搜档网
当前位置:搜档网 › 金属有机骨架化合物_MOFs_作为储氢材料的研究进展

金属有机骨架化合物_MOFs_作为储氢材料的研究进展

金属有机骨架化合物_MOFs_作为储氢材料的研究进展
金属有机骨架化合物_MOFs_作为储氢材料的研究进展

金属有机骨架材料(MOFs)简介

金属—有机骨架(MOFs)材料代表了一类杂合的有机—无机超分子材料,是通过 有机桥联配体和无机的金属离子的结合构成的有序网络结构。MOFs 呈现出目前最高的 比表面积,最低的晶体密度以及可调节的孔尺寸和功能结构,使 MOFs 可以实现一些特 殊的应用,包括气体的存储和分离,催化以及药物缓释等。通过在有机配体中引入功能 基团或者利用 MOFs 作为主体环境引入活性组分,合成功能化的 MOFs 材料,可以大大 拓宽其应用范围。-华南理工-袁碧贞 金属有机骨架(Metal-Organic Frameworks MOFs)材料是利用含氧、氮等多齿有机 配体与金属离子通过自组装形成的具有周期性网络结构的一种类沸石材料 [1]。—华南理工-袁碧贞 MoF材料是由含氧!氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金 属离子自组装而成的配位聚合物,是一种比表面积大!孔隙率高!热稳定性好! 构型多样化的类沸石材料[22一],其发展历程大致可以分为三代12.]"如图1一1所示" 最早的MoF材料是由Kattagawa/J!组在20世纪90年代中期合成的,但其合成的材 料在客体分子去除后,骨架坍塌,晶体结构遭到破坏,未形成永久性的孔隙率" 这也是第一代MOF材料"随后科学家们开始研究新型的阳离子!阴离子以及中 性的有机配体链接形成的配位聚合物"第二代材料在客体分子移走后能够留下空 位形成永久性的孔隙率"MOF材料在受到压力!光!化学刺激或者除去溶剂分 子时,材料骨架的形状会发生变化,这就是第三代MOF材料"含有梭基的阴离 子配体和金属离子链接构成的MOF材料属于我们所说的第二代MOF材料,然而 含有氮杂环的有机中性配体构建的MOF材料属于我们所说的第三代MOF。——北化-安晓辉金属-有机骨架 ( metal-organic frameworks, MOFs) 材料是由金属离子与有机配体通过自组装过 程杂化生成的一类具有周期性多维网状结构的多孔 晶体材料,具有纳米级的骨架型规整的孔道结构,大 的比表面积和孔隙率以及小的固体密度,在吸附、分 离、催化等方面均表现出了优异的性能,已成为新材 料领域的研究热点与前沿。MOFs 材料的出现可以 追溯到 1989 年以 Robson 和 Hoskins 为主要代表的 工作,他们通过 4,4',4″,4-四氰基苯基甲烷和正 一价铜盐[Cu( CH 3 CN) 4 ]·BF 4 在硝基甲烷中反应, 制备出了具有类似金刚石结构的三维网状配位聚合 物 [1] ,同时预测了该材料可能产生出比沸石分子筛 更大的孔道和空穴,从此开始了 MOFs 材料的研究 热潮。但早期合成的 MOFs 材料的骨架和孔结构不 够稳定,容易变形。直到 1995 年 Yaghi 等合成出了 具有稳定孔结构的 MOFs

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

金属有机骨架材料

金属有机骨架材料 金属有机骨架材料(MOFs )是近十年来发展迅速的一种配位聚合物,具有三维的孔结构, 一般以金属离子为连接点,有机配体位支撑构成空间3D延伸,系沸石和碳纳米管之外的又 一类重要的新型多孔材料,在催化,储能和分离中都有广泛应用,目前,大多数研究人员致力于氢气储存的实验和理论研究。金属阳离子在MOFs骨架中的作用一方面是作为结点 提供骨架的中枢,另一方面是在中枢中形成分支,从而增强MOFs的物理性质(如多孔性和手性)。这类材料的比表面积远大于相似孔道的分子筛,而且能够在去除孔道中的溶剂分子 后仍然保持骨架的完整性。因此,MOFs具有许多潜在的特殊性能,在新型功能材料如选 择性催化、分子识别、可逆性主客体分子(离子)交换、超高纯度分离、生物传导材料、光 电材料、磁性材料和芯片等新材料开发中显示出诱人的应用前景,给多孔材料科学带来了新的曙光。常见的不同类型的金属有机骨架材料的结构如下图所示: 如下图所示: 卜叮 MOFs材料作为储氢领域的一名新军,由于具有纯度高、结晶度高、成本低、能够大批量生产、结构可控等优点,正受到全球范围的极大关注,近年来已成为国际储氢界的研究热点。经过近10年的努力,MOFs材料在储氢领域的研究已取得很大的进展,不仅储氢性能有了大幅度的提高,而且用于预测MOFs材料储氢性能的理论模型和理论计算也在不断发展、逐步完善。但是,目前仍有许多关键问题亟待解决。比如,MOFs材料的储氢机理尚存在 争议、MOFs材料的结构与其储氢性能之间的关系尚不明确、MOFs材料在常温常压下的储 氢性能尚待改善。这些问题的切实解决将对提高MOFs材料的储氢性能并将之推向实用化 进程发挥非常重要的作用。

储氢材料

储氢材料 摘要:作为一种新型的清洁能源,氢的廉价制取、安全高效储存与运输及其模型应用,将是今后研究的重点。本文介绍了储氢材料的结构、性能、制 备及应用;展望了储氢材料的发展趋势。 关键字:氢;储氢材料;清洁能源 1引言 随着传统能源的日渐枯竭,致使人类面临着能源、资源和环境危机的严峻挑战,同时人们环保意识的日益增强,开始大力寻找新的洁净能源己成为科研工作的焦点[l]。在这些过程中,氢以其独有的优点逐渐得到人们的公认。氢作为洁净能源具有以下优点:(l) 氢的燃烧产物是水,对环境不产生任何污染;(2) 氢可以通过太阳能、风能等分解水而再生,是可再生能源;(3) 燃烧1g氢放出的热量是等量汽油的3倍左右;(4) 氢资源丰富,可通过水、碳氢化合物等电解或分解生成。由此可见,氢是一种清洁,高效的能源,在未来有着广阔的应用前景。在氢能利用过程中,有两个重要的方面,即氢能的制备和储运。在氢能的制备方面:人类通过利用太阳能光解海水可以制得大量的氢;故氢的储存和运输是其发展和应用中遇到的难点之一。 2 氢的存储标准与现状 “储氢材料”顾名思义是一种能够储存氢的材料。衡量储氢材料性能的标准主要有2个:体积储氢密度(kg/m3)和储氢质量分数(%)。体积储氢密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的比值。另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数[2]。 和其它物质一样,氢的存在状态也是固态、液态、气态。气态时存储方式较为简单方便,也是目前储存压力低于17MPa氢气的常用方法。但其密度较小,体积大;由于是易燃气体在运输和使用过程中存在安全隐患是该方法的不足之处。液态储氢方法的体积密度高(70kg/m3),但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%~45%。液态氢不仅储存成本高,而且使用条件苛刻,目前只限于在航天技术领域中应用。因此这些传统的储氢方法根本无法满足现代社会对氢能利用的要求。为此世界各国纷纷投人大量精力来解决这一难题。随着研究的深入进展,在储氢材料领域中逐渐出现了多样化,其中最典型的有三大类:金属储氢材料、多孔吸附储氢材料、有机液态储氢材料等。

金属有机框架物简介

金属-有机框架化合物简介 金属-有机框架化合物(Metal-Organic Frameworks,MOFs)通常是指以有机配体为连接体(linkers)和以金属离子或簇为节点(nodes),通过配位键组装形成的具有周期性结构的配位化合物。由于MOFs材料在荧光、催化、气体吸附与分离、质子导体、药物运输等方面具有潜在的应用价值,近十几年来,发展非常迅速,大量结构新颖的MOFs被不断的设计合成出来。随着现代配位化学和晶体工程的发展,MOFs之间的键合作用已经不再仅局限于配位键作用,还囊括了其他作用力,比如:氢键作用,范德华力,芳香环之间的π-π作用等。这些丰富的作用力使得MOFs结构和功能更加多元化、复杂化。近几年来,计算机技术和仿真技术被应用到MOFs的研究中,在它们的帮助下,越来越多的新型MOFs材料不断的被合成出来。 与传统的多孔材料相比,MOFs材料的优势在于结构和功能的可设计性和调控性。在理想情况下,通过合理设计配体和选择金属离子构筑的次级构建单元(SBUs),就可以合成目标结构和功能的MOFs。虽然,目前每年有很多结构新颖性能特别的MOFs被合成报道,然而,在很多情况下,看似合理的设计,却很难实现。这与MOFs的自主装过程有关。在MOFs的合成过程中,除了配体和金属离子的影响外,还有其他的影响因素,比如:反应温度、溶剂、pH值、压力、配体和金属盐的比例与浓度等,每一个反应条件的改变,都有可能影响MOFs 的自主装过程,从而影响MOFs的结构,进而可能影响MOFs的性能。 总之,在通常情况下,根据金属离子构筑的SBUs和有机配体的几何构型可以预测MOFs最终的框架结构。例如:平面方格结构可以通过4-连接平面构型SBU和直线型2-连接配体形成,如:MOF-118;类金刚石结构则可以通过四面体构型的4-连接SBU和直线型2-连接配体形成;立方结构框架则可以通过6-连接的SBU和直线型2-连接配体形成,如:MOF-5;T d八面体结构可以通过3-连接配体和轮桨状的4-连接SBU构筑,如:HKUST-1 (Figure1.1)。

金属有机框架化合物

手性金属有机框架材料(MOFS)的研究 早在上个世纪90年代初期Hoskins 和Robson[1,2]已经开始研究金属有机框架化合物(其孔隙率和化学稳定性都不高)。由于MOFS材料高的孔隙率,好的化学稳定性,可再生性,合成过程和仪器简单以及其迷人的框架结构,潜在的实用价值,使其受到了化学工作者的广泛关注。在近十几年里已经成为化学学科中发展最快的领域(图1),不过由于结构表征以及性能测试方面的限制,增加了MOFS研究的一些难度,但这并不会影响他以后的发展,它仍然具有非常广阔的发展前景[3]。 1-12分别代表2000-2011年 所谓金属有机框架(metal-organic-frameworks)就是指由金属离子或金属簇与含有O、N 原子的有机配体(大部分是吡啶,芳香羧酸类的配体)自组装而成的具有周期性网络结构的配位聚合物[4],它与高分子聚合物,无机聚合物及碳基材料不同,它具有许多优点,一,由于是由有机配体和金属离子组成,所以它无形中将有机化学,无机化学,配位化学等多个学科联系起来;二,由于是晶体化合物,所以具有高度的有序性、良好的热稳定性及化学稳定性;三是结构能够具有高度的可设计性;四,通过对有机配体的修饰,可以对孔道及表面进行功能化修饰,使其能够满足选择性吸附、催化或实现多功能化[5];五,金属有机框架化合物的合成比较简单,金属与羧酸或氮杂环反应比较容易。 至今大多数MOFS使用的芳香族的羧酸都是多酸,它们的配位模式多种多样,由于反应过程中环境条件的不同,配位的方式也有所不同(图2:以联苯二酸为例)。吡啶类的配位模式比较单一(4,4'-联吡啶),且配位能力与羧酸相比弱一些,构筑的框架结构热稳定性能比羧酸的差一些,因此很多框架材料是用羧酸和吡啶类的混合双配体来做的。

金属有机骨架材料的合成与应用文献综述

金属有机骨架材料的合成与应用 摘要:近年来,金属有机骨架材料受到科学家们的高度关注,使得它成为新功能材料研究领域的热点。本文从金属有机骨架材料的合成、影响因素、存在问题等方面进行了阐述,并对这种新型多功能材料的应用方面作了展望。 关键字: 1.引言 金属有机多孔骨架化合物(Metal-Organic Frameworks,MOFs)是近十年来学术界广泛重视的一类新型多孔材料。MOFs是一种类似于沸石的新型纳米多孔材料,但又有别于沸石分子筛。它们的热稳定性不及无机骨架微孔材料,因此在传统的高温催化方面的应用受到限制,但在一些非传统领域,如非线性光学材料、磁性材料、超导材料和储氢材料等新材料方面的应用前景正在逐步被开发出来。金属有机多孔骨架化合物,又称为金属有机配位聚合物,它是由含氧、氮等的多齿有机配体(大多是芳香多羧酸) 与过渡金属离子自组装而成的配位聚合物。在构筑金属有机多孔骨架时,有机配体选择起着关键性的作用。目前,已经有大量的金属有机骨架材料被合成 ,主要是以含羧基有机阴离子配体为主,或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。通过设计或选择一定的配体与金属离子组装得到了大量新颖结构的金属有机多孔骨架化合物。也可以通过修饰有机配体,对这些聚合物的孔道的尺寸进行调控。 这种多孔材料的孔道大小、尺寸是多孔材料结构的最重要特征。孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。在高新技术应用领域,多孔材料也展现出良好的发展前景,如人们利用瓶中造船路线,在微孔分子筛孔道中制备染料复合体,为进一步研究固体微激光器提供基础;通过纳米化学反应路线技术,在微孔分子筛笼中制备Cd4S4 纳米团簇或通过“嫁接”或“锚装”等方法组装具有特定功能与性质的复杂分子、

金属储氢材料研究进展_范士锋

Chemical Propellants & Polymeric Materials 2010年第8卷第2期 · 15 · 金属储氢材料研究进展 范士锋 (海军驻西安地区军事代表局,陕西西安 710065) 摘 要:综述了金属储氢原理、目前国内外金属储氢材料的研究现状及应用研究进展,对镁系、稀土系、Laves相系、钛系及金属配位氢化物等几个系列金属储氢材料当前的研究热点和存在问题进行了详细介绍,并对未来金属储氢材料在民品和军工方面的应用研究方向和发展趋势进行了展望。 关键词:金属储氢材料;研究进展;发展趋势 中图分类号: TG139.7 文献标识码: A 文章编号: 1672-2191(2010)02-0015-05 收稿日期:2009-09-09 作者简介:范士锋(1978-),男,工程师,从事战略导弹总体与固体火箭发动机研究。电子信箱:jizhenli@126.com 作为燃料,氢具有最高的质量热值(其热值1.25×106kJ/kg,为汽油的3倍、焦炭的4.5倍), 是理想的高能清洁燃料之一[1-2]。目前,尽管高压(低于17MPa)气态储氢、低温(低于20K)液态储氢等技术手段使得氢在一些常规燃料和航天推进等领域得以应用,但高压气态氢体积热值小以及低温液态氢液化过程耗能高、使用条件苛刻等问题严重限制了氢作为火炸药能量供给组分的应用。利用吸氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服上述储存方式的不足,而且储氢体积密度大、安全度高、使用和运输便利。因此,今后储氢研究的重点将是新型高性能储氢材料的研发,目前研究较为广泛的主要是金属储氢材料[3]。 储氢材料按氢的结合方式可分为化学键合储氢(如储氢合金、配位氢化物、氨基化合物、有机液体碳氢化合物等)和物理吸附储氢(碳纳米管、多孔碳基材料、金属有机框架材料、纳米储氢材料、多孔聚合物等)。从上述储氢材料的性能(燃烧热、材料密度、储氢密度、反应活性)等衡量标准分析,高热值的金属储氢材料(包括金属氢化物或合金储氢材料)是火炸药燃料组分的发展重点。 文中主要针对当前金属储氢材料的研究热点和存在问题,对相关金属储氢材料的国内外研究进展进行较为详细的综述,以期为此类高性能材料在火炸药中的应用提供研究思路。 1 金属储氢原理及储氢研究现状 传统的氢气存储方式中,气态储氢方式简单 方便,是目前储存压力低于17MPa的常用方法,但存在着体积密度小、运输和使用过程中易燃易爆等缺点;液态储氢方法的体积密度(70kg/m3)较高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程需消耗的能量约占所储存氢能的25% ̄45%,且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于航天领域。金属储氢材料是目前研究较为广泛、成熟的新型高性能大规模储氢材料之一,其储氢密度高、安全性好、适于大规模氢气储运,最重要的特性是能够可逆地吸、放大量氢气。氢一旦与储氢合金接触,即在其表面分解为H原子,H原子扩散进入合金内部直至与合金发生反应而生成金属氢化物,氢即以原子态储存在金属结晶点内(四面体与八面体间隙位置)。在一定温度和氢压强条件下,上述吸、放氢反应式如下式所示: 其中,吸氢过程放热,放氢过程吸热,上述吸、放氢反应过程热力学和动力学与温度、氢压力密切相关,特别是放氢压力与反应温度呈指数变化关系[4]。 储氢材料性能的衡量标准主要用以下2个产量表示:体积储氢密度和质量储氢密度。其中,体积储氢密度为系统单位体积内储存氢气的质量(kg/m3),质量储氢密度为系统储存氢气的质量与系统质量的比值(质量分数)。考虑储氢材料在火炸药中的应用,系统燃烧热(与储存介质的热值和储氢质量分数的大小密切相关)、系统密度(与储存介质的密度和结构相关)和反应活性( 与氧化

金属有机骨架材料的合成及应用论文

金属有机骨架材料的合成及应用 一、背景 金属有机骨架材料(Metal-Organic Frameworks , MOFs是一种类似于沸石的新型纳米多孔材 料,具有结构组成的多样性、较大的比表面积和孔隙率、热稳定性好、可裁剪性的孔等特点,可应用在气 体储存、分离、催化等领域。 多孔材料具有规则而均匀的孔道结构,其中包括孔道的大小、形状、维数、走向以及孔壁的组成和性质。孔道的大小、尺寸是多孔材料结构的最重要特征。人们把尺寸范围在 2 nm 以下 的孔道称为微孔,尺寸范围在 2 ~50 nm 的孔道称为介孔,孔道尺寸大于50 nm 的就属于大孔范围了。多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料在 石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。在高新技术应用领域,多孔材料 也展现出良好的发展前景,如人们利用瓶中造船路线,在微孔分子筛孔道中制备染料复合体,为进一步研 究固体微激光器提供基础;通过纳米化学反应路线技术,在微孔分子筛笼中制备Cd4S4 纳米团簇或通过“ 嫁接” 或“ 锚装” 等方法组装具有特定功能与性质的复杂分子、配合物、簇合物、金属有机化合 物、超分子、纳米态、齐聚体与高聚物等。半个世纪以来,随着多孔材料类型与品种的不断扩充与发展, 应用领域的拓宽与需求的增加,研究领域和学科间交叉与渗透的日益加强及深化,研究方法与现代试验 技术的进步,大大推动了多孔材料化学内涵的深入与学科面的拓宽。 1 无机微孔化合物 近二十年来,无机微孔化合物的发展极为迅速,它的种类从最初的沸石分子筛,逐渐又增加了磷酸盐、砷酸盐、锗酸盐、亚磷酸盐、硫酸盐、亚硒酸盐以及金属硫化物等类沸石微孔化合物。这类化合物被 广泛应用于催化、吸附、分离和离子交换等领域。然而随着无机微孔化合物种类的增多以及应用领域的不 断拓展,人们对它的性能又提出了更多和更高的要求。微孔化合物的结构与其性能紧密相关,例如,超大 微孔结构能进行大分子催化反应;特种笼腔结构适用于特定微反应器与特种分子功能材料的组装;含有手 性孔道的化合物有利于进行手性分子拆分与不对称催化反应等。因此,具有特殊孔道或笼腔结构的微孔化 合物就成为人们研究的一个热点。一个显著的例子是具有24元环超大孔道的磷酸锌化合物ND-1。无机微孔化合物通常在水热或溶剂热条件下合成,其合成机理非常复杂,影响因素也很多,如起始原料组成、晶 化温度、晶化时间、压力、溶剂类型、结构导向剂,pH 值等。其中结构导向剂对微孔化合物的生成起着 非常重要的作用。目前使用的结构导向剂主要有金属阳离子、有机物、氟离子和金属配合物。这些客体分 子或离子在合成时的作用主要有:( 1 )模板作用;(2)结构导向作用;(3)空间填充剂;(4)平衡骨架电荷,影响产物的骨架电荷密度等[6] 。 2 金属有机多孔骨架金属有机多孔骨架化合物是近十年来学术界广泛重视的一类新型多孔材料。这类化合 物含有各种各样的孔道类型,这些孔道无论从形状、大小,还是从对客体分子的吸附性能上讲, 都 有别于沸石分子筛。它们的热稳定性不及无机骨架微孔材料,因此在传统的高温催化方面的应用受到限制,但在一些非传统领域,如非线性光学材料、磁性材料、超导材料和储氢材料等新材料方面的应用前景正在逐步被开发出来。金属有机多孔骨架化合物,又称为金属有机配位聚合物,它是由金属离子和有机配体自组装而形成。在构筑金属有机多孔骨架时,有机配体选择起着关键性的作用。一般说来,空间位阻大的配体不利于形成高维数的网络结构,而刚性的配体常被用来构筑孔道结构的高维聚合物。数年来,通过设计或选择一定的配体与金属离子组装得到了大量新颖结构的金属有机多孔骨架化合物。通过修饰有机配体,可以对这些聚合物的孔道的尺寸进行调控。 一、引言多孔材料领域突出的挑战之一是设计和合成有特殊结构和高比表面积的物质。在许多实际应用中, 如催化剂、分离和气体的储存等,这样的材料都是非常重要的。对于无序的碳结构, 最大的比 表面积是2 030m2 ? g- 1 ,文献报道的有序结构沸石的最大表面积是904m2 ? g- 1 。随着超分 子配位化学和金属有机化合物直接组合化学的发展, 新型的多孔材料开始出现。Yaghi 等设计并合成了一种金属有机骨架多孔材料, 由金属与多齿型羧基有机物组合而成, 其比表面积已经达到 3 000m2 ? g- 1 。最近,丫aghi等又进一步合成了晶体Zn40 (BTB) 2(MOF2177),比表面积约4 500m 2 ? g- 1。多齿有机配体与金属离子组合而成的骨架材料,产生了新一代超分子多孔材料。

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.sodocs.net/doc/f010789480.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

储氢材料综述

储氢材料研究现状与发展趋势 xxx 摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。储存技术是氢能利用的关键。储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。 关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。 1.引言 氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。氢是宇宙中含量最丰富的元素之一。氢气燃烧后只产生水和热,是一种理想的清洁能源。氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。 氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。图1给出了目前所采用和正在研究的储氢材料的储氢能力对比。

金属有机骨架化合物历史及研究进展

Advances in Material Chemistry 材料化学前沿, 2020, 8(1), 1-4 Published Online January 2020 in Hans. https://www.sodocs.net/doc/f010789480.html,/journal/amc https://https://www.sodocs.net/doc/f010789480.html,/10.12677/amc.2020.81001 History and Research Progress of Organometallic Skeleton Compounds Chenxi Yang1,2,3,4 1Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 2Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an Shaanxi 3Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi’an Shaanxi 4Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an Shaanxi Received: Feb. 19th, 2020; accepted: Mar. 5th, 2020; published: Mar. 12th, 2020 Abstract Metal-organic frameworks (MOFs) have become excellent porous materials due to their regularity, rigidity, elasticity, variability and designability. In this paper, the history of MOFs is reviewed, and the synthesis methods and ligand selection of MOFs are summarized. By summarizing different synthetic methods, the advantages and disadvantages of different synthetic methods are intro-duced, and the methods used in different situations are summarized. Keywords Metal-Organic Frameworks, Ligands, Synthesis 金属有机骨架化合物历史及研究进展 杨晨曦1,2,3,4 1陕西地建土地工程技术研究院有限责任公司,陕西西安 2陕西省土地工程建设集团有限责任公司,陕西西安 3自然资源部退化及未利用土地整治工程重点实验室,陕西西安 4陕西省土地整治工程技术研究中心,陕西西安 收稿日期:2020年2月19日;录用日期:2020年3月5日;发布日期:2020年3月12日

金属-有机框架的发展和应用

金属-有机框架的发展和应用 摘要:近年来,由于金属-有机框架(MOFs)材料特殊的结构使得其在气体储存、催化活性、离子交换、磁性材料、分子和光学性能等方面的潜在用途,MOFs的设计与合成吸引了大家的注意力。当前,已有很多用于制备多种金属-有机框架(MOFs)的方法和相关理论。本文主要介绍了MOFs的研究进展、应用,概述了MOFs未来的趋势。 关键词:金属-有机框架,发展,应用 Abstract: In recent years, the design and synthesis of Metal-Organic Frameworks (MOFs) have attracted great interest due their potential use as gas storage, catalysis activity, ion exchange, magnetism, molecular, and optical properties. Currently, varied methods and theories have been used for the formation of metal-organic frameworks (MOFs). This paper mainly introduces the development and application of MOFs, and the future tendency. Keyword: Metal-Organic Frameworks; Development; Application 1绪论 金属-有机框架材料(Metal Organic Frameworks,MOFs)又叫金属有机配位聚合物(Metal Organic Coordination Polymers,MOCPs)已经成为一种新型的功能化晶体材料。它是由有机桥连配体同过配位键的方式将无机金属中心(金属离子或者金属离子簇)连接起来形成无限延伸的网络状结构的晶体材料。金属-有机框架材料将无机化学和有机化学两种通常视为两种完全不同的化学学科巧妙地结合在一起。根据金属-有机框架材料在空间维度延伸情况将金属有机框架材料分为一维链,二维层,三维空间网络状结构。 金属-有机框架材料的最大特点就是它是一种晶体材料具有超高的孔隙率(高达90%的自由体积)和巨大的内比表面积(超出6000平方米/克)。而且由于无机和有机不同成分组成的结构使得其结构多样并可调节,这些最终促使金属有机框架材料在许多方面有着潜在应用[1]。 2金属有机框架化合物的研究进展

金属有机骨架材料的合成与应用文献综述

金属有机骨架材料的合成与应用摘要:近年来,金属有机骨架材料受到科学家们的高度关注,使得它成为新功能材料研究领域的热点。本文从金属有机骨架材料的合成、影响因素、存在问题等方面进行了阐述,并对这种新型多功能材料的应用方面作了展望。 关键字: 1. 引言 金属有机多孔骨架化合物(MetaI-Organic FrameWOrkS , MoFS是近十年来学术界广泛重视的一类新型多孔材料。MOF是一种类似于沸石的新型纳米多孔材料, 但又有别于沸石分子筛。它们的热稳定性不及无机骨架微孔材料,因此在传统的高温催化方面的应用受到限制,但在一些非传统领域,如非线性光学材料、磁性材料、超导材料和储氢材料等新材料方面的应用前景正在逐步被开发出来。金属有机多孔骨架化合物,又称为金属有机配位聚合物,它是由含氧、氮等的多齿有机配体(大多是芳香多羧酸)与过渡金属离子自组装而成的配位聚合物。在构筑金属有机多孔骨架时,有机配体选择起着关键性的作用。目前 , 已经有大量的金属有机骨架材料被合成 , 主要是以含羧基有机阴离子配体为主 , 或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。通过设计或选择一定的配体与金属离子组装得到了大量新颖结构的金属有机多孔骨架化合物。也可以通过修饰有机配体,对这些聚合物的孔道的尺寸进行调控。 这种多孔材料的孔道大小、尺寸是多孔材料结构的最重要特征。孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。在高新技术应用领域,多孔材料也展现出良好的发展前景,如人们利用瓶中造船路线,在微孔分子筛孔道中制备染料复合体,为进一步研究固体微激光器提供基础;通过纳米化学反应路线技术,在微孔分子筛笼中制备 Cd4S4 纳米团簇或通过“ 嫁接” 或“ 锚装” 等方法组装具有特定功能与性质的复杂分子、配合物、簇合物、金属有机化合物、超分子、纳米态、齐聚体与高聚物等。半个世纪以来,随着多孔材料

金属有机骨架材料的合成及应用_魏文英

收稿:2004年11月,收修改稿:2005年3月 *通讯联系人 e -mail :hanjin yu @eyou .com 金属有机骨架材料的合成及应用 魏文英 方 键 孔海宁 韩金玉*  常贺英  (天津大学化工学院绿色合成与转化教育部重点实验室 天津300072) 摘 要 金属有机骨架(MOFs )材料是目前研究很热的一种新功能材料。本文讨论了金属有机骨架材 料的设计原理、制备过程、骨架结构的影响因素以及骨架合成的发展状况,总结了金属有机骨架材料在催化剂、气体的储存和分离方面的应用,并对这种新型多功能材料在设计、合成与应用中的广阔前景做了展望。 关键词 金属有机骨架 配位聚合物 多孔材料 催化剂 气体储存 分离 中图分类号:O63;TB383 文献标识码:A 文章编号:1005-281X (2005)06-1110-06 Synthesis and Applications for Materials of Metallorganic Frameworks W ei W enying Fang Jian Kong Haining Han J inyu *  Chang H eying (Key Laborator y for Green Chemical Technology of the Ministry of Education ,School of Chemical Engineering &Technology ,Tianjin University ,Tianjin 300072,China ) A bstract Materials of metallorganic fra me works is a new kind of functional materials being lar gely researched no w .The principles of design ,pr eparation pr ocess ,the factors effecting on the structure and the development status of synthesis for metallorganic frameworks (MOFs )are disc ussed .The applications of the new kind of poly -function materials in the aspect of catalyst ,gas storage and separation are summarized .In addition ,suggestions of the prospective design ,synthesis and applications are presented . Key words metallorganic framework ;coordination polymers ;porous materials ;catalysts ;gas storage ;separation 一、引 言 多孔材料领域突出的挑战之一是设计和合成有特殊结构和高比表面积的物质。在许多实际应用中,如催化剂、分离和气体的储存等,这样的材料都是非常重要的。对于无序的碳结构,最大的比表面积是2030m 2 ·g -1[1] ,文献报道 [2] 的有序结构沸石的 最大表面积是904m 2 ·g -1 。随着超分子配位化学和 金属有机化合物直接组合化学的发展,新型的多孔 材料开始出现。Ya ghi 等[3—6] 设计并合成了一种金属有机骨架多孔材料,由金属与多齿型羧基有机物组合而成,其比表面积已经达到3000m 2 ·g -1 。最 近,Yaghi 等 [7] 又进一步合成了晶体Zn 4O (B TB )2 (MOF -177),比表面积约4500m 2 ·g -1 。多齿有机配体与金属离子组合而成的骨架材料,产生了新一代超分子多孔材料。这类材料中的孔隙具有各种形状 和尺寸,是沸石和分子筛之类的多孔材料所观察不到的。 金属有机骨架(MOFs )是由含氧、氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物。早在20世纪90年代中期,第一类MOFs 就被合成出来,但其孔隙率和化学稳定性都不高。因此,科学家开始研究新型的阳离子、阴离子以及中性的配位体形成的配位聚合物。目前,已经有大量的金属有机骨架材料被合成 [8—15] , 主要是以含羧基有机阴离子配体为主,或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。由于能控制孔的结构并且比表面积大,MOFs 比其它的多孔材料有更广泛的应用前景,如吸附分离[16—21] 、催化剂、 磁性材料 [22] 和光学材料 [23] 等。另外,MOFs 作为一 第17卷第6期2005年11月 化 学 进 展 PR OGRESS I N C HE MISTRY Vol .17No .6  Nov .,2005

纳米金属有机框架化合物

纳米金属有机框架化合物 张磊 (河北工业大学材料与工程学院,天津 300130) 摘要:纳米金属有机骨架化合物( MOFs) 因具有纯度高、结晶度高、成本低、能够大批量生产和结构可控等优点, 在气体存储尤其是氢的存储方面展示出广阔的应用前景。采用溶剂热法制备了纳米金属有机框架材料, 通过粉末X射线衍射( PXRD )、红外光谱( FTIR)、热重分析( TG)、差示扫描量热法( DSC )等分析和表征手段, 获得了该材料结构、形貌、热稳定性和吸附性能等信息。 关键词:纳米金属有机框架材料多孔材料氢储存 中图分类号: Nano metal-organic frameworks Zhanglei (School of material Science&Engineering Heibei university of technology,tianjin 300130 ) Abstract:With the merits of high purity, high crystallization, low cost, large scale productive capability and structure controllable characteristics, nano metal-organic frameworks (MOFs) have been proved to be very promising in the field of gas storage especially hydrogen storage.The nanoscale metal organic frameworks (Nano MOF) were synthesized under solvothermal conditions ( N,N-dimethyllformamide, DMF) and character ized by PXRD, FTIR, TG, PC I, and etc., to obtain relevant information of structures, morphologies, thermal stability and adsorption capab ilities. Key words:nano metal-organic framework porous material hydrogen storage 有机和无机化合物相结合而形成的纳米金属有机在构筑模式上不同于传统的多孔材料(如沸石和活性炭) ,它通过配体的几何构型控制网格的结构,利用有机桥联单元与金属离子组装得到可预测几何结构的固体,而这些固体又可体现出预想的功能. 与传统的分子筛磷酸铝体系相比,MOFs具有产率较高、微孔尺寸和形状可调、结构和功能变化多样的特点,另外,与碳纳米结构和其它无序的多孔材料相比,MOFs具有高度有序的结晶态,可以为实验和理论计算研究提供简

相关主题