搜档网
当前位置:搜档网 › 叔胺

叔胺

叔胺
叔胺

叔胺

山东邦化油脂化学有限公司

BangHua Oil Chemical Co.,Ltd.

叔胺又称“第三胺”,是有机化合物的一类,胺的一种,可以看成是氨气分子的三个氢都为烃基取代的产物,数叔胺显碱性,能与酸形成盐。

叔胺的种类繁多、用途广泛,常用的叔胺有十二叔胺、十二十四叔胺、十六叔胺、十六十八叔胺、十八十六叔胺、双十八叔胺等等。

叔胺广泛用于制备表面活性剂,如:十二烷基二甲基苄基氯化铵1227、十八烷基三甲基氯化铵1831、十二烷基三甲基氯化铵1231、十八烷基二甲基苄基氯化铵1827、双十八烷基二甲基氯化铵D1821、双十八烷基甲基苄基氯化铵。

常用叔胺的技术指标:

危害性概述

接触途径:眼、皮肤、吸入、误服。

急性影响:

眼睛:明显刺激。

皮肤:有刺激。

吸入:吸入蒸气或气雾可引起鼻和咽喉刺激。

误服:可引起胃肠道刺激反应。

慢性影响:

致癌性:本品未列入国际癌症研究机构(IARC)的致癌物质名单。致畸、生殖影响: 无资料。

致突变性: 无资料。

接触会加重的现患疾病:无资料。

天然药物化学生物碱

第十章生物碱 【习题】 (一)选择题 [1-220] A型题[1-58] 1.生物碱不具有的特点是 A.分子中含N原子 B. N原子多在环内 C. 具有碱性 D. 分子中多有苯环 E.显著而特殊的生物活性 2.具有莨菪烷母核的生物碱是 A. 甲基麻黄碱 B. 小檗碱 C. 阿托品 D. 氧化苦参碱 E. 乌头碱 3.属于异喹啉生物碱的是 A. 东莨菪碱 B. 苦参碱 C. 乌头碱 D. 小檗碱 E. 麻黄碱 4.在常温下呈液体的生物碱是 A. 槟榔碱 B. 麻黄碱 C. 苦参碱 D. 乌头碱 E. 莨菪碱 5. 具有挥发性的生物碱是 A. 吗啡碱 B. 小檗碱 C. 苦参碱 D. 麻黄碱 E. 乌头碱 6. 具有升华性的生物碱是 A. 烟碱 B. 咖啡因 C. 小檗胺 D. 益母草碱 E. 氧化苦参碱 7. 生物碱的味多为 A. 咸 B. 辣 C. 苦 D. 甜 E. 酸 8. 具有颜色的生物碱是 A. 小檗碱D. 莨菪碱C. 乌头碱 D. 苦参碱 E. 麻黄碱 9. 无旋光性的生物碱为 A. 伪麻黄碱 B. 小檗碱 C. 烟碱 D. 乌头碱 E. 长春新碱

10. 表示生物碱碱性的方法常用 A. pkb B. Kb C. pH D. pka E. Ka 11. 生物碱碱性最强的是 A. 伯胺生物碱 B. 叔胺生物碱 C. 仲胺生物碱 D. 季铵生物碱 E. 酰胺生物碱 12.水溶性生物碱主要指 A. 伯胺生物碱 B. 仲胺生物碱 C. 叔胺生物碱 D. 两性生物碱 E. 季铵生物碱 13. 溶解脂溶性生物碱的最好溶剂是 A. 乙醚 B. 甲醇 C.乙醇 D. 氯仿 E. 水 14.生物碱沉淀反应呈桔红色的是 A. 碘化汞钾试剂 B. 碘化铋钾试剂 C.饱和苦味酸试剂 D. 硅钨酸试剂 E. 碘-碘化钾试剂 15. 生物碱沉淀试剂反应的介质通常是 A. 酸性水溶液 B. 碱性水溶液 C. 中性水溶液 D. 盐水溶液 E. 醇水溶液 16.水溶性生物碱分离的常用方法是 A. 碘化汞钾沉淀法 B. 硅钨酸沉淀法 C. 雷氏盐沉淀法 D. 苦味酸沉淀法 E. 碘化铋钾沉淀法 17. 用离子交换树脂法分离纯化生物碱时,常选用的离子交换树脂是 A. 强酸型 B. 弱酸型 C. 强碱型 D. 弱碱型 E. 中等程度酸型 18. 从CHCl3中分离酚性生物碱常用的碱液是 A. Na2CO3 B. NaOH C. NH4OH D. NaHCO3 E. Ca(OH)2 19. 碱性较强的生物碱在植物体内的存在形式多为 A. 有机酸盐 B. 络合状态 C. 游离状态 D. 无机酸盐 E. 两性状态 20. 在水溶液中两性生物碱形成沉淀的pH为 A. 1 B. 10 C. 2~3 D. 6~7 E. 8~9 21. 游离生物碱的提取可选用

谷氨酰胺酶

癌症细胞中谷氨酰胺的代谢及其意义 摘要:除了加强的有氧糖酵解外,显著增加的谷氨酰胺酵解现在被认为是癌症细胞代谢特征的另一个主要特点,在这篇综述中,我们将介绍谷氨酰胺在肿瘤细胞中的主要代谢途径并阐述谷氨酰胺如何通过为肿瘤细胞提供生物代谢所需的能量和生物合成所需的前体小 分子从而维持肿瘤细胞的快速生长和增殖。最后我们重点讨论肿瘤细胞中谷氨酰胺代谢和细胞信号传导通路之间的相互影响及其在肿瘤发生发展过程中的意义。 关键词:Warburg 效应谷氨酰胺谷氨酰胺酶mTORC1(mammalian target of rapamycin) 在过去的十年中,癌症细胞的代谢作为治疗干预的靶点吸引了广泛的关注。很多癌症细胞的代谢都表现出Warburg 效应,Warburg 效应是由德国的生物化学家Otto Warburg 于1924 年首次提出,Otto Warburg 发现癌症细胞即使在正常氧分压条件下,其糖酵解代谢也非常活跃并产生大量的乳酸[1]。Warburg 效应是指在肿瘤细胞中葡萄糖摄取增加,乳酸生 成增多,细胞三羧酸循环途径产生能量减少,而利用有氧糖酵解为细胞生命活动提供能量。随后科学家们对Warburg 效应进行了深入的研究,并对癌症细胞内代谢方式的改变进行了大量的报道[2]。其中很有趣的一点是,在很多情况下,癌症细胞在表现出Warburg 效应的 同时,也对谷氨酰胺有极高的依赖性,以至于我们认为癌症细胞对谷氨酰胺成瘾[3]。谷氨酰胺代谢在肿瘤细胞中的作用及其机制已经成为当前研究的一个热点[4]。 1、谷氨酰胺代谢和谷氨酰胺酶 作为血浆中含量最丰富的氨基酸,谷氨酰胺经细胞膜上的载体转运进入细胞后进行分解代谢,在谷氨酰胺酵解过程中,谷氨酰胺进入线粒体后在谷氨酰氨。在人类基因组中有两个基因可以编码谷氨酰胺酶,谷氨酰胺酶1 基因编码肾型谷氨酰胺酶,而谷氨酰胺酶2 基因编码肝型谷氨酰胺酶[5]。肝型谷氨酰胺酶主要在肝脏中表达,而肾型谷氨酰胺酶在多种器官组织中存在表达[6]。肾型谷氨酰胺酶的在各种组织中的广泛表达使得其可能和不同类型的癌症有关。事实上,在来源于胸、肺、子宫颈、脑和B 淋巴细胞等的肿瘤中,肾型谷氨酰胺酶的表达量升高,抑制谷氨酰胺酶的活性可以抑制这些癌症细胞系的增殖[7-10]。肾型谷氨酰胺酶存在着两个转录剪切突变体,这两个突变体只在其C 端区域存在着区别,其中序列较长的称为肾型谷氨酰胺酶(KGA),而较短的形式则被称为谷氨酰胺酶C(GAC)[11]。KGA 由谷氨酰 胺1 的第1-14 和16-19 个外显子剪切而成,而谷氨酰胺酶 1 的第二个剪切突变体谷氨 酰胺酶C(GAC)只利用了第1-15 个外显子[12]。GAC 的羧基端和KGA 不一样,并 且其蛋白分子量要比KGA小。KGA 和GAC 这两个变异体都含有完整的谷氨酰胺酶结 构域。谷氨酰胺酶C可以在很多体外组织培养的癌症细胞系中被检测到[13]。谷氨酰胺酶的这些亚型表现出不同的结构、动力学特征和组织特异性分布特点[14]。谷氨酰胺酶C 在细 胞内定位于线粒体内,而KGA 则主要存在于细胞浆中[15]。在非活化的状态下,肾型谷氨 酰胺酶和谷氨酰胺酶C 主要以二聚体的形式存在。在体外的实验中,肾型谷氨酰胺酶和谷氨酰胺酶C 都可以被无机磷酸盐活化,而无机磷酸盐的主要作用被认为是促进活化状态的谷氨酰胺酶四聚体的形成[14, 16]。

第十章 生物碱

第十章生物碱 一、填空题 1、大多数叔胺碱和仲胺碱为亲()性,一般能溶于()溶剂,尤其易溶于()溶剂。 2、具内酯或酰胺结构的生物碱在正常情况下,在()中其内酯或内酰胺结构可开环形成()两溶于水中,继之加()可复又环合。 3、生物碱分子的碱性随P轨道的杂化轨道中的比例升高而(),即()>()>()。 4、季铵碱的碱性强,是因为其羟基以()形式存在,类似()碱。 5、一般来说双键和羟基的吸电诱导效应使生物碱的碱性()。 6、莨菪碱的碱性强于东莨菪碱主要是因为东莨菪碱醚环的(),其次是因为醚环的()。 7、生物碱沉淀反应要在()或()中进行。水溶液中如有()、()、()亦可与此类试剂产生阳性反应,故应在被检液中除掉这些成分。 8、生物碱的提取最常用的方法是以()进行()或()。 9、Hofmann降解反应的必要条件是(),其次是()。而Von Braun反应可直接使()键断裂,不要求氮原子的β位有()。 10、麻黄碱和伪麻黄碱因其为(),不能与大多数生物碱沉淀试剂发生沉淀反应故常用()和()鉴别之。 11、延胡索中主要含()型和()型异喹啉类生物碱。 12、小檗碱一般以()的状态存在,但在其水溶液中加入过量碱,则部分转变为()或()。 13、阿托品为莨菪碱的()。 14、莨菪烷类生物碱都是()类,易水解,尤其在碱性溶液中更易进行。如莨菪碱水解生成()和(),而东莨菪碱水解生成的()不稳定,立即异构化成()。 15、区别莨菪碱和东莨菪碱可用(),此时莨菪碱反应生成()沉淀,而东莨菪碱反应生成()沉淀。 16、苦参总碱中含量最多的生物碱是()。 17、汉防已的镇痛有效成分()作用最强,其化学结构属于()型生物碱。 18、马钱子中的主要生物碱是()和(),属于()衍生物。 19、乌头碱水解后生成的单酯型生物碱叫(),无酯键的醇胺型生物碱叫()。 20、红豆杉中的主要生物碱为(),化学结构为()类似物,其主要生物活性为()。 二、选择题 (一)单选题(每题有5个备选答案,备选答案中只有1个最佳答案) 1、生物碱碱性的表示方法多用() A、Kb B.pKb C.Ka D.pKa E.pH 2、碱性最强的生物碱类型为() A、酰胺生物碱 B、叔胺生物碱 C、仲胺生物碱 D、季铵生物碱

谷氨酰胺的研究新进展

免疫营养:谷氨酰胺的研究新进展 自此Dudrick和Wilrmore [1]于1967年由小狗的实验证实,经腔静脉输高热量与氮源可获得动物生长发育的结果,并在小儿外科临床应用获得成功后,临床营养开始有了广泛的应用和研究。传统营养支持的基本目的是:提供充足的能量和氮源,以适应机体的代谢需要,保持瘦肉体,维持生理内稳态,促进病人康复。为达到一目的,在营养支持的发展过程中.曾先后出现静脉内高营养(intravenous hyper-alimentation)、全肠外营养(total parenteral nutrition)、肠内营养(enteral nutrition)、人工胃肠(arti ficial gut)、代谢支持(metabol-ic support)等概念.每一新概念的问世与研究,都推动着临床营养向高水平的领域发展,使之成为现代医学中不可缺少的技术,营养支持已成为提高危重病人救治成功率的关键之一。 20世纪90年代以来,一系列的相关研究表明,营养支持可以改变疾病的治疗效果,不仅仅是由于纠正和预防了治疗对象的营养不足,更重要的可能是通过其中特异营养素的药理学作用达到治疗目的。某些营养物质不仅能防治营养缺乏,而且能以特定方式刺激免疫细胞增强应答功能,维持正常、适度的免疫反应,调控细胞因子的产生和释放,减轻有害的或过度的炎症反应,维持肠屏障功能等。这一新概念最初被称之为营养药理学(nutritional pha rmacology),近年来更多的学者称之为免疫营养(immunonutrition)以明确其治疗目的。即将某些特异性营养物添加于标准肠内营养或肠外营养中,可以达到增强免疫功能和调节炎性反应,保护胃肠黏膜屏障功能等作用[2]。有关这方面的研究是现代外科的发展方向之一,具有免疫药理作用的营养素亦随着研究的进展日趋增多, 研究较多并已开始应用于临床的营养素包括谷氨酰胺、精氨酸、ω-3脂肪酸.核苷酸、膳食纤维等。 1 作用机制 谷氨酰胺(Gln)是血循环和体内游离氨基酸池中含量最丰富的氨基酸,Gln所含的酰胺氮是所有细胞的生物合成所必需,体内细胞利用Gln可合成嘌呤、嘧啶、氨基糖及其它氨基酸。因此,Gln是蛋白质代谢的重要调节因子,被认为是机体在应激状态下的条件必需氨基酸。体内以快速增殖为特征的细胞对Gln具有很高的摄取率,如肠黏膜细胞、免疫细胞、成纤维细胞等。最初的研究认为,Gln参与免疫营养是作为 营养物质来修复肠上皮,维持肠屏障功能,防治肠道细菌和毒素易位,减少肠源性感染。免疫营养的研究进展表明,Gln可被不同的免疫组织利用。在创伤和脓毒血症时,淋巴细胞、巨噬细胞等对Gln的需求增加,致使机体对这一营养素的需求量超过其产出量,血和组织

蒽环类叔胺的合成与表征

文章编号:1004-3918(2009)07-0793-03蒽环类叔胺的合成与表征 刘文杰,陈志钊,曹德榕 (华南理工大学化学与化工学院,广州510640) 摘要:以9-蒽甲醛为原料,和苄胺、芳香胺在冰乙酸的催化下脱水生成席夫碱,经过硼氢化钠还原,和3, 5-二烷 氧基苄基氯发生亲核取代反应,合成了一系列蒽环类叔胺化合物,并通过NMR 、质谱对其结构进行了表征. 关键词:9-蒽甲醛;蒽环;叔胺;合成 中图分类号:O 626.2文献标识码:A 叔胺类化合物在生产和生活等领域有着非常广泛的应用,是一类非常重要的有机化合物,可以作为配置 产品的组份,又可以作为各种专用化学衍生物的中间体产品,如季铵盐、 氧化叔铵、杀菌剂、洗涤剂等,也是制备多种表面活性剂的原料[1-2].蒽及其衍生物的光化学反应在分子荧光传感器、电子给体或受体显色团、三重态敏化剂、聚合物中的能量迁移探测剂、3D 记忆材料等领域有着广泛的应用[3-5].根据叔胺和蒽衍生物的 特点,把具有多种光学活性的蒽环引入到叔胺结构中,合成了4个新的含蒽环类的叔胺, 并通过NMR 、质谱确认了结构.其合成路线如下: 1 实验部分1.1仪器与试剂 熔点用Tektronix X4显微熔点仪测定(温度计未经校正);1H NMR 用Bruker DRX-400核磁共振仪测定 (溶剂CDCl 3,内标TMS );Esquire HCT PLUS 色谱-质谱联用仪;9-蒽甲醛按照参考文献[6]合成,其它试剂均为分析纯. 1.2N-间甲基苯基蒽甲胺的合成 在50mL 三口瓶中加入9-蒽甲醛(618mg ,3mmol ),间甲基苯胺(536mg ,4.5mmol ),14mL 无水乙醇和4mL 四氢呋喃,滴加少许冰乙酸,N 2气下回流6h ,冷至室温;冰水浴下缓慢加入NaBH 4150mg ,室温搅拌过夜,加入冰水,有黄色沉淀析出;过滤,用无水乙醇重结晶,真空干燥后得到淡黄色针状晶体739mg ,产率86%,熔点155~156℃.1H NMR (400MHz ,CDCl 3):δ:2.36(s ,3H ),5.15(s ,2H ),6.63~6.64(m ,3H ),7.18(t ,1H ), 7.46~7.54(m ,4H ),8.03(m ,2H ),8.28(m ,2H ),8.48(s ,1H ). 第27卷第7期 2009年7月 河南科学HENAN SCIENCE Vol.27No.7Jul.2009 收稿日期:2009-03-16 基金项目:国家自然科学基金(20872038)和高等学校博士学科点专项科研基金(20060561024)资助项目 作者简介:刘文杰(1979- ),男,河南鹤壁人,博士研究生,主要从事有机光致变色材料的研究.

多巴胺使用方法

药理: 药效学 ①激动交感神经系统肾上腺素受体和位于肾、肠系膜、冠状动脉、脑动脉的多巴胺受体,效应与剂量相关;②小量时(每分钟按体重0.5~2μg/kg)主要作用于多巴胺受体,使肾及肠系膜血管扩张,肾血流量及肾小球滤过率增加,尿量及钠排泄量增加;③小到中等量时(每分钟按体重2~10μg/kg),能直接激动β1受体以及间接促使去甲肾上腺素自贮藏部位释放,对心肌产生正性应力作用,使心肌收缩力及心搏出量增加,最终使心排血量加大,收缩压升高,脉压可能增大,舒张压无变化或有轻度升高,外周总阻力常无改变,冠脉血流及心肌氧耗改善;④大量时(每分钟按体重大于10μg/kg)激动α受体,导致周围血管阻力增加,肾血管收缩,肾血流量及尿量反而减少。由于心排血量及周围血管阻力增加,致使收缩压及舒张压均增高。 药动学 口服无效,静脉滴入后在体内分布广泛,不易通过血脑屏障。静注5分钟内起效,持续5~10分钟,作用时间的长短与用量不相关。在体内很快通过单胺氧化酶及儿茶酚氧位甲基转移酶(COMT)的作用,在肝、肾及血浆中降解成

无活性的化合物,一次用量的25%左右在肾上腺素神经末梢代谢成去甲肾上腺素。半衰期约为2分钟左右。经肾排泄,约80%在24小时内排出,尿液内以代谢物为主,极小部分 为原形。 适应症: 适用于心肌梗塞、创伤、内毒素败血症、心脏手术、肾功能衰竭、充血性心力衰竭等引起的休克综合征;补充血容量效果不佳的休克,尤其有少尿及周围血管阻力正常或较低的休克。由于本品可增加心排血量,也用于泮地黄及利尿药 无效的心功能不全。 用法用量: 成人常用量静脉滴注,开始时每分钟按体重1-5μg/kg,10分钟内以每分钟1-4μg/kg速度递增,以达到最佳疗效。 慢性顽固性心力衰竭,静滴开始时每分钟按体重 0.5-2μg/kg,逐渐递增,多数病人给予每分钟按体重1-3μg /kg即可生效。闭塞性血管病变患者,静滴开始时每分钟按体重1μg/kg,渐增至每分钟5-10μg/kg,直到每分钟20μg/kg,以达到最满意效应。如危重病例,先以每分钟按体重5μg/kg滴注,然后以每分钟5-10μg/kg递增至 20-50μg/kg,以达到满意效应。

多巴胺的用法用量

多巴胺的用法用量公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

关于多巴胺的用量 多巴胺的使用剂量要视你的使用目的而定。它是正性心血管活性药,alpha-受体、beta受体及多巴胺受体兴奋作用兼有,其产生效果如何完全取决于当时所用的剂量和滴速。 1。小剂量多巴胺(1~5 ug/kg/min),仅是单纯beta受体及多巴胺受体兴奋作用,主要作用在于:扩张周围血管,加强心肌收缩,降低外周血管阻力,其作用结果是,心排血量增加,尿量得以增加,血压轻度改善。 2。中剂量多巴胺(5~15 ug/kg/min)是alpha-和beta-受体兴奋作用兼有,心肌收缩作用加强,外周血管收缩作用明显,血压得以升高,但尿量不见明显增加。(已经未见血管扩张作用)。 3。大剂量多巴胺(20 ug/kg/min)只有alpha-受体兴奋作用,如同间羟胺一样,主要作用只是外周血管收缩,血压得以明显增高,但外周血管阻力也同时显着增高,肾脏血流无增加,尿量未能改善,甚至减少,或无尿。 在我工作中的实际运用中,对于心衰的病人,比较喜欢用小剂量的多巴胺、多巴酚丁胺、速尿等药物配伍使用,但对于低血压休克的病人,常联用间羟胺通过微量泵控制适当滴速。 1:在血容量不足的情况下建议先补充有效血容量,再使用血管活性药物。 2:单纯使用多巴胺来维持血压,效果较为缓慢,而且临床中该药使心率增快明显,故大部分情况可连用间羟胺,我们常用多巴胺200mg+间羟胺100mg+NS 20ml泵入来升压,效果不错。3:若是感染性休克造成的顽固性低血压,若单独使用多巴胺效果不好,可连用去甲肾上腺素。 4:若心排出量不足,可使用小中剂量的多巴胺连用多巴酚丁胺。 5:关于小剂量多巴胺的"肾脏血流灌注改善"讲法,目前认为不能保护肾功能和减少死亡率,故已不主张应用。

谷氨酰胺

谷氨酰胺在临床上的应用: 1.消化道溃疡 李氏等对59例PU患者随机分成验证组17例,口服谷氨酰胺;对照组22例;开放组20例进行研究,结果显示:验证组例、DU5例)治愈率35.3%、显效率58.8%、总 you xiao lu94.1%;对照组(GU11例、DU11例)治愈率9.1%、显效率36.4%、总 you xiao lu86.4%。研究证明:联合应用谷氨酰胺治疗PU疗效好,不良反应小。其可能机制为:L-谷氨酰胺能增加胃粘膜上皮成分己糖胺及葡萄糖胺的生化合成,而糖蛋白是胃上皮外粘液的重要组成部分,故能维持粘液层和粘膜屏障的功能和结构。 2.短肠综合征 等对1例因先天性腹腔裂开发展成坏死性小肠结肠炎,后又因多次手术和肠切除而发展成SBS男性病儿,观察其的代谢和治疗效应。在使用各种常规营养方法均未能使粪便量减少和体重增加的情况下,在TPN中试加了谷氨酰胺,共5周。结果发现血液中谷氨酰胺恢复至正常水平,病儿体重由12kg增至13.1kg,肠微绒毛上皮细胞和粘膜深部组织中,非特异性炎症反应明显减轻,甚至消失,粘膜萎缩减轻,隐窝变深,双糖酶活性增强,粪便中碳水化合物和脂肪量明显减少。其机制可能为外源性谷氨酰胺有利于小肠粘膜结构、粘膜屏障和吸收功能恢复,有利于剩余小肠功能发生适应性变化。 3.重症急性胰腺炎 何氏等对64例重症急性胰腺炎随机分为3组,1组传统保守方案,2组传统保守+TPN治疗,3 组在2组方案+丙氨酰-谷氨酰胺双肽治疗,结果显示:治疗两周后血清白蛋白,2、组较1组增加(p<0.05) ;3组死亡率分别为34.8%(8/23)、%(3/21)和0%,并发症发生率分别为91.3%(21例次、47.6%(10例次/21)、20.0%(4例次/20),3组较2组、组差异明显(p <0.01),其中3组未出现胰腺周围感染。上述研究说明,静脉输注谷氨酰胺可以增加蛋白质合成,减少死亡率及并发症发生率。谷氨酰胺通过降低血浆内毒素水平、显著减少异位细菌数量,从而保护肠黏膜屏障,改善肠道内微生态环境和预防肠源性细菌和内毒素异位甚至减低ARDS和MODS 发生率。4 瘀胆和胆石症等用雄性Wistar鼠观察了STD-TPN和谷氨酰胺-TPN对胆结石形成的影响,结果显示谷氨酰胺-TPN可使胆汁分泌量明显增加,显著大于STD-TPN和常规进食组(P均<0.01),而胆汁中总胆红素、直接胆红素、总和游离较STD-TPN组显著下降,接近于正常水平,组织学检查提示STD-TPN组脂肪浸润明显增多,而谷氨酰胺-TPN组明显减少甚至消失。此外,组胰岛素/胰高血糖素比值明显降低,恢复至正常。证明提供外源性谷氨酰胺可明显改善肝细胞代谢,显著降低肝内胆汁淤积和减少脂肪浸润,增加胆汁分泌、降低胆囊内和胆红素水平,有效预防了TPN后胆汁淤积和胆石症的发生。 4.炎性肠道病变 等发现溃疡性结肠炎和Crohn's病患者内毒素的水平明显升高,并与炎症性疾病的严重程度密切相关,已证实是快速分化细胞如肠道细胞、淋巴细胞的主要能量底物,缺乏的营养与支持可引起肠粘膜萎缩和屏障功能损害,导致肠道内细菌和内毒素易位。Fujite等以1.5%降解的λ-爱兰苔胶

谷胺酰胺对人体的重要性

谈谷胺酰胺对人体的重要性 最先发现谷氨酰胺重要作用的人不是医生,而是那些想在实验室培养细胞的人。50年代初期,Hennry Eogle想通过在细胞培养液中加入葡萄糖来使人和动物的细胞在体外生长。但他发现,仅有葡萄糖是不够的。在试用了许多营养物之后,他发现了谷氨酰胺可以促进免疫细胞和其他一些细胞的生长。像大多数新发现一样,当时并未引起人们的重视。直到20年后,人们重新发现这一现象时才引起重视。70年代,Herbert Windmuelle博士研究抗生素和其他药物在小肠吸收的特点时,为了灌注含适当营养的溶液保持一小段肠子存活。经筛选实验发现了了谷氨酰胺。 谷氨酰胺是由谷氨酸和氨化合而成。谷氨酰胺与谷氨酸一样,也是20种氨基酸中的一种。从结构上看,谷氨酰胺的特点是比其他的氨基酸多了一个氮原子。而且谷氨酰胺在细胞中很容易分解成谷氨酸和氨。而释放出多余的氮原子。氮是合成核酸、蛋白质、氨基酸等不可缺少的原料。所以,现代研究认为谷氨酰胺是氮的运载工具。对干细胞的分裂增殖起重要作用。相比之下,葡萄糖只能为细胞提供能量,不能为干细胞再生提供原料,所以当细胞正常生活时,葡萄糖从提供能量维持生理活动的角度看是必需的。但在疾病过程中,当功能细胞受损,需要干细胞再生,重建组织器官时,葡萄糖就不起作用,而需要谷氨酰胺了。 谷氨酰胺是体内最普通的游离氨基酸。约占总游离氨基酸的60%。而且在血流中谷氨酰胺的浓度也是很高的。其浓度大约是谷氨酸的8倍。许多氨基酸不到谷氨酰胺的1/10。含量最多的丙氨酸,也只约为谷氨酰胺浓度的一半。对于机体中和血液中浓度如此高的谷氨酰胺,过去我们的了解是很少的。只知道可作为氮的转运者,起到降低中枢神经系统血氨的作用。在氨基酸的分类中,也将谷氨酰胺作为非必需氨基酸,而且在目前临床应用的各种复合氨酸酸注射液中都没有谷氨酰胺这一成份。这种忽略与其在机体氨基酸中所占的份额并不相称。 对谷氨酰胺的一些临床作用叙述如下: 一、谷氨酰胺对消化道的作用 谷氨酰胺是消化道修复的最重要的营养物质。这是在最近20年才认识到的。大多数临床工作者认为在疾病和手术期间不应使用肠道。肠道需要休息,以利自身修复。然而肠道修复所需要的营养--谷氨酰胺,在很多食谱中没有得到提供。现代静脉用溶液中也不含谷氨酰胺。此时,在病人禁食时发生的实际情况是肠粘膜细胞萎缩。因为它们缺乏食物中所带来的谷氨酰胺的营养。通常情况下肠道厚厚的内衬被落落的剥脱组织所代替。后者易腐蚀,形成溃疡。细菌易通过。因此,疾病期间试图用禁食让肠道自身修复和仅提供葡萄糖溶液支持就会发生相反的结果。不但不能修复,肠道还会损伤。肠道内衬变落,肠道内细菌穿过肠壁进入临近组织,最终有些病人细菌或细菌毒素还会进入血液,形成“细菌移位”、“肠源性内毒素血症”。而这又是形成“多脏器功能衰竭”的重要原因。对于维持健康起重要作用的胃肠粘膜内衬,即是物理屏障,又是免疫屏障。如果细菌或病毒确实成功地越过了物理屏障,绒毛深层特殊的白细胞就会吞噬消灭入侵的微生物。当谷氨酰胺对肠道的正常供应受阻时,就像一个人不吃饭

谷氨酰胺在危重症治疗中的作用

谷氨酰胺在危重症治疗中的作用 本报讯最近几年,谷氨酰胺在临床营养中的应用,特别是在危重症病人治疗中的作用,日益受到人们的关注,成为探讨热点。最近,瑞典斯德哥尔摩胡丁厄大学医院麻醉和重症医疗科Wernerman回顾了近2年来谷氨酰胺在临床营养治疗中的研究进展,重点讨论了谷氨酰胺在危重症治疗中的新观点。 CurrOpinCritCare2003,9∶279 对患者预后的影响 Wernerman首先指出,在过去2年中最令人感兴趣的观点就是,建议将患者入ICU时血液中谷氨酰胺浓度作为预后预测指标,并将其作为补充谷氨酰胺治疗的适应证。谷氨酰胺在ICU病人营养支持中的应用也成为过去2年中的一大进步。有证据表明,在严重代谢性应激时,机体对谷氨酰胺的需要量增加,而日常食品中谷氨酰胺的含量并不够。 ICU住院患者血浆谷氨酰胺浓度低是死亡的一个独立危险因素,这一发现具有里程碑意义,有助于理解缺乏谷氨酰胺对危重症患者的影响。研究者发现,当血浆谷氨酰胺浓度降低被作为一个因子加入APACHEII预后评分系统后,这一指标改变了预计病死率。 近期一项前瞻性研究表明,住ICU超过5天的病人中,当谷氨酰胺补充治疗超过9天时,50%病人长期生存率得到改善。在另一项研究中,ICU中接受谷氨酰胺治疗的全身炎症反应综合征(SIRS)病人的院内感染率降低。此外,在急性胰腺炎患者中,谷氨酰胺补充治疗减少了肠外营养时间;在III度烧伤病人中,静脉补充谷氨酰胺联合肠内营养治疗,降低了感染率,特别是革兰阴性菌感染率。 谷氨酰胺对于缺血状态下的心肌是否有作用,是否和谷胱甘肽或心脏热休克蛋白的表达和产物有关,正在讨论之中。实验表明,在缺血/再灌注状态下,谷氨酰胺可以保护胃肠黏膜和提高心肌存活率,但没有导致更好的血液动力学表现。在一项小样本临床试验中,谷氨酰胺水平升至正常,使稳定型心绞痛患者运动试验后超声心动图缺血表现减少。 对免疫系统的影响

多巴胺的用法用量-多巴胺的用法及用量-l多巴胺用量

关于多巴胺的用量 多巴胺的使用剂量要视你的使用目的而定。它是正性心血管活性药,alpha-受体、beta受体及多巴胺受体兴奋作用兼有,其产生效果如何完全取决于当时所用的剂量和滴速。 1。小剂量多巴胺(1~5 ug/kg/min),仅是单纯beta受体及多巴胺受体兴奋作用,主要作用在于:扩张周围血管,加强心肌收缩,降低外周血管阻力,其作用结果是,心排血量增加,尿量得以增加,血压轻度改善。 2。中剂量多巴胺(5~15 ug/kg/min)是alpha-和beta-受体兴奋作用兼有,心肌收缩作用加强,外周血管收缩作用明显,血压得以升高,但尿量不见明显增加。(已经未见血管扩张作用)。 3。大剂量多巴胺(20 ug/kg/min)只有alpha-受体兴奋作用,如同间羟胺一样,主要作用只是外周血管收缩,血压得以明显增高,但外周血管阻力也同时显著增高,肾脏血流无增加,尿量未能改善,甚至减少,或无尿。 在我工作中的实际运用中,对于心衰的病人,比较喜欢用小剂量的多巴胺、多巴酚丁胺、速尿等药物配伍使用,但对于低血压休克的病人,常联用间羟胺通过微量泵控制适当滴速。1:在血容量不足的情况下建议先补充有效血容量,再使用血管活性药物。 2:单纯使用多巴胺来维持血压,效果较为缓慢,而且临床中该药使心率增快明显,故大部分情况可连用间羟胺,我们常用多巴胺200mg+间羟胺100mg+NS 20ml泵入来升压,效果不错。3:若是感染性休克造成的顽固性低血压,若单独使用多巴胺效果不好,可连用去甲肾上腺素。4:若心排出量不足,可使用小中剂量的多巴胺连用多巴酚丁胺。 5:关于小剂量多巴胺的"肾脏血流灌注改善"讲法,目前认为不能保护肾功能和减少死亡率,故已不主张应用。

谷胺酰胺的作用

谷胺酰胺的作用 【别名】左旋谷氨酰胺,L-谷氨酰胺 【适应症】用于治疗胃及十二指肠溃疡、胃炎及胃酸过多,也用于改善脑功能。 【用量用法】口服:每日1.5~2g,与中和胃酸药合用可提高疗效。用于改善智力发育不良的儿童和精神障碍、酒精中毒、癫痫患者的脑功能,每日0.1~0.72g。【注意事项】无毒副反应。 【药物规格】片剂。【性状】白色结晶或晶性粉末,能溶于水,不溶于甲醇、乙醇、醚、 苯、丙酮、氯仿和乙醇乙酯,无臭,稍有甜味。 在中性溶液中稳定,在醇、碱或热水中易分解成谷氨醇或丙酯化为 吡咯羧醇,无臭,有微甜味。 【功能】 本标准适用于食品添加剂L-谷氨酰胺,该产品在食品加工中作营养增补剂,调香增补剂。并且L谷氨酰胺是健美运动和健美爱好者的重要营养补剂。它(以下称谷氨酰胺)是肌肉中最丰富的游离氨基酸,约占人体游离氨基酸总量的60%。空腹血浆谷氨酰胺浓度为500-750umol/L。谷氨酰胺不是必需氨基酸,它在人体内可由谷氨酸、颉氨酸、异亮氨酸合

成。在疾病、营养状态不佳或高强度运动等应激状态下,机体对谷氨酰胺的需求量增加,以致自身合成不能满足需要。谷氨酰胺对机体具有多方面的作用: 1.增长肌肉,主要是通过以下几方面来实现: 为机体提供必需的氮源,促使肌细胞内蛋白质合成;通过细胞增容作用,促进肌细胞的生长和分化;刺激生长激素、胰岛素和睾酮的分泌,使机体处于合成状态。 1.谷胺酰胺有强力作用。 增加力量,提高耐力。运动期间,机体酸性代谢产物的增加使体液酸化。谷氨酰胺有产生碱基的潜力,因而可在一定程度上减少酸性物质造成的运动能力的降低或疲劳。 2.免疫系统的重要燃料,可增强免疫系统的功能。 谷氨酰胺具有重要的免疫调节作用,它是淋巴细胞分泌、增殖及其功能维持所必需的。作为核酸生物合成的前体和主要能源,谷氨酰胺可促使淋巴细胞、巨噬细胞的有丝分裂和分化增殖,增加细胞因子TNF、IL-1等的产生和磷脂的mRNA 合成。提供外源性谷氨酰胺可明显增加危重病人的淋巴细胞总数、T淋巴细胞和循环中CD4/CD8的比率,增强机体的免疫功能。 4.参与合成谷眈甘肽(一种重要的抗氧化剂)。 5.胃肠道管腔细胞的基本能量来源。 维持肠道屏障的结构及功能:谷氨酰胺是肠道粘膜细胞代谢

第三章 生物碱类习题答案

第三章生物碱类 一﹑选择题 (一)A型题(每题有5个备选答案,备选答案中只有1个最佳答案) 1.生物碱碱性的表示方法多用(D ) A.Kb B.pKb C.Ka D.pKa E. pH 2.下列生物碱中碱性最强的为(C ) A.去甲麻黄碱B.麻黄碱 C.伪麻黄碱D.胡椒碱 E.东莨菪碱 3.可溶于水的生物碱是(C ) A.麻黄碱B.莨菪碱 C.小檗碱D.胡椒碱 E.延胡索乙素 4.生物碱沉淀反应的条件是(A ) A.酸性水溶液B.碱性水溶液 C.中性水溶液D.盐水溶液 E.醇溶液 5. 不能与生物碱沉淀试剂产生沉淀的是(B ) A.生物碱 B.多糖 C.多肽 D.蛋白质 E.鞣质 6.分离碱性不同的混合生物碱可用(C. ) A.简单萃取法 B.酸提取碱沉淀法 C. pH梯度萃取法 D.有机溶剂回流法 E.分馏法 7.以硅胶为吸附剂进行薄层色谱分离生物碱时,常用的处理方法是(E )A.以碱水为展开剂 B.以酸水为展开剂 C.展开剂中加人少量氨水 D.展开剂中加人少量酸水 E.以CHCI3为展开剂 8.从苦参总碱中分离苦参碱和氧化苦参碱是利用二者(A ) A.在水中溶解度不同 B.在乙醇中溶解度不同 C.在氯仿中溶解度不同 D.在苯中溶解度不同 E.在乙醚中溶解度不同 (二)B型题(备选答案在前,试题在后。每组若干题均对应同一组5个备选答案,每题只有1个正确答案。每个备选答案可重复选用,也可不选用)

A.莨菪碱B.槟榔碱 C.小壁碱D.吴茱萸碱 E.麻黄碱 1.属于有机胺类生物碱的是(E ) 2.属于莨菪烷类生物碱的是(A ) 3.属于吡啶类生物碱的是(B ) 4.属于异喹啉类生物碱的是(C ) 5.属于吲哚类生物碱的是(D ) A.小檗碱B.麻黄碱 C.伪麻黄碱D.东莨菪碱 E.山莨菪碱 6. 其共轭酸的分子内氢键稳定的是(C ) 7. 其草酸盐不溶于水的是(B ) 8. 其分子结构中具有氧环的是(D ) 9. 其盐酸盐在冷水中溶解度小的是(A ) 10.其盐酸盐加入氢氧化钠后,滴加丙酮,生成黄色结晶的是(A ) A.吗啡B.小檗碱 C.莨菪碱D.麻黄碱 E.苦参碱 11.可用雷氏铵盐沉淀法分离的是(B ) 12.在酸性或碱性溶液中加热易于消旋化的是(C ) 13.可用酚羟基性质进行分离的是(A ) 14.具有内酰胺结构,在加热条件下皂化开环生成溶于水的羧酸盐而进行分离的是(E )15.可用水蒸气蒸馏法提取的是( D ) (三)C型题(备选答案在前,试题在后。每组若干题均对应同一组4个备选答案,每题只有1个最佳答案。每个备选答案可以重复使用,也可不选用)A.东莨菪碱B.盐酸小檗碱 C.二者均是D.二者均不是 1.属原小檗碱型生物碱的是(B ) 2.属莨菪烷类生物碱的是(A ) 3.属喹喏里西啶类生物碱的是(D ) 4.颜色为黄色的是(B ) 5.为粘稠液体的是(D ) A.酰胺生物碱B.叔胺生物碱 C.二者均是D.二者均不是 6.胡椒碱属于(A ) 7.苦参碱属于(B ) 8.一般为亲脂性生物碱的是(C ) 9.如无其他碱性基团,与酸不能成盐的是(A ) 10.pKa 11以上的是(D) A.士的宁B.马钱子碱 C.二者均是D.二者均不是 11.加浓硫酸、重铬酸钾,最后为橙黄色的是() 12.加浓硫酸、重铬酸钾,最后不为橙黄色的是()

食品工业中谷氨酰胺起到什么作用

谷氨酰胺即蛋白质合成中的编码氨基酸,白色结晶或晶性粉末,能溶于水,不溶于甲醇、乙醇、醚、苯、丙酮、氯仿和乙酸乙酯,无臭,稍有甜味。现主要在食品加工及工业中作营养增补剂,调香增补剂,那具体起到的作用有哪些呢,下边带您了解。 1、增长肌肉 为机体提供必需的氮源,促使肌细胞内蛋白质合成;通过细胞增容作用,促进肌细胞的生长和分化;刺激生长激素、胰岛素和睾酮的分泌,使机体处于合成状态。 2、增加力量,提高耐力 运动期间,机体酸性代谢产物的增加使体液酸化。谷氨酰胺有产生碱基的潜力,因而可在一定程度上减少酸性物质造成的运动能力的降低或疲劳。 3、可增强免疫系统的功能

谷氨酰胺具有重要的免疫调节作用,它是淋巴细胞分泌、增殖及其功能维持所必需的。作为核酸生物合成的前体和主要能源,谷氨酰胺可促使淋巴细胞、巨噬细胞的有丝分裂和分化增殖,增加细胞因子TNF、IL-1等的产生和磷脂的mRNA合成。提供外源性谷氨酰胺可明显增加危重病人的淋巴细胞总数、T淋巴细胞和循环中CD4/CD8的比率,增强机体的免疫功能。 4、提高机体的抗氧化能力 补充谷氨酰胺,可通过保持和增加组织细胞内的GSH的储备,而提高机体抗氧化能力,稳定细胞膜和蛋白质结构,保护肝、肺、肠道等重要器官及免疫细胞的功能,维持肾脏、胰腺、胆囊和肝脏的正常功能。 5、增加细胞的体积,促进肌肉增长 谷氨酰胺还是少数几种能促进生长激素释放的氨基酸之一。研究表明,口服2克谷氨酰胺就能使生长激素的水平提高4倍,使胰岛素和睾酮分泌增加,从而

增强肌肉的合成作用。 以上就是有关食品工业中谷氨酰胺起到的作用介绍,希望对大家进一步的了解有所帮助,同时,如有不清楚的可咨询宏通生物工程有限公司,该公司为一家主要从事精细化工原料研发,食品原料和医药原料销售为一体的高新技术企业,主营各种食品添加剂,同时,该公司不仅拥有良好的信誉、完善的服务态度,且价格低廉,快速发货,因此,现赢得了广大用户的信赖。

多巴胺的药理作用及其副作用

多巴胺药物的作用机理及其副作用 一、多巴胺的药理作用 多巴胺(dobamine)主要与多巴胺受体结合,产生多巴胺作用。为多巴胺受体激动药。在体内为合成去甲肾上腺素及肾上腺素的前体物,存在于外周交感神经、神经节和中枢神经系统,为中枢神经递质之一,但因不易透过血-脑脊液屏障,主要表现为外周作用。具有兴奋肾上腺素α、β受体的作用,但对β2受体作用较弱;同时也作用于肾脏和肠系膜血管、冠状动脉的多巴胺受体,为较理想的抗休克药物,其末梢作用较复杂。 1、小剂量静脉滴注(每分钟1~5μg/kg或每分钟200μg)时,多为β作用,心输出量增加、肾血流量增加(肾动脉和肾小球血管扩张)、尿量增加,临床上可见到明显的升血压效果,而心率增加不明显。 2、等剂量静脉滴注(每分钟5~20μg/kg或每分钟0.3~1mg)时由于α受体兴奋的缘故,虽然血压仍可升高,但由于外周血管收缩及肾血管的收缩作用,使心脏后负荷明显增加,心率亦可增快(多巴胺的正性频率作用出现)或减慢(升压反射所致),尿量反而减少(肾脏的有效滤过率下降)。 3、大剂量(每分钟1.5~3μg)时,由于其较强的α作用,组织灌注并不好,此时应加用扩血管药物,如硝普钠等扩血管药,减轻心脏的前后负荷,改善组织的灌注状态。一般情况下,如果多巴胺的用量已经达到或超过20ug/(kg? min)时,应及时加用第二种正性肌力药如多巴酚丁胺、肾上腺素、异丙肾上腺素等。二、多巴胺的配制和应用方法 多巴胺200mg加入5%GS 500ml中,可根据拟给病人的用量设定每小时的滴注量,用微量输液泵进行输注,或用每分钟滴数的方法进行简单计算(一般输液滴管乳头14~15滴为1ml);也可用一简便的方法进行计算,即每小时输注的毫升数与病人的体重公斤数的数字相同时,其多巴胺的用量刚好为6.67ug/(kg? min),此数字可作为一常数以便于临床应用。 病人的体重(kg)×3(常数)为多巴胺的总剂量,用NS或GS稀释至50ml 后,用微量推注泵给药,每小时推注的毫升数即为病人应用的多巴胺的量化数。此方法配制的多巴胺溶液浓度较高,因此必须在有微量推注泵的情况下由中心静脉给药。

谷氨酰胺胶囊是什么药物

谷氨酰胺胶囊是什么药物 现在由于生活和工作的压力过大,很多人的生活也极其的不规律,也会有一些不好的生活习惯,比如不吃早餐,晚饭于经常出去喝酒应酬,以及经常在熬夜的时候吃各种高脂肪和太刺激的食物,所以现在患上胃病疾病的人越来越多了。谷氨酰胺胶囊就是用于治疗胃病疾病的一个药物,现在就说说谷氨酰胺胶囊是什么药物。 ★谷氨酰胺胶囊的作用是: 1、用于各种原因所致的急、慢性肠道疾病和肠道功能紊乱,如肠易激综合征、非感染性腹泻、肿瘤治疗引起的肠道功能紊乱和放化疗性肠炎。

2、可促进创伤或术后肠道功能的恢复和重建,防治各种全 身性疾病引起的肠道粘膜屏障功能障碍。 3、能促进胃肠激素的分泌,增强肠道免疫功能,促进肠粘 膜细胞的更新修复,增强肠粘膜屏障防御功能改善吸收功能,增强抗疲劳能力及耐缺氧能力。 谷氨酰胺胶囊为氨基酸类药,主要用于治疗胃、十二指肠球部溃疡病,适用于胃溃疡、十二指肠球炎。 最近有研究表明,糖尿病人应当谨慎使用谷氨酰胺作为补剂,因为他们对谷氨酰胺的代谢过程异于常人。对癌症病人使用谷氨酰胺作为补剂也有争议。原因是谷氨酰胺有促进细胞快速分裂的作用,而细胞快速分裂正是肿瘤的特征。 而最新研究表明,通过减慢身体代谢消耗并增强衰弱的免疫

系统,谷氨酰胺能延长癌症患者的寿命。就像使用其他补剂一样,在进补谷氨酰胺前患者应当咨询医师的意见。 谷氨酰胺是体内最重要的氨基酸,人们对单个氨基酸不会过敏。任何服用过量的氨基酸均会引起可能的副作用,谷氨酰胺也不例外,它应在保健人员的指导下服用。在保健人员的监护下,服用谷氨酰胺数周的人,每天50g或40g尚未有不良反应的报道。 虽然谷氨酰胺胶囊的副作用比较小,但是在服用该药物的过程中,很多人会出现便秘,拉肚子,呕吐。也有一部分人在服药之后会感觉到胃部难受,无论是出现哪个情况,都要做好观察,不能随意的进行处理。

多巴胺作用和副作用

多巴胺作用和副作用 多巴胺是一种神经传递物质,它能够帮助细胞来传送脉冲里面的一些化学物质,是脑内的分泌物,它能够控制人的情绪和感觉,能够传递兴奋和开心的信息,同时多巴胺也是一种常见的用于治疗的药物,也有一定的副作用的问题,比如说使用过多,可能会引起呼吸困难,导致心律失常等症状表现。 ★多巴胺副作用 常见的有胸痛、呼吸困难、心悸、心律失常(尤其用大剂量)、全身软弱无力感;心跳缓慢、头痛、恶心呕吐者少见。长期应用大剂量或小剂量用于外周血管病患者,出现的反应有手足疼痛或手足发凉;外周血管长时期收缩,可能导致局部坏死或坏疽;过量时可出现血压升高,此时应停药,必要时给予α受体阻滞剂。 ★多巴胺作用 为多巴胺受体激动药。在体内为合成去甲肾上腺素及肾上腺素的前体物,存在于外周交感神经、神经节和中枢神经系统,为中枢神经递质之一,但因不易透过血-脑脊液屏障,主要表现为

外周作用。 具有兴奋肾上腺素α、β受体的作用,但对β2受体作用较弱;同时也作用于肾脏和肠系膜血管、冠状动脉的多巴胺受体,为较理想的抗休克药物,其末梢作用较复杂。 小剂量静脉滴注(每分钟1~5μg/kg或每分钟200μg)时,主要兴奋多巴胺受体,使肾血管舒张,肾血流量、肾小球滤过率增加,肾功能改善,尿量及钠排泄量增加。 等剂量静脉滴注(每分钟5~20μg/kg或每分钟0.3~1mg)时,可兴奋肾上腺素α、β受体及多巴胺受体,使心脏兴奋,心肌收缩力与心排血量增加,皮肤、黏膜血管收缩,而肾和肠系膜血管、冠状动脉扩张,血流量增加,但心率和血压变化不明显。 大剂量(每分钟1.5~3μg)时兴奋α受体而致血管收缩、血压升高,其增高动脉压的作用优于异丙肾上腺上腺上腺素,增加心排血量方面优于去甲肾上腺素,增加尿量方面则优于异丙肾上腺素及去甲肾上腺素。皮下或肌内给药可发挥缩血管作用

生物碱

第九章生物碱 一、填空 1.小檗碱呈黄色,而四氢小檗碱则无色,其原因在于(结构中有较长的共轭体系)。 2.弱碱性生物碱在植物体内主要是以(游离)状态存在。 3.在生物碱的色谱检识中常用的显色剂是(碘化铋钾),它与生物碱斑点作用常先 (橘红)色。 4.总生物碱的提取方法大致有(溶剂法)、(离子交换树脂)和(沉淀法)三类。 5.麻黄碱和伪麻黄碱的分离可利用它们的(草酸)盐在水中的溶解度不同, (草酸麻黄碱)在水中溶解度比较小,能先行结晶检出,(草酸伪麻黄碱)则留在母液中。。 6.生物碱沉淀反应可应用于:(预试中是否存在生物碱)、(在分离过程中可作为追踪生物碱的指标)、(分离提纯生物碱)等。 7.用硅胶柱层析进行生物碱的薄层色谱时,为克服硅胶的酸性,得到集中的斑点,有两种方法:(用高碱或缓冲液代替水来制硅胶板)、(用碱性溶剂作为展开剂)。 8.用pH 梯度萃取法分离生物碱,是将总生物碱溶于有机溶剂中,用不同pH 缓冲液进行萃 取,缓冲液pH 值(高)到(低),所得到的生物碱的碱度则由(强) 到(弱)。 二、判断题 1.所有生物碱都有不同程度的碱性。√ 2.含氮原子的杂环化合物都是生物碱。× 3.一般生物碱的旋光性都是左旋的。× 4.在所有生物碱中,季铵碱的碱性最强。× 5.生物碱与碘化铋钾多生成红棕色沉淀。√ 6.生物碱盐都易溶于水中。× 三、选择题(单选) 1.下列关于生物碱的论述,正确的是(A) A.含有氮原子 B. 显碱性 C.自然界的所有含氮成分 D.在植物体内以盐的状态存在 2.生物碱不具有的特点是(D) A.分子中含氮原子 B.氮原子多在环内 C. 具有碱性 D. 分子中多有苯环 3.小檗碱的结构类型是(B) A. 喹啉类 B.异喹啉类 C. 哌啶类 D.吲哚类 4. 下列生物碱碱性最强的是(D) A. 伯胺生物碱 B. 仲胺生物碱 C. 叔胺生物碱 D. 季胺生物碱 5. 下列生物碱碱性最弱的是(D) A. 伯胺生物碱 B. 仲胺生物碱 C. 叔胺生物碱 D. 酰胺生物碱 6.决定生物碱碱性最主要的因素是(A) A.氮原子的杂化方式 B. 诱导效应 C. 共轭效应 D. 分子内氢键 三、多选题题 1. 使生物碱碱性减弱的因素是(AE) A.吸电子诱导效应 B.供电子诱导效应 C.供电子共轭效应 D.立体效应 2. 使生物碱碱性减弱的吸电子基团是(BCD) A. 烷基 B.羰基 C.醚基 D.苯基

相关主题