搜档网
当前位置:搜档网 › 第二章 平面向量 章末复习 学案(含答案)

第二章 平面向量 章末复习 学案(含答案)

第二章 平面向量 章末复习 学案(含答案)
第二章 平面向量 章末复习 学案(含答案)

第二章平面向量章末复习学案(含答案)

章末复习1向量的运算设ax1,y1,bx2,y

2.向量运算法则或几何意义坐标运算向量的线性运算加法abx1x2,y1y2减法abx1x2,y1y2数乘1|a||||a|;2当0时,a 的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0ax1,y1向量的数量积运算ab|a||b|cos为a与b的夹角,规定0a0,数量积的几何意义是a的模与b在a方向上的正射影的数量的积abx1x2y1y

22.两个定理1平面向量基本定理定理如果e1,e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使aa1e1a2e

2.基底把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底2平行向量基本定理如果ab,则ab,反之,如果ab 且b0,则一定存在唯一一个实数,使ab.3向量的平行与垂直a,b为非零向量,设ax1,y1,bx2,y2,ab有唯一实数使得

baa0x1y2x2y10abab0x1x2y1y20题型一向量的线性运算例1如图所示,在ABC中,,P是BN上的一点,若m,则实数m的值为

________答案解析设,则mm1,.与共线,m10,m.反思感悟平行向量基本定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线.共点问题跟踪训练1在ABC中,E为线段AC的中点,试问在线段

AC上是否存在一点D,使得,若存在,说明D点位置;若不存在,说明理由解假设存在D点,使得.,所以,所以,即,所以,所以,所以当点D为AC的三等分点时,.题型二向量的数量积运算例2已知acos,sin,bcos,sin,且|kab||akb|k01用k表示数量积ab;2求ab的最小值,并求出此时a与b的夹角的大小解1由|kab||akb|,得kab23akb2,k2a22kabb23a26kab3k2b2,

k23a28kab13k2b

20.|a|1,|b|1,k238kab13k20,ab.2ab.由函数的单调性可知,fk在0,1上单调递减,在1,上单调递增,当k1时,

fkminf111,此时a与b的夹角的余弦值cos,又0180,

60.反思感悟数量积运算是向量运算的核心,利用向量数量积可以解决以下问题1设ax1,y1,bx2,y2,abx1y2x2y10,

abx1x2y1y

20.2求向量的夹角和模的问题设ax1,y1,则|a|;两向量夹角的余弦0,a,b为非零向量cos.跟踪训练2已知向量3,4,6,3,5m,3m1若点A,B,C能构成三角形,求实数m应满足的条件;2若ABC为直角三角形,且A为直角,求实数m的值解1若点A,B,C能构成三角形,则这三点不共线,3,4,6,3,5m,3m,3,1,m1,m与不平行,3mm1,解得m,当实数m时点A,B,C能构成三角形2若ABC为直角三角形,且A为直角,则,而3,1,2m,1m,0,即32m1m0,解得m.题型三向量坐标法在平面几何中的应用例3已知在等腰ABC中,BB,CC是两腰上的中线,且BBCC,

求顶角A的余弦值的大小解以BC的中点为坐标原点,BC,BC边上的高所在直线分别为x轴,y轴,建立如图所示的平面直角坐标系,设A0,a,Cc,0,则Bc,0,0,a,c,a,c,0,2c,0因为BB,CC为AC,AB边上的中线,所以,同理.因为,所以0,即0,化简得a29c

2.又因为cosA,所以顶角A的余弦值为.反思感悟把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题这样的解题方法具有普遍性跟踪训练3如图,半径为的扇形AOB的圆心角为120,点C在上,且COB30,若,则等于

A.

B.

C.D2答案A解析由题意,得AOC90,故以O为坐标原点,OC,OA所在直线分别为x轴,y轴建立平面直角坐标系如图所示,则O0,0,A0,,C,0,Bcos30,sin30因为,所以,00,,即则所以.平面向量与三角函数的综合典例已知acos,sin,bcos,sin,0.1若|ab|,求证ab;2设c0,1,若abc,求,的值1证明由题意得|ab|22,即ab2a22abb

22.因为a2b2|a|2|b|21,所以22ab2,即ab0,故ab.2解因为abcoscos,sinsin,c0,1,abc,所以由得coscos由0,得0,又0,所以.代入得sinsin,又,所以,.素养评析1向量与三角函数结合时,通常以向量为表现形式,实质是三角函数问题,所

以要灵活运用三角函数中的相关方法与技巧求解2注意向量夹角与三角形内角的区别与联系,避免出现将内角等同于向量夹角的错误3本题考查的是平面向量的综合应用,体现了直观想象和数学运算的核心素养.1在菱形ABCD中,若AC2,则等于

A2B2C||cosAD与菱形的边长有关答案B解析如图,设对角线AC与BD交于点O,.202.2设四边形ABCD为平行四边形,||6,||

4.若点M,N满足3,2,则等于A20B15C9D6答案C解析作出ABCD如图所示,由题设知,,,||2||2361

69.3已知向量a1,,b3,m若向量a,b的夹角为,则实数m 等于A2

B.C0D答案B解析ab1,3,m3m,abcos,3mcos,m.4若向量1,3,||||,0,则||________.答案2解析由题意可知,AOB是以O为直角顶点的等腰直角三角形,且腰长||||,由勾股定理得||

2.5平面向量a,1,b,若存在不同时为0的实数k和t,使xat23b,ykatb,且xy,试求函数关系式kft解由a,1,b,得ab0,|a|2,|b|

1.由xy,得at23bkatb0,ka2tabkt23abtt23b20,即

4kt33t0,所以kt33t,令ftt33t,所以函数关系式为kftt33t

平面向量知识点归纳

平面向量知识点归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 平面向量 2.1向量的基本概念和基本运算 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律: a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则 ()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. b a C B A a b C C -=A -AB =B

2020高中数学第2章平面向量章末复习学案苏教版必修4

第2章平面向量 章末复习 学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用. 1.向量的运算:设a=(x1,y1),b=(x2,y2). 向量运算法则(或几何意义)坐标运算 向量的线性运算加法a+b=(x1+x2,y1+y2) 减法a-b=(x1-x2,y1-y2) 数乘 (1)|λa|=|λ||a|; (2)当λ>0时,λa的方向与a的方向相 同;当λ<0时,λa的方向与a的方向相 反;当λ=0时,λa=0 λa=(λx1,λy1) 向量的数量积运算a·b=|a||b|cosθ(θ为a与b的夹角)规 定0·a=0, 数量积的几何意义是a的模与b在a方向上 的投影的积 a·b=x1x2+y1y2 2.两个定理 (1)平面向量基本定理 ①定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,

有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. ②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (2)向量共线定理 如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使b =λa . 3.向量的平行与垂直 a , b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2), a ∥ b 有唯一实数λ使得 b =λa (a ≠0) x 1y 2-x 2y 1=0 a ⊥b a · b =0 x 1x 2+y 1y 2=0 1.平面内的任何两个向量都可以作为一组基底.( × ) 提示 平面内不共线的两个向量才可以作为一组基底. 2.若向量AB →和向量CD → 共线,则A ,B ,C ,D 四点在同一直线上.( × ) 提示 也可能AB ∥CD . 3.若a·b =0,则a =0或b =0.( × ) 4.若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.( × ) 提示 当a ,b 同向共线时,a·b >0,但a 和b 的夹角为0.当a ,b 反向共线时,a·b <0,但a 和b 的夹角为π. 类型一 向量的线性运算 例1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC → ,则实数m 的 值为________. 答案 3 11 解析 设BP →=λBN → ,

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

平面向量经典精品结论总结

平面向量复习基本知识点及经典结论总结 1、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向 量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移 后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递 性!(因为有0 );④三点A B C 、、共线? AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。 如下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若 AB DC = ,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC = 。(5)若,a b b c == ,则a c = 。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、 y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+= ,称(),x y 为向 量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。如(1)若(1,1),a b == (1,1),(1,2)c -=- ,则c = ______(答:1322 a b - ) ;(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213 (2,3),(,)24e e =-=- (答: B );(3)已知,AD BE 分别是AB C ?的边,BC AC 上的中线,且,A D a B E b == ,则BC 可用向量,a b 表示为_____(答: 2433 a b + ) ;(4)已知ABC ?中,点D 在BC 边上,且?→??→?=DB CD 2,?→ ??→??→?+=AC s AB r CD ,则s r +的值是___(答:0) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()() 1,2a a λλ= 当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ= ,注意:λa ≠0。 5、平面向量的数量积: (1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b == ,AOB θ∠= ()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π 时,a ,b 垂直。 (2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ 叫做与的 数量积(或内积或点积),记作:?,即?=cos a b θ 。规定:零向量与任一向量的数量积是0,注意数量 积是一个实数,不再是一个向量。如(1)△ABC 中,3||=?→ ?AB ,4||=?→ ?AC ,5||=?→ ?BC ,则=?BC AB _________ (答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=- ,c 与d 的夹角为4 π ,则k 等于____(答:1);(3) 已知2,5,3a b a b ===- ,则a b + 等于____);(4)已知,a b 是两个非零向量,且a b a b ==- ,

职高 第8章 平面向量知识点小结

平面向量知识点小结 1. 有向线段:具有 叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,应注意:始点一定要写在终点的前面, 2. 已知AB ,线段AB 的 叫做有向AB 线段AB 的长(或模),的长度记作: .有向线段包含三个要素: 、 、 . 3. 向量:具有 和 的量叫做向量,只有大小和没有方向的向量叫做 .有向线段的长度表示向量的 ,有向线段的方向表示向量的方向.用有向线段 AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、… 等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等. 4. 相等向量: 的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作 5. 零向量:长度等于零的向量叫做 ,记作 .零向量的方向 . 6. 平行向量(共线向量):两个向量的方向 则称两个向量平行,平行向量也称 (另一种理解:如果表示两个向量的有向线段所在的直线互相平行或重合为共线向量.向量a 平行于向量b ,记作a ∥b . 与任一个向量共线(平行). 7. 相反向量:与向量a 等长且 的向量叫做向量a 的相反向量,记作 .显然, ()0a a +-=. 8. 单位向量:长度等于1的向量,叫做 .与向量a 同方向的单位向量通常记作 . 9. 已知向量a 、b ,在平面上任取一点A,作AB a =,BC b =,作向 量AC ,则向量 叫做向量a 与b 的和(或和向量),记作a +b ,即a +b = = .这种求两个向量和的作图法则,叫做向量求和的三角形法则. 10. 已知向量a 、b ,在平面上任取一点A,作AB a =,AD b =,如果A 、B 、D 不共线,则以AB 、AD 为邻边作平行四边形ABCD,则对角线上的向量AC = = .这种求两个向量和的作图法则,叫做向量求和的平行四边形法则. 11. 已知向量a 、b ,在平面上任取一点O,作OA a =,OB b =,则b +BA =a ,向量BA 叫做向量a 与b 的差,并记作a -b ,即BA = = . 12. 由向量的减法推知: (1) 如果把两个向量的始点放在一起,则这两个向量的差是减向量的终点到 的向量; (2) 一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ; (3) 一个向量减去另一个向量,等于加上这个向量的 . 13. 向量加法满足如下运算律: (1) ; (2) 14. 数乘向量的一般定义:实数λ和向量a 的乘积是一个向量,记作a λ. 当0λ>时,a λ与a 同方向,a a λλ││ =│ ∣│ │ ; 当0λ <时,a λ与a 反方向, a a λλ││ =│ ∣│ │ ; 当0λ=或0a =时,000a λ?=?=. ; 15. 数乘向量满足以下运算律:(1)1a =a ,(-1)a =a -; (2)()()a a λμλμ= ()a a a λμλμ+= + ; (4)()a b a b λλλ+=+.

2.3.1平面向量基本定理(教、学案)

2. 3.1 平面向量基本定理 教学目标: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ 2使 a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被 a ,1e ,2e 唯一确定的数量 三、讲解范例:

例1 已知向量1e ,2e 求作向量-2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且=a , =b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用,表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线. 四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思

高中数学第二章平面向量章末小结导学案无答案新人教A版必修

第二章平面向量章末小结 【本章知识体系】 - 1 -

2 【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

高中数学《平面向量基本定理》导学案

2.3.1平面向量基本定理 1.平面向量基本定理 2.向量的夹角

1.判一判(正确的打“√”,错误的打“×”) (1)平面向量的一组基底e 1,e 2一定都是非零向量.( ) (2)在平面向量基本定理中,若a =0,则λ1=λ2=0.( ) (3)在平面向量基本定理中,若a ∥e 1,则λ2=0;若a ∥e 2,则λ1 =0.( ) (4)表示同一平面内所有向量的基底是唯一的.( ) 答案 (1)√ (2)√ (3)√ (4)× 2.做一做 (1)设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案 B 解析 ∵3e 1+3e 2=3(e 1+e 2), ∴两个向量共线,不能作为基底. (2)(教材改编P 94向量夹角的定义)在锐角三角形ABC 中,关于向量夹角的说法正确的是( ) A.AB →与BC → 的夹角是锐角 B.AC →与AB → 的夹角是锐角 C.AC →与BC → 的夹角是钝角 D.AC →与CB → 的夹角是锐角 答案 B 解析 AB →与BC →的夹角是钝角,AC →与AB →的夹角是锐角,AC →与BC →

的夹角是锐角,AC →与CB → 的夹角是钝角.故选B. (3)若向量a ,b 的夹角为30°,则向量-a ,-b 的夹角为( ) A .60° B .30° C .120° D .150° 答案 B 解析 将向量移至共同起点,则由对顶角相等可得向量-a ,-b 的夹角也是30°. (4)在等腰直角三角形ABC 中,∠A =90°,则向量AB →,BC → 的夹角为________. 答案 135° 解析 将向量移至共同起点,由向量的夹角的定义知AB →,BC → 夹角为135°. 探究1 正确理解基底的概念 例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB → ,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④ D .③④ 解析 ①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA → 与DC →不共线;④OD →=-OB →,则OD →与OB → 共线. 由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.

高中数学有关平面向量的公式的知识点总结.

定比分点定比分点公式(向量P1P=向量PP2 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数,使向量P1P=向量PP2,叫做点P分有向线段P1P2所成的比。 若P1(x1,y1,P2(x2,y2,P(x,y,则有 OP=(OP1+OP2(1+;(定比分点向量公式 x=(x1+x2/(1+, y=(y1+y2/(1+。(定比分点坐标公式 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=OA +OB ,且+=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b0,则a//b的重要条件是存在唯一实数,使a=b。 a//b的重要条件是 xy-xy=0。零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 ab的充要条件是 ab=0。 ab的充要条件是 xx+yy=0。 零向量0垂直于任何向量.

设a=(x,y,b=(x,y。 1、向量的加法向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x,y+y。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b+c=a+(b+c。 2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即共同起点,指向被减 a=(x,y b=(x,y 则 a-b=(x-x,y-y. 4、数乘向量实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。 当>0时,a与a同方向; 当<0时,a与a反方向; 当=0时,a=0,方向任意。 当a=0时,对于任意实数,都有a=0。 注:按定义知,如果a=0,那么=0或a=0。 实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。当∣∣>1时,表示向量a的有向线段在原方向(>0或反方向(<0上伸长为原来的∣∣倍;

高中数学人教A版选修2-1第三章章末总结

高中数学学习材料 金戈铁骑整理制作 章末总结 知识点一 空间向量的计算 空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础. 【例1】沿着正四面体O -ABC 的三条棱OA 、OB →、OC →的方向有大小等于1、2和3的 三个力f 1,f 2,f 3.试求此三个力的合力f 的大小以及此合力与三条棱夹角的余弦值.

知识点二证明平行、垂直关系 空间图形中的平行、垂直问题是立体几何当中最重要的问题之一,利用空间向量证明平行和垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行和垂直的定理,再通过向量运算来解决. 例2 如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、B1C的中点. (1)用向量法证明平面A1BD∥平面B1CD1; (2)用向量法证明MN⊥面A1BD. 例3 如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m. 试确定m使得直线AP与平面BDD1B1所成的角为60°. 例4正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,求证:平面AED⊥

平面A1FD1. 知识点三空间向量与空间角 求异面直线所成的角、直线与平面所成的角、二面角,一般有两种方法:即几何法和向量法,几何法求角时,需要先作出(或证出)所求空间角的平面角,费时费力,难度很大.而利用向量法,只需求出直线的方向向量与平面的法向量.即可求解,体现了向量法极大的优越性. 例5 如图所示,在长方体ABCD—A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN. (1)cos〈1A D,AM→〉; (2)求直线AD与平面ANM所成角的余弦值; (3)求平面ANM与平面ABCD所成角的余弦值. 知识点四空间向量与空间距离 近年来,对距离的考查主要体现在两点间的距离和点到平面的距离,两点间的距离可以直接代入向量模的公式求解,点面距可以借助直线的方向向量与平面的法向量求解,或者利用等积求高的方法求解. 例6

平面向量基本定理导学案

§2.3.1平面向量基本定理 高一( )班 姓名: 上课时间: 【目标与导入】 1、学习平面向量基本定理及其应用; 2、学会在具体问题中适当选取基底,使其他向量能够用基底来表达。 【预习与检测】 1、点C 在线段AB 上,且35 AC AB --→ --→ = ,AC BC λ--→--→=,则λ等于( ) A 、23 B 、32 C 、-23 D 、-32 2、设两非零向量12,e e →→不共线,且12k e e →→+与12e k e →→ +共线,则k 的值为( )。 .1.1.1.0A B C D -± 3、已知向量12,e e → → ,作出向量1223OA e e → → =+与 122(3)OB e e → →=+-。 两个向量相加与物理学中的两个力合成相似,如果与力的分解类比,上述所作的OA 分解成两个向量:在1e → 方向上的____与在2e → 方向上的______,OB 则分解成_____与_____。 4、阅读课本P93—94,了解平面向量基本定理:如果 12 ,e e →→ 是同一平面内的两个_______ 向量,那么对于这一平面内的______向量a → ,有且只有一对实数12,λλ, 使_____________, 其中不共线的向量 12 ,e e → →叫做表示这一平面内所有向量的一组__________。 5、已知两个非零向量,a b →→,作,O A a O B b →→→→==,则()0180A O B θθ∠=?≤≤?叫做向量a → 与 b → 的__________,若0θ=?,则a →与b →_______;若180θ=?,则a →与b → __________;若 90θ=?,则a → 与b → _______,记作______。 【精讲与点拨】 如图所示,在平等四边形ABCD 中,AH=HD ,MC= 1 4 BC ,设,AB a AD b →→→→==,以,a b →→ 为基底表示,,AM MH MD →→ 。 C 2 e → 1 e → A B

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

2019-2020学年高中数学 第二章 平面向量章末小结导学案新人教A版必修4.doc

2019-2020学年高中数学第二章平面向量章末小结导学案新人教A版必修4 【本章知识体系】

【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

相关主题