swelling behavior of expansive soil TAN Lou-rong ,KONG Ling-wei (Key Laboratory of Rock and Soil Mechanics ,Institute of Rock and Soil Mechanics ,Chinese Academy of Sciences, Wuhan 430071, China) Abstract :The variation regularity of swelling pressure p and expansion ratio 50δunder 50 kPa pressure with dry density d r ,degree of saturation r s and water content w were i nvestigated. The results show that:the relations between p ,50δand d r ,w ,d r ,r s ;and between p and 50δcan be illustrated in power exponent function ;the variation of p and 50δunder various conditions can be better described by one or two factors that are w ,d r ,r s ;in general ,w is epuivalent to d r while high w ;d r is equwalent to r s while lower w ;and d r is equivalent to r s while certain w ;there is a critical value of dry density ,p decreases as r s increase when d r more than the critical value ,otherwise the conclusion is opposite. Key words :expansive soil; swelling pressure; expansion ratio; dry density; saturation degree; water content 1 引 言 膨胀土的灾害主要是其失水收缩、吸水膨胀引起的。不均匀的膨胀和收缩使土体拉裂,破坏了土体的完整性;而吸水膨胀使土体密度降低,两者皆可使其强度降低,造成工程坡体失稳滑塌等工程灾害。另外,受限制的强烈胀、缩会造成建筑物拉、胀裂破坏等。 在对一些建筑在膨胀土地区的轻型建筑物破坏实例调查中发现,建筑物墙体、地梁和混凝土地坪,由于地基缩胀而断裂和破坏,其原因就是膨胀土基础在施工期间暴露于大气而失水,在上面覆盖一不透水覆盖层后,由于基础不断从周边,特别是雨后吸水而发生体胀后, 其膨胀力促使覆盖物破坏。当然,如覆盖层足够厚、强度足够高,亦可以 抑制膨胀力而不破坏。因此,膨胀力和胀缩变形的变化规律一直是膨胀土研究的重点研究内容,文献[1]曾研究过某些因素如干密度、饱和度、蒙脱石矿物等对膨胀土的膨胀压力的影响,得到了一些有益的结果。本文在此基础上详细地讨论膨胀土特性指标与其膨胀特性的定量关系。 2 干密度对膨胀特性的影响 研究用的荆门膨胀土取自207国道施工现场,原状样含水量较高、裂隙发育,且裂面光滑,裂面两侧土体联结较弱,易产生滑移。该土击实样的有关试验数据如表1所示,其中p 为膨胀压力,根据规范[2]中的作图法求得;50δ为膨胀测试时膨胀卸荷至50 kPa 时的变形量(线膨胀率),与直接在50 kPa 载荷下的膨胀率有差异,但变化规律应是一致的。

第八章声波测井

第八章声波测井 声波测井的物理基础 1.名词解释: (1)滑行波: (2)周波跳跃: (3)stoneley 波: (4)伪瑞利波: (5)声耦合率: (6)相速度: (7)声阻抗: (8)群速度: (9)频散: (10)衰减: (儿)截止频率: (12)声压: (13)模式波: (14)泊松比: (15)第一临界角: (16)第二临界角: 2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系? 3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。 4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。 5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。 6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。 7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。 8.在 相介质中,由于μ=0,即 切应力,故 。 9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。 10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

膨胀土的判别与分类

膨胀土的判别与分类 路基土工 2008-05-03 20:02 阅读19 评论0 字号:大中小 膨胀土的判别与分类 --摘自西部项目《膨胀土地区公路勘察设计技术研究》研究成果 膨胀土在我国大部分地区均有分布。膨胀土的胀缩性直接影响着建筑物的安全性,它不仅造成房屋成群开裂,公路、铁路塌方,而且可导致膨胀土边坡产生表层浅滑现象,造成农田水利设施的破坏,影响人们的生活环境。因此,在工程地质勘察中,必须正确地识别膨胀土与非膨胀土,准确地判定膨胀土的胀缩性等级,这有助于合理进行拟建建筑物的设计与地基处理,对保障建筑物安全与人们的生活环境具有非常重要的意义。一、膨胀土的定义 1996年《公路路基设计规范》(JTJ013-95)的膨胀土定义是:“膨胀土系指土中含有较多的粘粒及其亲水性较强的蒙脱石或伊利石等粘土矿物成分,它具有遇水膨胀,失水收缩,是一种特殊膨胀结构的粘性土。”从这个定义上来看,膨胀土的主要特性是膨胀和收缩。但膨胀和收缩是一个十分复杂的问题,不仅仅是遇水膨胀和失水收缩这么简单。在增加溶液电解质浓度的情况下,即使是遇水,膨胀土也会产生收缩现象。因此,膨胀土的膨胀和收缩是在水和电解质共同作用下的结果。另外,定义中指出土中含有较多的亲水性较强的蒙脱石或伊利石等粘土矿物成分的说法也不确切。如果膨胀土中仅含伊利石显示不出膨胀土具有较强的膨胀与收缩特性,伊利石的亲水性仅为蒙脱石的十分之一。膨胀土的胀缩特性主要是由亲水性粘土矿物蒙脱石决定的。因此,《膨胀土地区建筑技术规范》(GBJ112-87)给出的膨胀土的定义更为恰当:“膨胀土应是土中粘粒成分主要由亲水矿物组成,同时具有显著的吸水膨胀和失水收缩两种变形特性的粘性土。” 二、膨胀土判别指标 要鉴别某种土是否属于膨胀土,应根据本身的固有属性来进行区分,只有内在的主要固有属性才是控制膨胀土工程特性的决定性因素;至于在膨胀土地区各种建筑物的稳定程度,只能用作辅助的判别。所以对膨胀土的判别原则,首先应从工程地质观点出发,分析土体的裂隙特征,概括出能反映膨胀土工程性质的实际情况,能代表膨胀土规律的主要指标。 能否充当膨胀土的判别指标,主要看它能否满足以下三个条件: 能反映膨胀土的本质; 指标的测定简单便捷; 指标数据可靠,重现性好。 可能用来判别膨胀土的指标分述如下: (1)界限含水量反映土粒与水相互作用的灵敏指标之一,在一定程度上反映了土的亲水性能。它与土的颗粒组成,粘土矿物成分,阳离子交换性能,土粒的分散度和比表面积,以及孔隙水溶液的性质等有着十分密切的关系。通常有液限、塑限、缩限三个定量指标。 (2)胀缩总率反映膨胀土粘土矿物成分和结构特征。 (3)粒度成分反映膨胀土物质组成的特性指标。

膨胀土处理

摘要:对膨胀土的工程地质特性分析,结合多年对膨胀土地基有效处理的实践经验,提出对膨胀土地基处理的要点,供大家参考。 关键词:膨胀土;地基特性;处理 膨胀土是一种粘性土,其粘粒中含多量的亲水矿物,又具有大量的利于水楔的微裂隙结构,在环境湿度变化的影响下,土体将产生强烈的胀缩变形,粘土均具有吸水膨胀、失水收缩的性能,只有当其膨胀压力或收缩裂缝反复作用,达到危害砖石结构建筑物的稳定和安全时,才称此粘土为膨胀土。膨胀土对建筑物的危害性的研究越来越得到重视。 1 膨胀土在我国的分布及判别 1.1 膨胀土在我国的分布 我国是世界上膨胀土分布面积最广的国家之一,每年我国由于膨胀土地基致害的建筑面积达1000×104平方米左右。在北京、河北、西安、成都一线东南的广大区域内,膨胀土的分布最普遍,也最集中,在晋、冀、鲁、豫、陕、川、云、贵、桂、粤、湘、甘、苏、鄂等省区均有分布。 1.2 膨胀土的判别 土的试验指标中粘粒含量>35%,塑限≤13%,液限≥38%,胀缩总率≥5%,达到以上临界值时的土可判定为膨胀土。膨胀土的膨胀性可用自由膨胀率指标来反映。自由膨胀率即为烘干土在水中增加的体积与原体积的比。自由膨胀率<40%时为非膨胀土;40%≤自由膨胀率<65%时为弱膨胀性土;65%≤自由膨胀率<90%时为中膨胀性土;90%≤自由膨胀率时为强膨胀性土。另外,不同类型的膨胀土具有不同的结构特征。灰白色粘土,网状裂隙很发育,土体呈碎块状结构,水对其影响特别显著,为强膨胀土;棕黄色粘土,裂隙发育充填有薄层连续白色粘土,呈层状结构,水对其影响显著,一般为中膨胀土;棕黄或红色粘土夹姜石,裂隙较发育,部分为灰白色粘土充填,呈厚层状或块状结构,一般为胀土(也为中等膨胀土,但其膨胀性稍差一些);灰褐或褐黄色粘土,裂隙不发育,随机分布,呈块状结构,一般为弱膨胀土。 2 膨胀土地基特性及其在建筑物的破坏特征 2.1膨胀土地基特性 膨胀土具有吸水膨胀、失水收缩性能和强度衰减性,并且有再吸水再膨胀、再失水再收缩的特性。地基膨胀土浸水膨胀,建筑物则上升隆起;地基膨胀土失水收缩,建筑物则产生下沉或开裂,膨胀土的胀缩变形量直接影响到建筑物变形破坏的程度。膨胀土在一般性自然条件下,表现为强度较高、压缩性较低、含水量小、呈硬塑状态,很容易被误认为是原状土,因此对建筑物具有相当大的潜在破坏性。膨胀土的胀缩性和裂隙性是它的两个重要属性,而压力和含水量又是影响膨胀土性能的两个主要的外界因素。土的膨胀率在不同的压力下是不同的,基底压力越大,土膨胀率越低;相反,基底压力越小,则土的膨胀率越高,膨胀度越大,越容易发生破坏,而含水量的变化则表现得更为突出。例如,在膨胀土地区的建筑物的变形与破坏,在雨季,含水量大,而产生隆胀破坏;在旱季,含水量降低,则出现收缩裂隙现象严重。 2.2 膨胀土地区建筑物破坏特征

膨胀土知识

膨胀土知识简介 1膨胀土的研究意义 膨胀土是粘粒成分主要由亲水矿物(主要是蒙脱石、伊利石、高岭石等)组成,液限大于40%,同时具有显著的吸水膨胀和失水收缩两种变形特征的粘性土。在自然条件下,一般多呈硬塑或坚硬状态,具黄、红、灰白等色,裂隙较发育,常见光滑面和擦痕。膨胀土分布广泛,在世界六大洲的40多个国家都有分布。自1938年美国开垦局在俄勒冈州的一例基础工程中首次认识了膨胀土问题,膨胀土开始引起人们的关注。由于它具有显著的胀缩性,存在较多裂隙软弱面,常常给膨胀土地区的工程建设造成严重的破坏,给人民的财产造成巨大的损失。膨胀土给工程建筑带来的危害,既表现在地表建筑物上,也反映在地下工程中。它不仅包括铁路、公路、渠道的所有边坡、路面和基床也包括房屋地基;甚至还包括这些工程中所采取的稳定性措施如护坡、挡土墙和桩等。以至从某种意义上讲,膨胀土对工程建筑的危害是无所不包的[1]。这种危害往往是长期的、渐进的、潜在的,有时是难以处理的,美国工程界称之为“隐藏的灾害”。据统计,美国由于膨胀土造成的损失平均每年高达20亿美元以上,已超过洪水、飓风、地震和龙卷风所造成的损失的总和,全世界每年造成的损失达50亿美元以上。 我国是膨胀土分布广、面积大的国家之一,先后己有20多个省市发现有膨胀土,其中主要分布在河南、湖北、广西、云南等省(见图1-1),在内蒙、东北等地也有发现。早在五六十年代,就因其工程问题引起人们对它的重视。我国由于膨胀土地基致害的建筑面积达1000万m2左右,铁路、公路及建筑物受到的危害也很严重。南水北调中线工程将穿过三百余公里的膨胀土地区,膨胀土渠坡的稳定问题对工程的正常运行至关重要。研究解决膨胀土边坡稳定问题具有实际意义。 我国膨胀土主要分布中西部地区,见表1-1。长江流域的长江、干支流水系等地区是我国膨胀土分布比较广泛和集中的地域之一(见图1-1)。从第三纪(N2)至第四纪下更新统(Q1 )、中

超声波的基本原理及传播特点 (1)

目录 摘要 (2) 引言 (3) 1.超声波的基本原理及传播特点 (4) 1.1什么是超声波 (4) 1.2超声波的基本原理 (4) 1.2.1压电效应及脉冲超声波的产生 (4) 1.2.2超声波波形 (5) 1.3超声波传播的特点 (6) 2.超声波的应用 (6) 2.1超声波在制浆造纸中的应用 (7) 2.2超声波传感器 (8) 2.3超声波测距 (9) 2.4超声波在医学诊断中的应用 (10) 2.5超声波在生物技术领域的应用 (11) 2.5.1用于培养液及药物的雾化 (11) 2.5.2提高种子发芽率和遗传物质的转化率 (11) 2.6超声波在军事中的应用 (11) 3. 结束语 (12) 参考文献 (12) 致谢 (13)

摘要 超声波是一种高能机械波,本文通过介绍超声波的产生机制和基本原理。让读者更深层次的认识超声波,文中根据超声波的自身特点从超声波传感器、超声波测距、及超声波在纸浆造纸中、医学诊断中、生物技术领域中、军事中的应用这六个方面进行详细讲述。超声波是一门年轻的学科,随着超声研究技术的不断成熟,未来将会更好的应用在生产生活中。 关键词:超声波;传感器;测距;医学诊断 Abstract Ultrasonic is a kind of high-energy mechanical wave, this paper introduces the basic principle of ultrasonic generation mechanism and give readers a deeper understanding of ultrasound, in this paper, according to the characteristics of ultrasonic sensors, ultrasonic distance measurement, and ultrasonic in pulp papermaking, medical diagnosis, in the field of biotechnology, the application of the military in these six aspects in detail. Ultrasonic is a young discipline, with the ultrasonic technology matures, the future will be better application in the production and living. Key words: ultrasonic ;the sensor ;ranging; medical diagnosis 引言 超声波最早被人类发现是在1793年由意大利科学家斯帕拉捷在蝙蝠身上发现其存在,随后的30多年里人们进行了有关超声波的产生机理方面的大量研究,直到1830年F ·Savar 用齿轮产生4104.2 HZ 的超声,首次实现了人类在人工控制下超声波的产生,开启了超声历史的新纪元,其他新技术如压电效应与逆压电效应的发现大大推动了超声波的快速发展,在随后的60年间,世界各地区有关超声技术的研究不断的取得突破性成果,20世纪的40年代超声技术开始应用于临床医疗方面,这也同样推动了人类医疗事业的发展,有关超声波在医学方面的应用与研究取得突破性进展,国际间也有过许多的交流与合作,共同推动了超声科技的发展和进步。我国在超声方面的研究相对落后于国际主流国家,我国由于当时特别的时期和特别的情况,20世纪60年代才开始超声方面的研究,有关超声学的相关研究始于也在这个时期真正开始,并且在随后的几年发展中取得了许多重要成果和重要的应用,如金属探伤、种子的培育、印染等。在基础研究方面也取得了重要进展,如研制出有关超声波在固体中衰减所用的检测设备,进行了有关超声乳化等课题的研究,研制出分子声学试验等设备,表面换能器的相关研究在1960年左右开始。改革开放的新时期,超声技术开始了实际应用之路,并且在该领域的一些列成果开始走进我们的生

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用

第12章 材料和结构的声学特性

第12章材料和结构的声学特性 建筑声环境的形成及其特性,一方面取决于声源的情况,另一方面取决于建筑环境的情况。而建筑环境,一方面是指建筑空间,另一方面是指形成建筑空间的物质实体——按照各种构造和结构方式“结合”起来的材料以及在建筑空间中的人和物。材料和结构的声学特性是指他们对声波的作用特性。 12.1 吸声材料和吸声结构 应用场所:早前:音乐厅(一般不做吸声处理)、剧院、礼堂、录音室、播音室等。 后来:教室、车间、办公室、会议室等。 作用:1、缩短和调整混响时间 2、控制反射声 3、消除回声 4、改善音质,改变声场分布 5、用于控制噪声 12.1.1 吸声系数和吸声量 1)吸声系数 用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以“α”表示,定义为: α在0到1之间,数值越大,吸声能力越好。 吸声系数与频率有关,工程上通常采用125、250、500、1000、2000、4000Hz 六个频率来表示某一种材料和结构的吸声频率特性。有时也把250、500、1000、2000Hz四个频率吸声系数的算术平均值(取为0.05的整数倍)称为“降噪系数”(NRC)。 2)吸声量 用以表征某个具体吸声构件的实际吸声效果的量是吸声量,它与构件的尺寸大小有关。A=α*S 12.1.2吸声材料和吸声结构的分类 1)吸声材料的选用原则: (1)、吸声系数高; (2)、吸声频带宽; (3)、材料的耐久性好。 (4)、材料的装饰性、防火防腐、防虫 驻、质轻、防潮等。 2)分类 吸声材料按吸声机理分为: (1)靠从表面至内吸声材料部许多细小的敞开孔道使声波衰减的多孔材料,以吸收中高频声波为主,有纤维状聚集组织的各种有机或无机纤维及其制品以及多孔结构的开孔型泡沫塑料和膨胀珍珠岩制品。 (2)靠共振作用吸声的柔性材料(如闭孔型泡沫塑料,吸收中频)、膜状材料(如塑料膜或布、帆布、漆布和人造革,吸收低中频)、板状材料(如胶合板、硬质纤维板、石棉水泥板和石膏板,吸收低频)和穿孔板(各种板状材料或金属板上打孔而制得,吸收中频)。以上材料复合使用,可扩大吸声范围,提高吸声系数。用装饰吸声板贴壁或吊顶,多孔材料和穿孔板或膜状材料组合装于墙面,甚至采用浮云式悬挂,都可改善室内音质,控制噪声。多孔材料除吸收空气声外,

声波的产生与传播及其特性的讲义

声波的产生与传播及其特性 要点一、声波的产生和传播 1.声波:发声体的振动在空气或其他物质中的传播叫做声波。 2.声源:正在发声的物体叫做声源。 3.介质:能够传播声音的物质叫做介质,气体、液体、固体都是介质。 要点诠释: 1、声波实际是声源振动的信息和能量通过周围的物质(通常叫介质)传播开去。声波无法在真空中传播,这是由于真空中没有可以传播振动的物质,不能形成疏密状的声波。 2、声音是由物体的振动产生的。振动停止,发声也停止,但是不能说振动停止,声音也消失。因为振动停止,只是不再发声,但是原来所发出的声音还在继续向外传播并存在。 3.声音的传播需要介质,真空不能传声。 类型一、声音的产生 例题: 1.如图所示小华将正在发声的音叉触及面颊,而不直接观察音叉是否振动的原因是___________。当小华用手捂住正在发声的音叉后,小华___________(填“能”、或“不能”)听到音叉发出的声音,这是因为______________________。 举一反三: 1.如图所示,当敲响的音叉接触悬挂的小球时,音叉能把小球弹开。该 实验证明了声音是由于物体产生。 2.下列哪一种情况声音不能传播()

A .在空气中 B.在水中 C.在地面以下 D.在太空中 3.下列现象中说明声音产生原因的是( ) A . 敲击音叉发声,与音叉接触着的乒乓球被弹开 B . 敲击一下长铁管的一端,在另一端的人先后听到两次打击声 C . 敲击打击乐器,发出不同的声音 D . 敲击水中的石块,岸上的人也能听到敲击声 4.下列关于声现象的说法中,错误的是( ) A .真空不能传声 B .15℃时空气中的声速是340m/s C .声音在固体中比在空气中传播得慢 D .喇叭发音时,放在纸盆上的纸屑在上下跳动,说明振动发声 5.在敲响大古钟时发现,停止了对大钟的撞击后,大钟“余音不止”,其原因是( ) A . 人的听觉发生“延长” B . 是大钟的回声 C . 大钟仍在振动 D . 大钟虽停振动,但空气仍在振动 要点二、声速 回声 1.声速:声音在每秒内传播的距离叫声速,单位m/s,读作米每秒。15℃时空气中的声速是340m/s ,平 常我们讲的声速,指的就是此值。 2.影响声速的因素:(1)介质的种类,一般情况下v 固>v 液>v 气; (2)温度,同种介质,温度越高,声速越大。 3、回声:声波在传播过程中遇到大的障碍物一部分被反射回来,便形成回声。 4、回声测距:测出从发声到接受到回声的时间,知道了声速利用公式2 t s v ,可以算

膨胀土的基本特性

第2章膨胀土的基本特性 2.1 主要工程特性 2.1.1 胀缩性 膨胀土吸水体积膨胀,使其上建筑物隆起,如膨胀受阻即产生膨胀力;失水体积收缩,造成土体开裂,并使其建筑物下沉。膨胀土在缩陷与液限含水率的收缩量与膨胀土,称为极限胀缩潜势。土中有效蒙脱石含量越多,胀缩潜势越大,膨胀力越大。土的初始含水率越低,膨胀量与膨胀力越大。影响膨胀土涨缩性的因素有矿物成分、颗粒组成、初始含水量、压实度及附加荷重等。其中除了矿物成分和颗粒组成的内因因素影响外,初始含水量、压实度及附加荷重的外因因素影响也很大。击实土的膨胀性远比原状土大,密实度越高,膨胀量与膨胀力越大,这是在膨胀土路基设计中特别值得注意的问题[1]。 2.1.2 崩解性 膨胀土浸水后体积膨胀,在无侧限条件下发生吸水湿化。不同类型的膨胀土其崩解性是不一样的,强膨胀土浸入水中后,几分钟内很快就完全崩解;弱膨胀土浸入水中后,则需经过较长时间才能逐步崩解,且有的崩解不完全。此外,膨胀土的崩解特性还与试样的起始湿度有关,一般干燥土试样崩解迅速且较完全,潮湿土试样崩解缓慢且不完全。 2.1.3 多裂隙性 膨胀土中的裂隙,可分垂直裂隙、水平裂隙与斜交裂隙三种类型。这些裂隙将土体分割成具有一定几何形态的块体,如棱块状、短柱状等,破坏了土体的完整性。裂隙面光滑有擦痕,且大多充填有灰白或灰绿色黏土薄膜、条状或斑块,其矿物成分主要为蒙脱石,有很强的亲水性,具有软化土体强度的显著特性。膨胀土路基边坡的破坏,大多与土中裂隙有关,且滑动面的形成主要受裂隙软弱结构面所控制。 2.1.4 超固结性 膨胀土大多具有超固结性,天然孔隙比较小,干密度较大,初始结构强度较高。超固结膨胀土路基开挖后,将产生土体超固结应力释放,边坡与路基面出现卸载膨胀,并常在坡脚形成应力集中区和较大的塑性区,使边坡容易破坏。 2.1.5 强度衰减性 膨胀土的抗剪强度为经典的变动强度,具有峰值强度极高、残余强度极低的特性。由于膨胀土的超固结性,其初期强度极高,一般现场开挖都很困难。然而,由于土中蒙脱石矿物的强亲水性以及多裂隙结构,随着土受胀缩效应和风化作用的时间增加,抗剪强度将大幅度衰减。强度衰减的幅度和速度,除与土的物质组成。土的结构和状态有关外,还与风化作用特别是胀缩效应的强弱有关。这一衰

声波的传播特性

声波的传播特性 声源的方向性:虽然不同声源的辐射方向图形不同,但大部分声源符合下列规律:当辐射出来的声波波长比声源的尺寸大很多倍时,声波比较均匀地向各方向传播;当辐射出来的声波波长小于声源的尺寸时,声波集中地向正前方一个尖锐的圆锥体的范围内传播。例如我们讲话时,语音中的低频部分,由于其波长比声源的尺寸大得多,所以能绕着人的头部而向各个方向均匀地传播;而语音中的高频部分仅由发言者的嘴部向前直射。因此,当我们站在讲话者的背后时,听到的声音中的高频分量会有下降,常常感到听不清楚。 声波的反射和折射:当我们向河中投一小石块时,将会激起水波。此水波向四面传播,遇到河岸时,水波就会被反射回来。与其相似,在空气中传播的声波遇到长和宽都比声波波长大的坚硬障碍物(如平面墙),也会产生反射现象。其反射情况遵从反射定律。反射定律是:入射声线、反射声线,法线(在入射点作垂直该表面的垂直线)在同一平面上;入射声线、反射声线分居法线两侧;入射角(入射声线与法线的夹角)等于反射角(反射声与法线的夹角)。根据声波反射定律,在室内扩声时,如果天花板或墙面为凹面,会产生声聚焦现象,使声场分布有均匀,在聚集点附近放置传声器最容易出现声反馈,引起啸叫声。如果天花板或墙面形成凸面,则会将反射声扩散开来,使室内声场分布趋于均匀,有利于室内各座位上的听音要求。许多大型演播室、剧场的墙面分隔成一些柱形面,天花板做成拱形面,都是为了扩散反射声,以获得均匀的声场。 当声波遇到障碍物时,除了反射声波外,还有一部分声波将进入障碍物。进入声波的多少与障碍物的特性有关。如果传播路径中遇到的是坚硬障碍物,则大部分声音能量就会被反射回来,小部分声音能量被障碍物吸收掉;如果传播路径中遇到的是松软多孔障碍物,那么,大部分声波会被吸收,小部分声波被反射。由于此时声波从一种媒质进入到另一种媒质,其传播方向发生变化,我们把这种现象称为折射。 声波的绕射(衍射)和散射:我们仍以河面上的水波为例。当水面上有障碍物时,水波的传播发生了变化。当障碍物比较小时,水波可以绕过障碍物继续传播。当障碍物较大时,在障碍物背后的边缘附近没有水波,而其余部分仍有水波传播,我们称这类现象为绕射(衍射)。 声波遇到障碍物时也存在绕射现象。若障碍物的尺寸一声波波长相近时,声波像没有遇到障碍物一样继续传播。若障碍物的尺寸比声波波长大很多时,声波则会在障碍物的边缘产手子波,子波的频率与原声波相同,但幅度较小,并且继续向障碍物的阴影区传播。室内扩声,场地较大,听众座位平排水平放置,坐在后面各排的听众会听不见舞台音箱的直达声,只能听见前面排座上人头边传来的衍射声和天花板、墙面传来的反射声,声音既小又不清晰,这些区域叫声影区,这是建声的缺陷,扩声环境的听音多区应避免声影区的存在。 声波在传播过程中,如果遇到障碍物产生的绕射是无规则时则称为散射现象。如果遇到一厘米左右尺寸的障碍物时,那么,无论频率多高的声波,大部分都能绕过它而继续向前传播。 与上述现象相对照,当声波通过障碍物的洞孔时,也会发生绕射现象。此时,洞口好像一个新的点声源。当声波的波长比洞口尺寸大很多时,经过洞口后的声波从洞口向各个方向传播。而频率较高的声波则具有较强的方向性,从洞口向前方传播。因此当室内有一声源时,声波将会遇到墙壁、家具等物体,而产生反射、绕射等现象,而且声波还会通过门、窗的缝隙处传到室外。 声波干涉:两个声波在同一介质中传播,若振幅相同、频率相等、相位差为零或恒定,则在空间某些地方合成振幅最大,在空间某些地方合成振幅为零,这种现象称为声波干涉。这会造成厅堂各处的声音并不是一样响,甚至于很小。声驻波:两列反向传播的声波在

膨胀土特性及处治研究

第23卷 第2期重 庆 交 通 学 院 学 报2004年4月Vo1 23No 2JOURNAL OF C HONGQI NG JIAOTONG UNIVE RSI TY Apr.,2004 成都龙泉驿地区膨胀土特性及处治研究 严国全,1 许仁安,2 何兆益1 (1.重庆交通学院土木建筑学院,重庆400074;2.重庆市公路局,重庆400067) 摘要:分析研究了成都龙泉驿地区膨胀土的界限含水量、最大干密度、最佳含水量以及膨胀力 干密度、膨胀力 含水量、有效粘聚力 含水量等之间的关系,探讨了4种固化剂改良方法 石灰、水泥石灰、SB T及STX对改善膨胀土最佳含水量、无侧限抗压强度及膨胀率等的影响. 关 键 词:膨胀土;膨胀力;膨胀率;无侧限抗压强度 中图分类号:U412 22+1 文献标识码:B 文章编号:1001 716X(2004)02 0102 05 膨胀土是指土中含有较多的粘粒及其亲水性较强的蒙脱石或伊利石等粘土矿物成分,具有遇水膨胀、失水收缩的一种特殊膨胀结构的粘质土,鉴于膨胀土具有胀缩性、遇水崩解性、超固结性、易风化性、多裂隙性及强度衰减等特性,利用膨胀土作为路基填料,其压实后的膨胀土与原状结构膨胀土的工程性质有很大不同[1].通常,较强膨胀性的土不得作为填料用土.为了充分利用当地膨胀土,保证路基的强度、刚度和稳定性,需要对当地膨胀土进行分析和研究,提出必要的处治措施,使其具有最小的膨胀率和足够的强度,满足路基设计要求.1 膨胀土特性 1.1颗粒分析 膨胀土颗粒粒径小于0 074mm的细粒成分含量较高,颗粒成分以粘粒为主,一般为高分散性土.遇水后膨胀量大,失水后干缩严重,反复胀缩变形容易导致裂缝的产生.组分分析按公路土工试验规程!(JTJ051 93)颗粒分析试验进行,粒径大于0 074mm的土采用筛分法,粒径小于0 074mm的土采用比重计法,其颗粒组分试验结果见表1. 表1 颗粒组分结果 粒 径(mm)520 50 250 0740 050 0050 002小于该粒径土质量百分数(%)10099 999 799 698 4945241 1.2阿氏限度(塑、液限) 界限含水量是膨胀土工程性质中很重要的一个指标.膨胀土的膨胀潜势S与塑性指数I P存在密切的相关性,土的胀缩一般在塑性指数界定的含水量范围内发生.塑液限试验采用光电联合测定仪[2],测定得出:液限(W L)为55,塑限(W P)为24,塑限指数(I P)为31.根据我国特殊土在塑性图上的分布,该膨胀土属于高液限粘土(C HE),公路沥青路面设计规范规定,当液限大于40%,塑性指数大于18时,属于不稳定的不良筑路材料,应考虑土质特性与自然环境对土基湿度、干密度的影响,控制土的稠度,进行最佳压实,达到要求的压实度,以保证路基的强度与稳定性[3].1.3最佳含水量与最大干密度 最大干密度和最佳含水量对保证路基的性能有很大的关系,对控制路基压实起着非常重要的作用.在实验室采用干土法(土不重复使用),按四分法准备7个试样,分别加入不同水分,拌匀后闷料一夜.采用标准击实仪: 15 2?12试筒,击实功2677 2kJ m3,每层击98次,分3层进行重型击实,得到不同含水量下干密度,见图1.由干密度 含水量关系曲线图可以得出:此种膨胀土最大干密度1 82g c m3,最佳含水量14% 1.4膨胀力 膨胀力是指土体的体积膨胀受到限制时吸水后 收稿日期:2003 04 21;修订日期:2003 06 26 作者简介:严国全(1978-),男,湖北鄂州人,硕士生,从事路基路面材料与结构综合分析研究.

第二章 声波的基本性质及其传播规律

第二章声波的基本性质及其传播规律 在日常生活中存在各种各样的声音。例如,人们的交谈声、汽车喇叭声、机器运转声、演奏乐器的乐声等等。在所有各种声音中,凡是有人感到不需要的声音,对这些人来说,就是噪声。简单地讲,噪声就是指不需要的声音。为了对噪声进行测量、分析、研究和控制,需要了解声音的基本特性。本章介绍声波的基本性质及其传播规律。 2. 1 声波的产生及描述方法 2. 1. 1 声波的产生 各种各样的声音都起始于物体的振动。凡能产生声音的振动物体统称为声源。从物体的形态来分,声源可分成固体声源、液体声源和气体声源等。例如,锣鼓的敲击声、大海的波涛声和汽车的排气声都是常见的声源。如果你用手指轻轻触及被敲击的鼓面,就能感觉到鼓膜的振动。所谓声源的振动就是物体(或质点)在其平衡位置附近进行往复运动。当声源振动时,就会引起声源周围空气分子的振动。这些振动的分子又会使其周围的空气分子产生振动。这样,声源产生的振动就以声波的形式向外传播。声波不仅可以在空气中传播,也可以在液体和固体中传播。但是,声波不能在真空中传播。因为在真空中不存在能够产生振动的媒质。根据传播媒质的不同,可以将声分成空气声、水声和固体(结构)声等类型。在噪声控制工程中主要涉及空气媒质中的空气声。 在空气中,声波是一种纵波,这时媒质质点的振动方向是与声波的传播方向相一致。与之对应,将质点振动方向与声波传播方向相互垂直的波称为横波。在固体和液体中既可能存在纵波,也可能存在横波。 需要注意,声波是通过相邻质点间的动量传递来传播能量的。而不是由物质的迁移来传播能量的。例如,若向水池中投掷小石块,就会引起水面的起伏变化,一圈一圈地向外传播,但是水质点(或水中的飘浮物)只是在原位置处上下运动,并不向外移动。 2. 1. 2 描述声波的基本物理量 当声源振动时,其邻近的空气分子受到交替的压缩和扩张,形成疏密相间的状态,空气分子时疏时密,依次向外传播(图2-1)。 图2-1 空气中的声波 当某一部分空气变密时,这部分空气的压强P变得比平衡状态下的大气压强(静态压强)P0大;当某一部分的空气变疏时,这部分空气的压强P变得比静态大气压强P o小。这样,在声波传播过程中会使空间各处的空气压强产生起伏变化。通常用p来表示压强的起伏变化量,即与静态压强的差p =(P-P o),称为声压。声压的单位是帕(斯卡),Pa。 1帕= 1牛顿 / 米2 如果声源的振动是按一定的时间间隔重复进行的,也就是说振动是具有周期性的,那么就会在声源周围媒质中产生周期的疏密变化。在同一时刻,从某一个最稠密(或最稀疏)的地点到相邻的另一个最稠密(或最稀疏)的地点之间的距离称为声波的波长,记为λ,单位为米,m。振动重复的最短时间间隔称为周期,记为T,单位为秒,s。周期的倒数,即单位时间内的振动次数,称为频率,记为f、单位赫兹,Hz,1赫兹 = 1秒-1。 如前所述,媒质中的振动递次由声源向外传播。这种传播是需要时间的,即传播的速度是有限的,这种振动状态在媒质中的传播速度称为声速,记为c ,单位为米每秒,m / s 。 在空气中声速 c = 331.45 + 0.61 t ( m / s ) ( 2 -1 ) 其中,t 是空气的摄氏温度(0 C)。可见,声速c随温度会有一些变化,但是一般情况下,这个变化

噪音的传播特性

噪声源总是体现在一定的空间中,因此必须研究声音在空间中传播的特性,包括声波传播过程中的衰弱、反射、折射、绕射和干涉等现象。传播声波的空间称为声场,声场分自由声场、扩散声场和半自由声场。自由声场是一种理想化的声场,严格地说在自然界中不存在这种声场,但是我们可以近似地将空旷的野外看成是自由声场。在声学研究中为了克服反射声和防止外来环境噪音的干扰,专门创造一种自由声场的环境,它可以用做听力实验,检验各种机器产品的噪音,测量声源的声功率,校准一些电声设备等。扩散声场与自由声场完全相反。在扩散声场中,声波接近全反射的状态。例如,在室内,人听到的声音除来自声源的直达声外,还有来自室内各表面的反射声。如果室内各表面非常光滑,声波传到壁面上会完全反射回来。如果室内各处的声压几乎相等,声能密度也处处均匀相等,那么这样的声场就叫做扩散声场(混响声场)。在声学研究中,可以专门创建具有扩散声场特性的房间,即混响室。它可用来测试声源的声功率和做不同混响时间下语言清晰度试验等。在实际生活中,遇到最多的情况,既不是完全的自由声场,也不是完全的混响声场,而是介于二者之间的半自由声场。根据环境吸声能力的不同,有些半自由声场接近自由声场一些,有的更接近扩散声场。粘贴了隔声吸声棉的车体,由于异型吸音槽对车辆噪音的高效抑制,可以有效改善驾驶室的声场。 声源发出的噪音在媒介中传播时,其声压或声强将随着传播距离的增加而逐渐衰减。高频声波比低频声波衰减得快,当传播距离较大时其衰减值是很大的,因此高频声波是传不远的。从远距离传来的强噪音如飞机声、炮声等都是比较低沉的,这就是在长距离的传播过程中高频成份衰减得较快的缘故。除了空气能吸收声波外,一些材料例如玻璃、毛毯、泡沫塑料等也会吸收声音,称为吸声材料。当声波通过这些多孔性吸声材料时,由于材料本身的内摩擦和材料小孔中的空气与孔壁间的摩擦,使声波能量受到很大的吸收并衰减,这种吸声材料能有效地吸收入射到它上面的声能。 噪音声波在传播过程中经常会遇到障碍物,这时声波将从一个媒质(空气)入射到另一媒质中去。由于这两种媒质的声学性质不同,一部份声波从障碍物表面上反射回去,而另一部份声波则透射到障碍物里面去。利用介质不同的特性阻抗,可以达到减噪目的。例如,在室外测量噪音时,坚硬的地面、公路和建筑物表面都是反射面,如果在反射面上铺以吸声材料,那么反射的声能将减少。由于声波的反射特性,在室内产生的某一噪音会从墙面、地面、天

膨胀土处理

膨胀土处理 1、膨胀土基本特性是吸水膨胀,失水收缩且具有多裂隙性、超强固结性、强亲水性和反复胀缩性的工程性质,矿物成分以强亲水性矿物蒙脱石和伊利石为主。膨胀土遇水急剧膨胀.失水则严重千缩,工程力学性质极不稳定。在膨胀土地区修建公路常常出现路面开裂、沉陷、隆起、边坡滑塌、路堤失稳等工程病害。膨胀土的这些特性对公路有比较强的破坏作用。 2、本项目沿线分布的膨胀土,对就近的中等或弱膨胀土等不良土源,作为公路路基的填料。目前,膨胀土改良的方法主要是化学改性,例如掺石灰、水泥、粉煤灰、氯化钠和磷酸等外掺稳定剂。 3、现场施工控制要点 结合以往经验,得出现场施工膨胀土时应特别要注意以下几点: 3.1取土坑焖料用设计掺灰剂量的40%的生石灰进行焖料,焖料时间3天,为防灰剂量衰减,焖料时间也不宜过长(<7天),且中途需要翻拌以保证灰、土3.2对于动态掺灰要求的路基,在保证总灰量不变的情况下,最好能每层都掺拌石灰,总体遵循灰剂量上多下少原则,使得掺灰后的路基土层和素土层相比能大幅提高承载力; 3.3严控含水量,碾压前除保证土的粉碎颗粒不要过大外,各个测点含水量 不得低于最佳含水量,应比最佳含水量大3%,土层上下含水量要翻拌均匀,合格后及时碾压以防失水,对于碾压时间过长,表面干燥的路基,应洒水浸润表面后再行碾压,验收合格后及时上土覆盖养生; 3.4严控灰剂量,一是量不得少,二是碾压前须保证灰、土拌和均匀,土层 上下均匀;3.5碾压机械须用重型压路机,轻型压路机即使碾压多遍,效果也不好。 3.6膨胀土遇水后原有状况变化迅速,因此整个施工期间要做好放水、排水 措施,避免雨淋,若碾压前降雨,要抢先预压排水; 3.7压实度检查用灌砂法,灌入深度要到下一层顶面,检测频率按照膨胀土 检测标准,比正常路基提高一倍。均匀

相关主题