搜档网
当前位置:搜档网 › (完整版)集合知识点归纳

(完整版)集合知识点归纳

(完整版)集合知识点归纳
(完整版)集合知识点归纳

集合的基础知识

一、重点知识归纳及讲解

1.集合的有关概念

一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素

⑴集合中的元素具有以下的特性

①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.

例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;

而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.

②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.

③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.

(2)集合的元素

某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.

(3)集合的分类:有限集与无限集.

(4)集合的表示法:列举法、描述法和图示法.

列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.

描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.

使用描述法时,应注意六点:

①写清集合中元素的代号;②说明该集合中元素的性质;

③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;

⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.

图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.

如:A={1,2,3,4}

例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.

分析:

欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.

解析:

(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.

(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也

相同,舍去c=1,∴.

点评:

两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.

(5)常用数集及专用记号

(1)非负整数集(或自然数集)N={0,1,2,……}

(2)正整数集N*(或N+)={1,2,3,……}

(3)整数集Z={0,?1,?2,……}

(4)有理数集Q={整数与分数}

(5)实数集R={数轴上的点所对应的数}.

强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.

强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.

2.基本运算

1. 交集

(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}

(2)交集的图示

上图阴影部分表示集合A与B的交集.

(3)交集的运算律

,,,

2. 并集

(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}

(2)并集的图示

以上阴影部分表示集合A与B的并集.

(3)并集的运算律

,,,

3、补集

(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=

(2)补集的图示

4、常用性质

A A=A,AΦ=Φ,A B=

B A,A B A,A B B.

A A=A,AΦ=A,A B=

B A,A B A,A B B.

例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.

分析:利用集合图示较为直观.

解:由{4,5},则将4,5写在中,

由{1,2,3},则将1,2,3写在集A中,

由{6,7,8},则将6,7,8写在A、B之外,

由与中均无9,10,则9,10在B中,

故A={1,2,3,4,5},B={4,5,9,10}.

5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有

card(A∪B)= card(A)+card(B)- card(A∩B).

二、难点知识剖析

1、要注意区分一些容易混淆的符号

(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.

(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.

(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.

例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()

A、P∈M

B、a∈M

C、P M

D、{a-3}P

解析:

集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数

的大小,易判断C正确.

小结:正确使用集合的符号是正确分析、解答问题的关键.

2.理解集合所表示的意义

(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故

{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.

(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.

例4、设A=,B=

(1)若A B=B,求的值;

(2)若A B=B,求的值.

分析:

明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.

解析:首先化简集合A,得A={-4,0}

(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.

①若B=Φ,由得

②若,代入得:,

当时,B=,合题意.

当时,B=,也符合题意.

③若,代入得:,

当时,②中已讨论,合题意

当时,B=不合题意.

由①、②、③得,.

(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.

由(1)知,

【点评】:

一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:

和,且在包含关系中,注意不要漏掉B=的情况.

并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集

(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A

当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.

性质:①(任何一个集合是它本身的子集)

②(空集是任何集合的子集)

【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?

【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.

因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.

(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元

素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.

(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B 的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”

集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.

【提问】

(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2)判断下列写法是否正确

① A ② A ③④A A

性质:

(1)空集是任何非空集合的真子集。若 A ,且A≠,则A;

(2)如果,,则.

例1 写出集合的所有子集,并指出其中哪些是它的真子集.

解:集合的所有的子集是,,,,其中,,是的真子集.

【注意】(1)子集与真子集符号的方向。

(2)易混符号

①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系。如

R,{1} {1,2,3}

②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。不能写成={0},∈{0}

例3 判断下列说法是否正确,如果不正确,请加以改正.

(1)表示空集;

(2)空集是任何集合的真子集;

(3)不是;

(4)的所有子集是;

(5)如果且,那么B必是A的真子集;

(6)与不能同时成立.

解:(1)不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确.空集是任何非空集合的真子集;

(3)不正确.与表示同一集合;

(4)不正确.的所有子集是;

(5)正确(6)不正确.当时,与能同时成立.

例4 用适当的符号(,)填空:

(1);;;

(2);;

(3);

(4)设,,

,则A B C.

解:(1)0 0 ;(2)=,

(3),∴;

(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.

相关主题