搜档网
当前位置:搜档网 › 高考物理解题方法指导之极值问题

高考物理解题方法指导之极值问题

高考物理解题方法指导之极值问题
高考物理解题方法指导之极值问题

高考物理解题方法指导之极值问题

综述

求解极值问题的方法可分为物理方法和数学方法.物理方法包括:(1)利用临界条件求极值;(2)利用问题的边界条件求极值;(3)利用矢量图求极值;(4)用图像法求极值.数学方法包括:(1)用三角函数求极值;(2)用二次方程的判别式求极值;(3)用不等式的性质求极值;(4)利用二次函数极值公式求极值.一般而言,物理方法直观、形象,对构建模型及动态分析等能力要求较高,而用数学方法求极值思路严谨,对数学能力要求较高.

多数极值问题,并不直接了当地把极值或临界值作为题设条件给出,而是隐含在题目中,要求学生在对物理概念、规律全面理解的基础上,仔细审题,深入细致地分析问题,将隐含的题设条件——极值挖掘出来,把极值问题变成解题的中间环节. 互动探究

例1、如图所示,重为G 的物体放在水平面上,物体与水平面间的动摩擦因数为μ=3/3,物体做匀速直线运动.求牵引力F 的最小值和方向角θ.

例2、从车站开出的汽车作匀加速运动,它开出一段时间后,突然发现有乘客未上车,于是立即制动做匀减速运动,结果汽车从开动到停下来共用时20s ,前进了50m ,求这过程中汽车达到的最大速度.

例3、已知直角三角形底边长恒为b ,当斜边与底边所成夹角θ为多大时,物体沿此光滑斜边由静止从顶端滑到底端所用时间最短?

例4、如图所示,一个质量为m 的小物块以初速度v 0=10m/s 沿光滑地面滑行,然后沿光滑曲面上升到顶部水平的高台上,并由高台上飞出.当高台的高度h 为多大时,小物块飞行的水平距离s 最大?这个距离是多少?(g 取10m/s 2)

例5、一轻绳一端固定在O 点,另一端拴一小球,拉起小球使轻绳水平伸直,然后无初速度的释放,从小球开始运动直到轻绳到达竖直位置的过程中,小球所受重力的瞬时功率在何处取得最大值?

例6、如图所示,已知定值电阻R 1,电源内阻r ,滑动变阻器的最

大阻值为R (R > R 1+r ),当滑动变阻器连入电路的电阻R X 多大时,在变阻器上消耗的功率最大?

例7、如图所示,均匀导线制成金属圆环,垂直磁场方向放在

例1 例4

E r R 1 R

例6 Q P O

B

例7

磁感应强度为B 的匀强磁场中,圆环总电阻为R .另有一直导线OP 长为L ,其电阻为R OP ,一端处于圆环圆心,一端与圆环相连接,金属转柄OQ 的电阻为R OQ ,它以n 的转速沿圆环匀速转动,问OP 中电流强度的最小值是多少?

例8、如图所示是显像管中电子束运动的示意图,设加速电场两

极间的电势差为U ,匀强磁场区域的宽度为L ,要使电子束从磁场飞出时,在图中所示不超过120°范围内发生偏转(即上下各偏转不超过

60°),求磁感应强度B 的变化范围(设磁场方向垂直于纸面向里时,磁感应强度为正值)?

例9、如图所示,宽为L 的金属导轨置于磁感应强度为B 的匀强

磁场中,磁场方向竖直向下.电源电动势为E ,内阻为r ,不计其他电阻和

一切摩擦,求开关K 闭合后,金属棒PQ 速度多大时,安培力的功率最大?

最大值是多少?

例10、一个质量为m 的电子与一个静止的质量为M 的原子发生正碰,

碰后原子获得一定速度,并有一定的能量E 被贮存在这个原子内部.求电子必须具有的最小初动能是多少?

课堂反馈

反馈1、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边赶过汽车.汽车从路口开动后,在追上自行车之前过多长时间两车相距最远?此时距离是多少?

反馈2、如图所示的电路中,电源的电动势E=12V ,内阻r=0.5Ω,外阻R 1=2Ω,R 2=3Ω,滑动变阻器R 3=5Ω.求滑动变阻器的滑动头P 滑到什么位置,电路中的伏特计的示数有最大值?最大值是多少?

达标测试

1、某物体从静止开始沿直线运动,当停止运动时,位移为L ,若运动中加速度

大小只能是a 或是零,那么此过程的最大速度是多大?最短时间为多少?

2、某中学举办了一次别开生面的“物理体育比赛”,比赛中有个项目:运动员从如图所示的A 点起跑,到MN 槽线上抱起一个实心球,然后跑到B 点.比赛时,谁用的时间最少谁胜.试问运动员比赛时,应沿着什么路线跑最好?

3、一条宽为L 的河流通,水流速度为u ,船在静水划行速度为v ,若v

L

U

B

120° 例8

E P Q

B K v

r 例9 R 1

R 2 R 3

P a

b V 反馈2

达标2

O

达标4

4、如图所示,一辆四分之一圆弧小车停在粗糙水平地面上,质量为m 的小球从静止开始由车顶无摩擦滑下,若小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大?最大值是多少?

5、如图所示,光滑轨道竖直放置,半圆部分半径为R ,在水平轨道上停着一个质量为M =0.99kg 的木块,一颗质量为m =0.01Kg 的子弹,以v 0=400m/s 的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,试分析:当圆半径R 多大时,平抛的水平位移是最大?且最大值为多少?

6、一架升飞机,从地面上匀加速垂直飞行到高度H 的天空,如果加速度a 和每秒消耗的油量y 之间的关系是y = ka + n (k > 0,n > 0),应当选择怎样的加速度,才能使这飞机上升到高度H 时耗油量最低.

7、如图所示,已知电流表内阻忽略不计,电源电动势E =10V ,内阻r =1Ω,R o =R =4Ω,其中R 为滑动变阻器的最大值.当滑动片P 从最左端滑到最右端的过程中,电流表的最小值是多少?最大值是多少?电流表的示数将怎样变化?

8、如图所示,AB 、CD 是两条足够长的固定平行金属导轨,两条导

轨间的距离为L ,导轨平面与水平面的夹角是θ,在整个导轨平面内部有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B .在导轨的AC 端

连接一个阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,从静止开始沿导轨下滑.已知ab 与导轨间的滑动摩擦系数为μ,导轨和金属棒的电阻不计,求ab 棒的最大速度.

9、如图所示,顶角为2θ的光滑圆锥,置于磁感应强度大小为B ,方向竖直向下的

匀强磁场中,现有一个质量为m ,带电量为+q 的小球,沿圆锥面在水平面作匀速圆周运动,求小球作圆周运动的轨道半径.

10、如图所示,一束宽为d 的平行光,由红、蓝两种色光组成,入射到一块上、下表面平行的玻璃砖,其入射角为i ,玻璃对红、蓝光的折射率分别为n 1和n 2,则要想从下底面得到两束单色光,玻璃砖的厚度L 至少为多大?

达标5

M m v 0 R O R

A C a

b

达标8 B D θ

E r R 0 R P

a b

A 达标7

B θ θ

达标9

达标10

11、如图所示,水平传送带水平段长l=6m ,两皮带轮直径D 均为0.2m ,距地面高H =5m ,与传送带等高的光滑水平台上有一小物块以v 0=5m/s 的初速度滑上传送带,物块与传送带之间的动摩擦因数μ=0.2.求:(1)若传送带静止,物块滑到右端后做平抛运动的水平距离s 0等于多少?(2)当皮带轮匀速转动,且角速度为ω时,物体做平抛运动的水平位移为s ,以不同角速度ω做上述实验,得到一组对应的ω和s 值.设皮带轮顺时针转动时ω> 0,逆时针转动时ω< 0,试画出平抛距离s 随ω变化的曲线.

专题十一,课时2解析

例1解析:物体的受力图如图.建立坐标系,有: F cos θ - μN = 0 ① F sin θ+N -G = 0 ② 得F =μG /(cos θ+μsin θ)

令tan φ=μ,则cos θ + μsin θ=2

1μ+cos(θ-φ)

∴ F =

当θ=φ时,cos(θ-φ) 取极大值1,F 有最小值.

F min= =

G /2,tan φ=μ=1/3,φ=30o,∴ θ=30o

解法二、将四力平衡转化为三力平衡,用图象法求解.

将N 与f 合成为一全反力R .tan Φ=f /N =μ.可见,N 变化会一个起f 变、R 变,但R 的方向是不变的.物体处于平衡状态,R 、F 、G 的合力必为0,三力构成一封闭三角形.由图可知,当F 垂直于R 时,F 最小.

此时,θ=Φ=arctan(1/√3)=30o,F min =G sin Φ=G /2

例2解析:设最大速度为v m ,即加速阶段的末速度为v m ,画出其速度时间图象如右图所示,图线与t 轴围成的面积等于位移.即:

m v t s ??=

21,m v ??=202

1

50,v m =5m/s .

例3解析:设斜面倾角为θ时,斜面长为s ,物体受力如图所示,由图知

20 v /m ·s -1 O

v m

θ

cos b

s =

…… ① 由匀变速运动规律得:2

2

1at s =

…… ② 由牛顿第二定律得:mg sin θ = ma …… ③ 联立①②③式解得:θ

θ

θ2sin 4cos sin 22g b

g b

a S

t =

==

可见,在90°≥ θ ≥0° 内,当2 θ = 90°,θ = 45°时,sin2θ有最大值,t 有最小值.

例4解析:设小物块从曲面顶部的高台飞出的瞬间的速度为v ,由机械能守恒定律,

22

01122

mv mv mgh =+ ⑴ 小物块做平抛运动, 212

h gt

s vt

?

=???=?

⑵ 将⑴⑵联立,(

)s h ==

当20 2.54v h m g ==时,最大飞行距离:2

max 52v s m g

==.

例5解析:当小球运动到绳与竖直方向成θ角的C 时,重力的功率为: P =mg v cos α=mgv sin θ…………①

小球从水平位置到图中C 位置时,机械能守恒有:

2

2

1cos mv mgL =

θ……………② 解①②可得:θθ2sin cos 2gL mg P = 令y =cos θsin 2θ

)sin sin cos 2(2

1

)sin cos 2(2

1

sin cos 222422

θθθθθθθ??=

=

=y Θ

2)cos (sin 2sin sin cos 222222=+=++θθθθθΘ又

根据基本不等式abc c b a 3≥++,定和求积知:

当且仅当θθ2

2sin cos 2=,y 有最大值

3

3cos cos 1cos 222=

-=θθθ:得由 结论:当3

3

cos =θ时,y 及功率P 有最大值.

例6解析:设变阻器连入电路的为R X (0

B

X

R R r I ++=

,则x

x

x R R R r R R r I U ++=

+-=1)(1εε,

)(2)(12

12

R r R R R r IU P x x

R R X X ++++=

=∴ε,

欲使时,

(要有最小值,当(有最大值,只有x x

x x R R R R r R R R r P X =+++2

121)) 即)

(4)12

211R r P R R R r R r R man R x x x X +=

+++=ε为最小,故(时,.

例7解析:感应电动势B L n nB L B OQ E 22222

1

)(21ππω===

,R OQ 相当于电源的内阻,当Q 转至环的中点,即Q 点与P 点关于O 的对称点时,(则Q 点平分R ,

R R R QB QA 2

1

=

=),电路的总电阻最大,此时OP 中电流强度最小.根据闭合电路欧姆定律,OP

中电流强度最小值为:

R R R B L n R R R E I OP

OQ OP

OQ 4

14

12min ++=

++=

π.

例8解析:根据题意,电子向上偏转时最大偏转角为60°,则电子在磁场中做圆周运动的最小半径

2

360

sin 0

L L

R ==

,电子在电场中加速有221

mv eU =

,m

eU

v 2=,电子在洛仑兹力作用下,作匀速圆周运动,R v m Bev 2

=,时,

当32L R =磁感应强度的最大值e mU

L

B man 231=

,所以磁感应强度的变化范围是: e mU L 231-

≤B ≤e

mU

L 231.

例9解析:开关闭合后,电路中的电流r

BLv

E I -=,金属棒受到的安培力为

)(

r

BLv

E BL BIL

F -==,可见,F 与v 是线性关系,作出F —v 图线如图,根据直角三角形内接矩形的性质,当金属棒PQ 的速度BL

E v 2/=时,安培力的功率最大,最大值为r

E BL E r BLE P m 421212

=???=.

例10解析:设电子碰前的速度为υ1,碰后的速度为,静止的原子被碰后的速度为. 由动量守

恒定律有

(1)

由能量守恒有 (2)

由(1)式解出代入(2)

可得:

整理可得:(M+m)m -2m 2υ1

+(m-M)mυ12+2ME=0

因电子碰后的速度必为实数,所以此方程的判别式b 2-4ac≥0 即

4m 4

-4(M +m )m [(m -M )m

+2ME ]≥0

根据上式整理可得:,

所以电子必须具有的最小的初动能是.

反馈1解析:经过时间t 后,自行车做匀速运动,其位移为vt s =1, 汽车做匀加速运动,其位移为:2

22

1at s =, 两车相距为:22212

3

621t t at vt s s s -=-

=-=?, 当2)2/3(262=-?-=-=a b t s 时?s 有最大值,6)

2/3(460442

2=-?-=-=?a b ac s m m .

反馈2解析:设aP 间电阻为x ,外电路总电阻为R ,则

10

)

8)(2())((321321x x R R R x R R x R R -+=++-++=

,下面用四种方法先求解R max .

方法一:用顶点坐标法求解.抛物线方程可表示为y =ax 2+bx+c ,

R =10

)8)(2(x x -+=1016

62++-x x ,设y = -x 2+6x +16,

当x =a

b

2-= —)1(26-=3时,R max =101636)3(2+?+- =2.5Ω.

方法二:用配方法求解.

R =10

)

8)(2(x x -+ =101662++-x x =1025)3(2+--x ,即x =3Ω时,R max =5.2Ω.

方法三:用判别式法求解

R =10

16

62++-x x ,则有-x 2+6x +16-10R = 0,Δ= b 2-4ac = 36-4(-1)(16-10R )>0,

即:100-40R ≥0,R ≤2.5Ω,即R max =2.5Ω.

方法四:用均值定理法求解

R =

10

)

8)(2(x x -+,设a = 2+x ;b = 8-x ,当a = b 时,即2+x = 8-x ,

即x = 3Ω时,R max = 10

)

38)(32(-+ = 2.5Ω.

也可以用上面公式(a +b )max = 2)]8)(2[(2

x x -+ =25,R max =10

)(max b a + = 2.5Ω.

以上用四种方法求出R max = 2.5Ω,下边求伏特计的最大读数. I min =

r

R E +m ax = 4A ,U max = E - I min r = 10V ,即变阻器的滑动头P 滑到R 3的中点2.5Ω处,伏特计有最

大值,最大值为10V .

达标1解析:根据题意,只有满足如图所示的v - t 图象OAT 2所围的面积等于位移的值,才有最大速度和最短时间.从图象可知,在L 一定时,(即S ΔOAT2=S □OBCT3=L ), v A =v max >v B , T 2=T min

T 2=2 T 1,得:a

v T aT v max 22max

2,21

==;又因为a v T v L max 22max 21==,

所以,aL v maz =,a

L

T t 2

2m in ==.

达标2解析:沿ADB 路线好.

达标3解析:如图所示,以水流速度矢量u 的箭头端为圆心,以船的划行速度v 的大小为半径 ,作一圆周,分析可知,船航行的可能方向都由O 指向圆上的点 ,在v

(图中OP )时,到达对岸向下游行驶的距离最小,此时船的划行速度v 垂直于船航行方向(OP ).

当 sin θ= v /u ,即θ=arcsin (v /u )时船到达对岸时向下游行驶的距离最小.

O

T 1

T 2 T 3

t

A

C

B v A v B

α α v u

v

O

P

θ

达标4解析:设圆弧半径为R ,当小球运动到重力mg 与半径夹角为θ时,速度为v ,根据机械能守恒定律和牛顿第二定律有:

R

v

m

mg N mgR mv 22

cos cos 21=-=θθ

解得小球对小车的压力为:N =3mg cos θ,其水平分量为:N x =3mg sin θcos θ=θ2sin 2

3

mg , 根据平衡条件,地面对小车的静摩擦力水平向右, 大小为:f = N x =

θ2sin 23mg ,

当sin2θ = 1,即θ = 45o时,地面对小车的静摩擦力最大,其值为:f max =mg 2

3

达标5解析:子弹与木块发生碰撞的过程,动量守恒,设共同速度为v 1,则 mv 0=(m +M )v 1,所以v 1=

0v M

m m

+= 4m/s ;

设在轨道最高点平抛时物块的速度为v 2,由于轨道光滑,故机械能守恒:

2

2

21)(2

1)(2)(21v M m gR M m v m M +++=+ 所以v 2=)/(])(4[(21M m gR m M Mv m ++-+R 4016-=

则平抛后的位移s =v 2t = 4R R 4.02+-,当R =a

b

2-= 0.2m 时,s max =0.8m .

达标6解析:设加速度为a ,时间为t ,则H=at 2/2,t =a H /2,总耗油Y=yt =(ka+n )a H /2=(k a H n Ha /22+),当a = n /k 时,最低耗油量为n k H ??22.

达标7解析:设滑动变阻器滑片P 左端的电阻为R 左,通过电流表的电流为I A ,通过R o 的电流为I o ,

由并联电路可知A I I 0=0

R R 左 ① ,由欧姆定律得:I =r R E

+总,

即I =

1

44410

+-++=+-+左左

左并)(R R R r R R R E ②,I =I 0+I A = I A )(左10+R R ③

把③代入②式整理得I A =

20

540

2++-左左

R R =

25

.262

540

2

+--)(左R

当R =2.5Ω时,I A 有极小值I Amin =

=5

.2640

1.52A . 当求电流表的最大值时,就需考虑R 的取值范围是“有界”的.当R 左=0时,即由④式得I A p 在a =20

40=2A .

当R 左=R =4Ω时,由④式得I A P 在b =

67.120

45440

2=+?+-(A).

由此可得,电流表先从2A 减小到1.52A ,然后再增加到1.67A .所以电流表的最大值是2A ,其变化是先减小后增大.

达标8解析:在下滑过程中,ab 受重力mg ,支持力N = mg cos θ,摩擦力f =μmg cos θ,安培力F =R v

L B 22.沿

导轨平面有:mg

sin θ - μmg cos θ - R

V

L B 22=ma ①

当a =0时,ab 速度到达最大,mg sinθ – μmg cos θ - R

V L B max

22= 0 ②

解得:v max =

2

2)

cos (sin L

B mg θμθ- .

达标9解析:小球在运动时将受重力mg ,圆锥面对球的弹力N ,及洛仑兹力f 的作用.设小球作匀速圆周运动的轨道半径为R ,速率为v ,

正交分解得

解得

因为v 有实数解,由b 2-4ac ≥0,

∴小球作圆周运动的最小半径为.

达标10解析:根据折射定律有,11sin sin n i r =

,2

2sin sin n i

r =, 由几何关系可得

()21tan tan cos r r L i

d

-=, 由以上两式可解得()(

)

i i n i n i

n i n

d

L 2sin sin sin sin sin 22

2

12

2

222

222

1

??

? ??-----=

B

θ θ

N

G

f θ

达标11解析:(1)由牛顿第二定律有 mg ma μ-= ①

由运动学公式有 22

02v v al -= ②,由平抛运动的规律有 2

12

H gt =

③ 0s vt = ④ 联立以上各式可解得:s 0=1m .

(2)当皮带轮逆时针转动时即ω<0时,其运动情形和第一个问题完全相同,故此时平抛距离s = s 0 = 1m ;而当皮带轮顺时针转动时即ω>0时,讨论如下:

①当皮带轮转动的角速度ω ≤

2

/D v

=10rad/s 时,物块在皮带上滑动时的速度一直大于皮带的速度,物块受到的合外力一直等于滑动摩擦力,做的是匀减速运动,其情形仍和第一个问题相同,所以物块离开皮带后平抛的距离仍为s=1m .

②当皮带轮转动的角速度满足 10rad/s<ω<50rad/s (

2

/D v

=50 rad/s ),此时皮带的速度 1m/s

s g

ω=?

?

⑤ 由此式可求得 1m

③当皮带轮转动的角速度满足 50rad/s<ω<70rad/s (202702

v gl

D μ+=rad/s )则此时

有v 物

2027v v gl μ=+=m/s 故物块滑上皮带后先加速后与皮带

同速直至抛出.由⑤式可解得,5m

④当皮带轮转动的角速度满足 ω>70rad/s ,物块滑上皮带后一直加速,故末速度恒等于7m/s ,物体抛出的水平距离s =7m .所以平抛距离s 随ω变化的曲线如图所示.

最新高考物理直线运动真题汇编(含答案)

最新高考物理直线运动真题汇编(含答案) 一、高中物理精讲专题测试直线运动 1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1)(2)4s;18m(3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用. 2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m

【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ; (2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f . 【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】 (1) 客车到达减速带时的功能E k = 12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02 v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N 4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取 10m/s 2.求: (1)小球经过B 点时的速率;

2021高考物理专题--平抛运动(学生版)

2020年高考物理备考微专题精准突破 专题2.2 平抛运动 【专题诠释】 1.飞行时间 由t =2h g 知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程 x =v 0t =v 02h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度 v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与水平正方向的夹角,有tan θ=v y v x =2gh v 0 ,落地速度与初速度v 0和下落高度h 有关. 4.速度改变量 因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图所示. 5.两个重要推论 (1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图所示,即x B =x A 2 . 推导: ???tan θ=y A x A -x B tan θ=v y v 0=2y A x A →x B =x A 2 (2)做平抛运动的物体在任意时刻任意位置处,有 tan θ =2tan α.

推导: ???tan θ=v y v 0=gt v 0tan α=y x =gt 2v 0 →tan θ=2tan α 【高考领航】 【2019·新课标全国Ⅱ卷】如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的 速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直 方向的速度,其v –t 图像如图(b )所示,t 1和t 2是他落在倾斜雪道上的时刻。则( ) A .第二次滑翔过程中在竖直方向上的位移比第一次的小 B .第二次滑翔过程中在水平方向上的位移比第一次的大 C .第二次滑翔过程中在竖直方向上的平均加速度比第一次的大 D .竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大 【2018·新课标全国III 卷】在一斜面顶端,将甲乙两个小球分别以v 和2 v 的速度沿同一方向水平抛出,两 球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的( ) A .2倍 B .4倍 C .6倍 D .8倍 【2017·新课标全国Ⅰ卷】发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影 响)。速度较大的球越过球网,速度较小的球没有越过球网;其原因是( ) A .速度较小的球下降相同距离所用的时间较多 B .速度较小的球在下降相同距离时在竖直方向上的速度较大 C .速度较大的球通过同一水平距离所用的时间较少 D .速度较大的球在相同时间间隔内下降的距离较大 【2017·江苏卷】如图所示,A 、B 两小球从相同高度同时水平抛出,经过时间t 在空中相遇,若两球的抛出 速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( )

高考物理专题力学知识点之曲线运动分类汇编

高考物理专题力学知识点之曲线运动分类汇编 一、选择题 1.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网.其原因是() A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 2.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等 3.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体,物体随筒一起转动,物体所需的向心力由下面哪个力来提供() A.重力B.弹力 C.静摩擦力D.滑动摩擦力 4.如图所示,小孩用玩具手枪在同一位置沿水平方向先后射出两粒弹珠,击中竖直墙上M、N两点(空气阻力不计),初速度大小分别为v M、v N,、运动时间分别为t M、t N,则 A.v M=v N B.v M>v N C.t M>t N D.t M=t N 5.如图所示,两小球从斜面的顶点先后以不同的初速度向右水平抛出,在斜面上的落点分

别是a和b,不计空气阻力。关于两小球的判断正确的是( ) A.落在b点的小球飞行过程中速度变化快 B.落在a点的小球飞行过程中速度变化大 C.小球落在a点和b点时的速度方向不同 D.两小球的飞行时间均与初速度0v成正比 6.质量为m的小球在竖直平面内的圆管轨道内运动,小球的直径略小于圆管的直径,如 v 图所示.已知小球以速度v通过最高点时对圆管的外壁的压力恰好为mg,则小球以速度 2通过圆管的最高点时(). A.小球对圆管的内、外壁均无压力 mg B.小球对圆管的内壁压力等于 2 mg C.小球对圆管的外壁压力等于 2 D.小球对圆管的内壁压力等于mg 7.如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A,人以速度v0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为,与水平面的夹角为,此时物块A的速度v1为 A. B. C. D. 8.如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

考点03 平抛运动与圆周运动-2018年高考物理二轮核心考点(解析版)

2018届高考二轮复习之核心考点系列之物理考点总动员【二轮精品】考点03 平抛运动与圆周运动 【命题意图】 考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。 【专题定位】 本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。 【考试方向】 高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。 单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。 【应考策略】 熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。 【得分要点】 1. 对于平抛运动,考生需要知道以下几点: (1)解决平抛运动问题一般方法 解答平抛运动问题时,一般的方法是将平抛运动沿水平和竖直两个方向分解,这样分解的优点是不用分解初速度,也不用分解加速度,即先求分速度、分位移,再求合速度、合位移;特别提醒:分解平抛运动的末速度往往成为解题的关键。

高考物理专题力学知识点之曲线运动分类汇编及答案

高考物理专题力学知识点之曲线运动分类汇编及答案 一、选择题 1.如图所示,B和C 是一组塔轮,固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A 轮的半径与C轮相同,且A轮与B轮紧靠在一起,当A 轮绕其中心的竖直轴转动时,由于摩擦的作用,B 轮也随之无滑动地转动起来.a、b、c 分别为三轮边缘上的三个点,则a、b、c 三点在运动过程中的() A.线速度大小之比为 3∶2∶2 B.角速度之比为 3∶3∶2 C.向心加速度大小之比为 9∶6∶4 D.转速之比为 2∶3∶2 2.关于物体的受力和运动,下列说法正确的是() A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变 B.物体做曲线运动时,某点的加速度方向就是通过这一点的曲线的切线方向 C.物体受到变化的合力作用时,它的速度大小一定改变 D.做曲线运动的物体,一定受到与速度不在同一直线上的合外力作用 3.如图所示,小孩用玩具手枪在同一位置沿水平方向先后射出两粒弹珠,击中竖直墙上M、N两点(空气阻力不计),初速度大小分别为v M、v N,、运动时间分别为t M、t N,则 A.v M=v N B.v M>v N C.t M>t N D.t M=t N 4.如图所示,两小球从斜面的顶点先后以不同的初速度向右水平抛出,在斜面上的落点分别是a和b,不计空气阻力。关于两小球的判断正确的是( ) A.落在b点的小球飞行过程中速度变化快 B.落在a点的小球飞行过程中速度变化大 C.小球落在a点和b点时的速度方向不同 D.两小球的飞行时间均与初速度0v成正比 5.某质点同时受到在同一平面内的几个恒力作用而平衡,某时刻突然撤去其中一个力,以

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

高考物理复习专题平抛运动练习题

一、选择题 ()1、一个物体以初速度v0水平抛出,经t秒时,其速度竖直方向分量和v0大小相等,t 等于: A、B、C、D、 ()2、一个物体以初速度v0水平抛出,落地速度为v,则物体运动时间为: A、B、 C、D、 ()3、如图所示,以水平初速度v0=9.8m/s秒抛出的物体,飞行一段时间后,垂 直地撞在倾角θ=30°的斜面上,可知物体完成这段飞行的时间是: A、 B、C、D、2s ()4、正在水平匀速飞行的飞机,每隔1秒种释放一个小球,先后共释放5个,不计空气阻力,则: A、这5个小球在空中排成一条直线 B、这5个小球在空中处在同一抛物上 C、在空中,第1、2两球间的距离保持不变 D、相邻两球的落地点间距离相等 ()5、如图,A点处有一光源S,小球在A处平抛恰好落到墙角处的B点, 则球在墙上影子的运动是: A、匀速直线运动 B、匀加速直线运动 C、变加速直线运动 D、无法确定 ()6、如图所示,在坡度一定的斜面顶点以大小相同的初速v同时水平 向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为37°和53°, 小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为: A、3:4 B、4:3 C、9:16 D、16:9 7、从同一高度h向同一方向水平抛出甲、乙两个小球,初速度分别为v1,v2,且v1>v1,则落地时间t1:t2=__________,两球落地点相距Δx=__________。

8、从某一高度平抛一个物体,忽略空气阻力,如果落地前它的速度是v0,则物体飞行时间为 _________,抛出点到落地点高度为__________,射程为__________。 9、平抛一物体,抛出后第2S内的位移大小S=25m,g=10m/s2,则物体水平初速度v0= _________ m/s,抛出后第2S末的速度大小为_________1m/s,方向为_________。 10、以8m/s的初速度将一小球水平抛出,若它落地时速度方向与水平方向成37°角,则小球的飞 行时间是__________s,其抛出时间的高度是__________m,落地点与抛出点水平距离 是_____________m,落地速度大小是__________m/s。 11、从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别是V10 和V20,它们的初速度方向相反。求经过时间t=_____两小球速度之间的夹角等于90°。 12、如图所示为小球做平抛运动的闪光照片的一部分,图中每一小方格边长5厘米,g取10米/秒2,则(1)闪光的频率是__________次/秒。 (2)小球运动的水平分速度是__________米/秒。 (3)小球经过B点时竖直分速度大小是__________米/秒。

高考物理专题力与曲线运动教学案

专题3 力与曲线运动 【2018年高考考纲解读】 (1)曲线运动及运动的合成与分解 (2)平抛运动 (3)万有引力定律的应用 (4)人造卫星的运动规律 (5)平抛运动、圆周运动与其他知识点综合的问题 【命题趋势】 (1)单独考查曲线运动的知识点时,题型一般为选择题. (2)人造卫星问题仍是2016年高考的热点,题型仍为选择题,涉及的问题一般有: ①结合牛顿第二定律和万有引力定律考查. ②结合圆周运动知识考查卫星的线速度、角速度、周期、向心加速度与轨道半径的关系. ③结合宇宙速度进行考查. 【重点、难点剖析】 本专题的高频考点主要集中在对平抛运动和圆周运动规律的考查上,本专题常考的考点还有运动的合成与分解,考查的难度中等,题型一般为选择和计算。本专题还常与功和能、电场和磁场等知识进行综合考查。 1.必须精通的几种方法 (1)两个分运动的轨迹及运动性质的判断方法 (2)小船渡河问题、绳和杆末端速度分解问题的分析方法 (3)平抛运动、类平抛运动的分析方法 (4)火车转弯问题、竖直面内圆周运动问题的分析方法 2.必须明确的易错易混点 (1)两个直线运动的合运动不一定是直线运动 (2)合运动是物体的实际运动 (3)小船渡河时,最短位移不一定等于小河的宽度 (4)做平抛运动的物体,其位移方向与速度方向不同 (5)做圆周运动的物体,其向心力由合外力指向圆心方向的分力提供,向心力并不是物体“额外”受到的力

(6)做离心运动的物体并没有受到“离心力”的作用 3.合运动与分运动之间的三个关系 关系说明 等时性各分运动运动的时间与合运动运动的时间相等 一个物体同时参与几个分运动,各个分运动独立进行、互不影独立性 响 等效性各个分运动的规律叠加起来与合运动的规律效果完全相同 4.分析平抛运动的常用方法和应注意的问题 (1)处理平抛运动(或类平抛运动)时,一般将运动沿初速度方向和垂直于初速度方向进行分解,先按分运动规律列式,再用运动的合成求合运动。 (2)对于在斜面上平抛又落到斜面上的问题,其竖直位移与水平位移之比等于斜面倾角的正切值。 (3)若平抛的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值。 5.平抛运动的两个重要结论 (1)设做平抛运动的物体在任意时刻、任意位置处的瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tanφ。如图甲所示。 (2)做平抛运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点。如图乙所示。 6. 解答圆周运动问题 (1)对于竖直面内的圆周运动要注意区分“绳模型”和“杆模型”,两种模型在最高点的临界条件不同。 (2)解答圆周运动问题的关键是正确地受力分析,确定向心力的来源。解决竖直面内圆周问

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

最新高考物理常用解题方法汇总

最新高考物理常用解题方法汇总 高考物理常用解题方法 一、观察的几种方法 1.顺序观察法:按一定的顺序进行观察。 2.特征观察法:根据现象的特征进行观察。 3.对比观察法:对前后几次实验现象或实验数据的观察进行比较。 4.全面观察法:对现象进行全面的观察,了解观察对象的全貌。 二、过程的分析方法 1.化解过程层次:一般说来,复杂的物理过程都是由若干个简单的"子过程"构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的"子过程"来研究。 2.探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键

环节。 3.理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的"综合效应"。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。 4.区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。 三、因果分析法 1.分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。 但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。

2.注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。 3.循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。 四、原型启发法 原型启发就是通过与假设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。 如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径: 1.注意观察生活中的各种现象,并争取用学到的知识予以初步解释; 2.通过课外书、电视、科教电影的观看来得到; 3.要重视实验。

高考物理平抛运动专题

第二轮重点突破(3)——平抛运动专题 连城一中林裕光 当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。其轨迹为抛物线,性质为匀变速运动。平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。 1、平抛运动基本规律 ① 速度:v x v 0 ,v y gt 合速度v v x2v y2方向:tanθ=gt v x v o ②位移 x=v o t y= 1gt2合位移大小: s= x2y2方向:tanα = y g t x 2v o ③时间由 y=1gt2得 t= 2y(由下落的高度 y决定)2x ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。 应用举例 (1)方格问题 【例 1】平抛小球的闪光照片如图。已知方格 边长闪光照相的频闪间隔 T,求: v0、 g、v c 2)临界问题 典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少? 例 2】已知网高 H ,半场长 L,扣球点高 h,扣球点离网水平距离 s、

求:水平扣

球速度 v 的取值范围。 【例 3】如图所示,长斜面 OA 的倾角为 θ,放在水平地面上,现从顶点 O 以速度 v 0 平抛一小球,不计空气阻力,重力加速度为 g ,求小球在飞行过程中离斜面的最大距离 s 是多少? (3)一个有用的推论 平抛物体任意时刻瞬时时速度方向的反向延长线与初 速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:设时间 t 内物体的水平位 移为 s ,竖直位移为 h , 则末速度的水平 分量 v x =v 0=s/t , 而竖直 分量 v y =2h/t , v y 2h , tan , v x s 【例 4】 从倾角为 θ=30 °的斜面顶端以初动能 E=6J 向 下坡方向平抛出一个小球,则小球落到斜面上时的动能 E / 为 _____ J 。 例题参考答案: 1、解析:水平方 向: 2a 2 a v 0 2T a 竖直方向: s gT 2 , g T a 2 先求 C 点的水平分速度 v x 和竖直分速度 v y ,再求合速度 v C : 所以有 s hs tan 2 h s v y α D

2014-2018高考物理曲线运动真题

专题四曲线运动 (2017~2018年) 201701 15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍

(2016~2014年) 1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点() A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度

3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是() A.①B.②C.③D.④ 4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是() A.M点B.N点C.P点D.Q点

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

高考物理复习专题平抛运动练习题

高考物理复习专题平抛 运动练习题 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

一、选择题 ()1、一个物体以初速度v0水平抛出,经t秒时,其速度竖直方向分量和v0大小相等,t等于: A、B、C、D、 ()2、一个物体以初速度v0水平抛出,落地速度为v,则物体运动时间为: A、B、 C、D、 ()3、如图所示,以水平初速度v0=9.8m/s秒抛出的物体,飞行一段时间后,垂直地撞在倾角θ=30°的斜面上,可知物体完成这段飞行的时间是: A、 B、C、D、2s ()4、正在水平匀速飞行的飞机,每隔1秒种释放一个小球,先后共释放5个,不计空气阻力,则: A、这5个小球在空中排成一条直线 B、这5个小球在空中处在同一抛物上 C、在空中,第1、2两球间的距离保持不变 D、相邻两球的落地点间距离相等 ()5、如图,A点处有一光源S,小球在A处平抛恰好落到墙角处的B点,则球在墙上影子的运动是: A、匀速直线运动 B、匀加速直线运动 C、变加速直线运动 D、无法确定 ()6、如图所示,在坡度一定的斜面顶点以大小相同的初速v同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为37°和53°,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为: A、3:4 B、4:3 C、9:16 D、16:9 7、从同一高度h向同一方向水平抛出甲、乙两个小球,初速度分别为v1,v2,且v1>v1,则落地时间t1:t2=__________,两球落地点相距Δx=__________。 8、从某一高度平抛一个物体,忽略空气阻力,如果落地前它的速度是v0,则物体飞行时间为 _________,抛出点到落地点高度为__________,射程为__________。 9、平抛一物体,抛出后第2S内的位移大小S=25m,g=10m/s2,则物体水平初速度v0=_________

最新高考物理曲线运动真题汇编(含答案)

最新高考物理曲线运动真题汇编(含答案) 一、高中物理精讲专题测试曲线运动 1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求: (1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】 (1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒. 0)(mv M m v =+共 得:=2.0/v m s 共 (2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F , 2 ()()v F M m g M m L -+=+共 得:15F N = (3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒: 21 +)()2 m M gh m M v =+共( 解得:0.2h m = 综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛: (1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力 (3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度. 2.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求:

高考物理直线运动真题汇编(含答案)及解析

高考物理直线运动真题汇编(含答案)及解析 一、高中物理精讲专题测试直线运动 1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求: (1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少; (3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415 F mg =【解析】 【分析】 【详解】 (1)设减速过程中,汽车加速度的大小为a ,运动时间为t , 由题可知初速度020/v m s =,末速度0t v =,位移2 ()211f x x =-≤ 由运动学公式得:2 02v as =① 2.5v t s a = =② 由①②式代入数据得 28/a m s =③ 2.5t s =④ (2)设志愿者饮酒后反应时间的增加量为t ?,由运动学公式得 0L v t s ='+⑤ 0t t t ?='-⑥ 联立⑤⑥式代入数据得 0.3t s ?=⑦ (3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量

为m ,由牛顿第二定律得 F ma =⑧ 由平行四边形定则得 2220()F F mg =+⑨ 联立③⑧⑨式,代入数据得 041 5F mg = ⑩ 2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1) (2)4s ;18m (3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为 。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为 则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用.