搜档网
当前位置:搜档网 › 15数学模型应用(学生版)

15数学模型应用(学生版)

15数学模型应用(学生版)
15数学模型应用(学生版)

第十五讲:数学模型应用

1.某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2.6元(其他因素不考虑),计算收费标准的框图如图所示,则①处应填( )

A. B. C. D.

2.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( )

A. 减少1.99%

B. 增加1.99%

C. 减少4%

D. 不增不减

3.某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70%1%

x x ?-元,预计年销售量减少x 万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则x 的最大值是( )

A. 2

B. 6

C. 8.5

D. 10

4.血药浓度(Plasma Concentration )是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:

根据图中提供的信息,下列关于成人使用该药物的说法中,不正确...

的个数是 ①首次服用该药物1单位约10分钟后,药物发挥治疗作用

②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒

③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用

④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒

A. 1个

B. 2个

C. 3个

D. 4个

5.某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,决定按耕地价格的%t 征收耕

地占用税,这样每年的耕地损失可减少52

t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9000万元,则t 的取值范围是( )

A. []1,3

B. []3,5

C. []5,7

D. []

7,9

6.如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和am (012a <<),不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD ,设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位: 2m )的图象大致是( )

7.李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居

讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注: 240平方步为1亩,圆周率按3近似计算)

A. 10步、50步

B. 20步、60步

C. 30步、70步

D. 40步、80步

8.一个物体的运动方程为21s t t =-+, 其中S 的单位是米,t 的单位是秒,那么物体在3t =的瞬时速度是

A. 8米/秒

B. 7米/秒

C. 6米/秒

D. 5米/秒

9.为确保信息安全,需设计软件对信息加密,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文:d c b a ,,,对应密文:d d c c b b a 4,32,2,2+++,当接收方收到密文14,9,23,28时,解密得到的明文为( )

A .7,1,6,4

B .4,1,6,7

C .7,1,4,6

D .7,4,6,1

10.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是个半径为R 的水车,一个水斗从点()33,3A -出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒t 后,水斗旋转到P 点,设P 的坐标为(),x y ,其纵坐标满足()()sin (0,0,)2y f t R t t πω?ω?==+≥><

,则下列叙述

错误的是

A. 6,,306

R π

πω?===- B. 当[]25,55t ∈时,点P 到x 轴的距离的最大值为6

C. 当[]10,25t ∈时,函数()y f t =单调递减

D. 当20t =时, 63PA =

11.海水受日月的引力,在一定的时候发生潮涨潮落,船只一般涨潮时进港卸货,落潮时出港航行,某船吃水深度(船底与水面距离)为4米,安全间隙(船底与海底距离)为1.5米,该船在2:00开始卸货,吃水深度以0.3米/小时的速度减少,该港口某季节每天几个时刻的水深如下表所示,若选择()sin y A x K ωφ=++(0,0A ω>>)拟合该港口水深与时间的函数关系,则该船必须停止卸货驶离港口的时间大概控制在(要考虑船只驶出港口需要一定时间)

A. 5:00至5:30

B. 5:30至6:00

C. 6:00至6:30

D. 6:30至7:00

12.下图为一个观览车示意图,该观览车圆半径为4.8m ,圆上最低点与地面距离为0.8m ,图中OA 与地面垂直,以OA 为始边,逆时针转动θ (0θ>)角到OB ,设B 点与地面距离为h ,则h 与θ的关系式为( )

A. 5.6 4.8sin h θ=+

B. 5.6 4.8cos h θ=+

C. 5.6 4.8cos 2h πθ??=++ ???

D. 5.6 4.8sin 2h πθ?

?=+- ???

13.如图为一半径为3米的水轮,水轮圆心距水面2米,已知水轮每分钟转4圈,水轮上的点到水面距离(米)与时间(秒)满足关系式,则有 ( )

A. B. C. D.

14.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20nmile ,随后货轮按北偏西30的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )

A. (

)2026mi /n le h + B. ()20

62mi /n le h -

C. ()2063mi /n le h +

D. ()2063mi /n le h -

15.如右图所示,从气球A 测得正前方的河流的两岸,B C 的俯角分别为75,30??

,此时气球的高度是60m ,则河流的宽度BC 等于( )

A. )240

31m

B. )18021m

C. )12031m

D. )3031m

16.如图所示,为了测量,A B 处岛屿的距离,小明在D 处观测, ,A B 分别在D 处的北偏西15?、北偏东45?方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向, A 在C 处的北偏西60?方向,则,A B 两处岛屿间的距离为( )

A. 206海里

B. 406海里

C. ()

2013+海里 D. 40海里 17.如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩A ,B ,若要测算A ,B 两点之间的距离,需要测量人员在岸边定出基线BC ,现测BC =50米,∠ABC =105°,∠BCA =45°,则A ,B 两点之间的距离为( )

A. 50米

B. 20米

C. 50米

D. 50米

18.《九章算术》中有一个“两鼠穿墙”问题:今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日穿(第一天挖)一尺,小鼠也日穿一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半). 问何日(第几天)两鼠相逢( )

A. 1

B. 2

C. 3

D. 4

19.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:

第一步:构造数列n

1,,41,31,21,

1 .① 第二步:将数列①的各项乘以2

n ,得到一个新数列n a a a a ,,,,321 . 则=++++-n n a a a a a a a a 1433221 ( ) A .2

4

n B .2

(1)4n - C .(1)4n n - D .(1)4n n + 20.《九章算术》是中国古代的数学专著,有题为:今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几何日相逢及各行几何?用享誉古今的“盈不足术”,可以精确的计算用了多少日多少时相逢,那么你认为在第几日相遇( )

A. 13

B. 14

C. 15

D. 16

21.《算法统宗》是我国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八节竹一茎,为因盛米不均平;下头三节三生九,上梢三节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的,下端3节可盛米3.9升,上端3节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出这根八节竹筒的容积为( )

A. 9.0升

B. 9.1升

C. 9.2升

D. 9.3升

22.已知正方形ABCD 的边长是a ,依次连接正方形ABCD 的各边中点得到一个新的正方形,再依次连接新正方形的各边中点又得到一个新的正方形,按此规律,依次得到一系列的正方形,如图所示,现有一只小虫从A 点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个新正方形的边逆时针方向爬行,如此下去,爬行了10条线段,则这10条线段的长度的和是( )

A. (3122128a

B. (312264a

C. 2132a ??+ ? ???

D.

2132a ?- ??

23.中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了278里路,第一天健步行走,从第二天其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第二天走了 里?

A. 76

B. 96

C. 146

D. 188

24.某校组织学生参加研学拓展活动,需要租用客车安排600名师生乘车,旅行社有甲乙两种型号的客车,载客量分别为24人/辆和40人/辆,租金分别为1600元/辆和2400元/辆,学校要求租车不超过21辆,且乙型号客车不多于甲型号客车7辆,则租金最少为( ) A. 31200 B. 36000 C. 36800 D. 38400

25.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的14a =, 21b =,则输出的a =( )

A. 2

B. 3

C. 7

D. 14

26.《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该著作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该著作中的“李白沽酒”问题,执行该程序框图,若输出的m 的值为0,则输入的a 的值为

A.

218 B. 4516 C. 9332 D. 18964

27.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()104mod6=,如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入2a =, 3b =, 5c =,则输出的N n =( )

A. 6

B. 9

C. 12

D. 21

28.如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是( )

A. ;

B. ;

C. ;

D. ;

29.“数字黑洞”指从某些整数出发,按某中确定的规则反复运算后,结果会被吸入某个“黑洞”.下图的程序框图就给出了一类“水仙花数黑洞”, ()D a 表示a 的各位数字的立方和,若输入的a 为任意的三位正整数.且a 是3的倍数,例如: 756a =,则()333

756684D a =++=.执行该程序框图,则输出的结果为( )

A. 150

B. 151

C. 152

D. 153

30.《孙子算经》是我国古代内容极为丰富的数学名著,其中一个问题的解答可以用如图的算法来实现,若输入的,S T 的值分别为40,126,则输出,a b 的值分别为( )

A. 17,23

B. 21,21

C. 19,23

D. 20,20

31.程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n ”表示m 除以n 的余数),若输入的m , n 分别为325,125,则输出的m =( )

A. 0

B. 5

C. 25

D. 45

32.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.图1是源于其思想的一个程序框图,若输入的a,b分别为4,2,则输出的n等于()

A. 2

B. 3

C. 4

D. 5

33.中国古代算书《孙子算经》中有一著名的问题:今有物,不知其数.三三数之剩二;五五数之剩三;七七数之剩二.问物几何?后来,南宋数学家秦九昭在其《数书九章》中对此问题的解法做了系统的论述,并称之为“大衍求一术”.如图程序框图的算法思路源于“大衍求一术”,执行该程序框图,若输入的a,b的值分别为40,34,则输出的c的值为()

A. 7

B. 9

C. 20

D. 22

34.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.下图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为

≈≈≈)

(参考数据:3 1.732,sin150.2588,sin7.50.1305

A. 2.598,3,3.1056

B. 2.598,3,3.1048

C. 2.578,3,3.1069

D. 2.588,3,3.1108

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模在计算机专业的应用

应用一图论算法 图论在计算机处理问题中占有重要地位,现实中的很多问题最终都可以转化成图论问题,或者要借助图结构来存储和处理。但是怎么把一图存入计算机就要涉及到数学建模的知识。 比如下面一图: 如果要求出从节点v1到节点v5的所有路径,就可以借助计算机来很轻松的解决。但前提条件是,必须要把图以一种计算机可以理解的形式存进去,即要把它抽象为数学问题。 在此,我们需要定义一些关于图的概念,以便更好的描述问题。 边与顶点的关系有如下几种典型情况: 简单图:无自回环,无重边的图。

无向图:边没有指向, 1212 e. i i i i i ψ()={v,v}=v v此时称边e i与顶点12 i i v,v关联,称 顶点 1 i v与顶点 2 i v邻接。 有向图:边有指向, 1212 e. i i i i i ψ u u u u u r ()=(v,v)=v v 下面是具体涉及到图如何存储的问题: 1.图G(V,E)的关联矩阵x R=(r) ij n m ,若G(V,E)为无向图, 1 2 i j ij i j j i j j v e r v e e v e e ? ? =? ? ? 与不关联 与关联,为非自回环 与关联,为自回环 若G(V,E)为有向图, 1 2 i j ij i j i j v e r v e v e ? ? =? ? ? 与不关联 是的起点 是的终点 因此该图可以用关联矩阵表示出来,如下所示 1100000 1010100 0101001 0011010 0000111 R ?? ? ? ? = ? ? ? ?? 这样,我们就可以以矩阵的形式将图存入计算机

数学建模方法及其应用

一、层次分析法 层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用. (一) 层次分析法的基本原理 层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理 一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次. 2.测度原理 决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.

3. 排序原理 层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤 层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量 为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度. 假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对 O 的影响之比,全部比较结果可用成对比较阵 ()1 ,0,ij ij ji n n ij A a a a a ?=>= 表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足: ,ij jk ik a a a ?=,,1,2, ,i j k n = (1) 则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质:

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数学建模在工程中的应用

模糊分析法解足球队排名问题 余科(数理学院122112 ) 苏博飞(数理学院122111) 王有元(数理学院122111) 过思甸(公管学院023112) 摘要:本文解答了93年全国大学生数学建模竞赛B题,运用模糊聚类分析法,讨论了足球队比赛的排名问题。首先,我们将数据进行预处理,求出每队的胜,负,平以及总场数,归一化处理后作为建模的影响因子,然后由相似系数构建模糊相似矩阵,最后构建模糊等价矩阵截取进行排名,并将得到的结果从12支队推广到了N支队的情况。本文中所用的方法经过验证,得到的结果合理,可信。 关键词:模糊分析法,相似系数,比赛排名 一问题分析 根据题目所给的表格,我们能得到的数据是残缺和不整齐对称的,这样就给排名造成了困难。例如在图表中,T1队和T2队打了三场比赛,和T5只打了一场比赛,和T11没打比赛。这样如果只是单纯的利用胜利的场数来进行排名,所得到的结果必定是不完善的,同时也是不准确的。因此为了得到较完善的结果,我们可以先将每个队所参加的比赛中,胜,负和平的场数列表如下,得到每个队实力的大概了解。

表一 场数 队T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 胜10 5 8 1 2 2 13 6 7 6 1 2 负 5 4 4 12 5 3 1 8 8 5 6 3 平 4 6 3 6 2 0 3 3 2 6 2 4 总19 15 15 19 9 5 17 17 17 17 9 9 接着,我们分析各队在每场比赛中的平均进球数,失球数和进失球数差数,这些数据也有助于我们进一步了解各队的实力。列表如下: 表二 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 进球数1.41 2 0.8 1.33 3 0.63 2 1 0.6 2.05 9 0.94 1 0.64 7 0.88 2 0.77 8 0.66 7 失球数0.94 1 0.66 7 0.8 1.68 4 1.44 4 1.2 0.58 8 0.82 4 1 1 1.55 6 1 进失球差0.47 1 0.43 3 0.53 3 -1.05 2 -0.44 4 -0.6 1.47 1 0.11 8 -0.35 3 -0.11 8 -0.77 8 -0.33 3 通过表一,二的分析,我们可以确定T7是最好的,T4是最差的,但是对于其他的球队仅以上述数据还是无法得出准确可信的排名。 为了得出合理可信的排名,我们还应该考虑,Ti与其余各队的比赛成绩,由于有的对和其余的对没有比赛,其成绩难以确定。为了解决这个难题,我们准备先制定一个规则,为各队定义一组特征数据,同时计算各队之间的模糊相似度。最后综合表一二,即可得出合理的排名出来。

数学模型与数学建模-2

2.1MATLAB MATLAB Matrix Laboratory , MathWorks 20 80 , , MATLAB Simulink .MATLAB 1) , ; 2) , ; 3) , ; 4) ( ), . 2.1.1MATLAB MATLAB , , . , MATLAB , 2.1.1 . MATLAB “>>” , MATLAB . , Enter ,MATLAB .

·8· 2 ? ? 2.1.1MATLAB 1.help , help . poly?t . help polyfit POLYFIT Fit polynomial to data..P=POLYFIT(X,Y,N)finds the coeffici-ents of a polynomial P(X)of degree N that fits the data Y best in a least-squares sense.P is a row vector of length N+1containing the polynomial coefficients in descending powers,P(1)*X^N+P(2)*X^(N-1) +···+P(N)*X+P(N+1). , MATLAB Help . Help Product Help , ( 2.1.2) 2.1.2Help

2.1MATLAB ·9· Seach , . 2.clear clear . “a=1”, >>a=1. 1 a. a , clear . >>clear a???Undefined function or variable a . 3.format MATLAB format . format short , 5 ; format rational ; format long g 15 ; >>format short>>pi ans=3.1416;>>format rational >>pi ans=355/113; >>format long g>>pi ans=3.14159265358979 2.1.2MATLAB 1. 2.1.1 MATLAB . MATLAB 1 , .MATLAB , B b . 2.1.1MATLAB pi i,j inf . n/0 inf, n 0 ans , . ,MATLAB ans NaN , . 0/0 inf/inf 2. MATLAB , . . MATLAB , , , . A=[1?256?49] A=[1,?2,5,6,?4,9] 6 A.

数学建模在生活中的应用

数学建模在生活中的应用 【摘要】 本文通过数学模型在实际生活中应用的讨论,阐述数学建模理论的重要性,研究其在实践中的重要价值,并把抽象的数学知识放到大家看得见、摸得着、听得到的生活情境中,从而让人们感受到生活中处处有数学,生活中处处要用数学。 【关键词】数学建模;生活;应用;重要性 最早的数学建模教材出现在公元1世纪我国古代的《九章算术》一书中,由此可见,数学建模是人才培养和社会发展的需要。同时,数学建模也是教育改革的需要,现代数学教育改革中越来越强调“问题解决”,而“问题解决”恰恰体现了数学在实际生活应用的重要性,由于数学建模是问题解决的主要形式,所以数学建模在实际生活中发挥着重要的作用。 一、数学建模 数学建模是指根据具体问题,在一定的假设下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。由此可见,数学建模是一个“迭代”的过程,此过程我们可以用下图表示: 二、生活中的数学建模实例 赶火车的策略 现有12名旅客要赶往40千米远的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时4千米,靠步行是来不及了,唯一可以用的交通工具是一辆小汽车,但这辆小汽车连司机在内至多只能乘坐5人,汽车的速度为每小时60千米。问这12名旅客能赶上火车吗? 【分析】 题中没有规定汽车载客的方法,因此针对不同的搭乘方法,答案会不一样,一般有三种情况:(1)不能赶上;(2)勉强赶上;(3)最快赶上 模型准备 模型假设 模型求解 模型建立 模型分析 模型验证 模型应用

方案1 不能赶上 用汽车来回送12名旅客要分3趟,汽车往返就是3+2=5趟,汽车走的总路程为 5×40=200(千米), 所需的时间为 200÷60=10/3(小时)>3(小时) 因此,单靠汽车来回接送旅客是无法让12名旅客全部赶上火车的。 方案2 勉强赶上的方案 如果汽车来回接送一趟旅客的同时,让其他旅客先步行,则可以节省一点时间。 第一趟,设汽车来回共用了X小时,这时汽车和其他旅客的总路程为一个来回,所以 4X+60X=40×2 解得X=1.25(小时)。此时,剩下的8名旅客与车站的距离为 40-1.25×4=35(千米) 第二趟,设汽车来回共用了Y小时,那么 4Y+60Y=35×2 解得Y=35/32≈1.09(小时) 此时剩下的4名旅客与车站的距离为 35-35/32×4=245/8≈30.63(千米) 第三趟,汽车用了30.63÷60~0.51(小时) 因此,总共需要的时间约为 1.25+1.09+0.51= 2.85(小时) 用这种方法,在最后4名旅客赶到火车站时离开车还有9分钟的时间,从理论上说,可以赶得上。但是,我们在计算时忽略了旅客上下车以及汽车调头等所用的时间,因此,赶上火车是很勉强的。 方案3 最快方案 先让汽车把4名旅客送到中途某处,再让这4名旅客步行(此时其他8名旅客也在步行);接着汽车回来再送4名旅客,追上前面的4名旅客后也让他们下车一起步行,最后回来接剩下的4名旅客到火车站,为了省时,必须适当选取第一批旅客的下车地点,使得送最后一批旅客的汽车与前面8名旅客同时到达火车站。 解法1 设汽车送第一批旅客行驶X千米后让他们下车步行,此时其他旅客步行的路程为 4×X/60=X/15(千米) 在以后的时间里,由于步行旅客的速度都一样,所以两批步行旅客之间始终相差14/15X千米,而汽车要在这段时间里来回行驶两趟,每来回一趟所用的时间为 由于汽车来回两趟所用的时间恰好是第一批旅客步行(40-X)千米的时间, 故 2×X/32=40-X/4 解得X=32(千米) 所需的总时间为 32/60+(40-32)/4≈2.53(小时) 这个方案可以挤出大约28分钟的空余时间,足以弥补我们计算时间所忽略的一些时间。

初中数学建模方法及应用

龙源期刊网 https://www.sodocs.net/doc/f11545354.html, 初中数学建模方法及应用 作者:肖永刚 来源:《新课程·中学》2017年第03期 摘要:在新课标中要求培养学生的创新能力,在初中数学教学中培养学生的建模能力, 是培养数学创新能力的重要方法,也能增强学生利用数学知识解决问题的能力。对培养初中生数学建模方法及应用进行了论述。 关键词:初中数学;建模思想;数学应用 利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。 一、数学建模的概念 数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。 二、数学建模的方法步骤 要培养学生的数学建模方法,可按以下方法步骤进行: 1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。 2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。 3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的 建立。 4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

数学建模基础(入门必备)

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

数学建模背景

数学建模背景: 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、管理、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。[1] 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机)。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 2建模过程 模型准备 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。 模型假设 根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立 在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。 模型求解 利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。 模型分析 对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。 模型检验 将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学模型的应用

数学建模 数模作业(第一章) P21 第一章 6、利用节药物中毒施救模型确定对于孩子(血液容量为2000ml)以及成人(血液容量为 4000ml)服用氨茶碱能引起严重中毒和致命的最小剂量。 解:设孩子服用氨茶碱能引起严重中毒的最小剂量为1A ,则由节中的药物中毒施救模型可知: 在胃肠道中药物的量为 0.13861()t x t A e -=,而在血液系统中药物的量为 0.11550.13861()6() t t y t A e e --=-,再令0.11550.13861()()/6()t t y t y t A e e --==-再做出()y t 的图像如下: 《 ; 由图可知()y t 具有最大值,设在这个最大值max ()y t 在孩子血液中容量的比例为严重中 毒的比例100/g ml μ以及致命的比例200/g ml μ即为孩子服用氨茶碱的最小剂量。于是可以去求这个最小剂量。由上图可知最大值位于8t h =左右, 利用Mathematics 去找出这个最大值。求得max ()=0.0669y t ,而7.892t h =。于是孩子服用氨茶碱引起严重中毒的最小剂

量1A 有式子1max 6()/2000100/A y t ml g ml μ=,从而得此时1498256.1A g μ=同理可以求的孩子服用氨茶碱致命的最小剂量为996512.2g μ。而成人服用氨茶碱严重中毒与致命的最小剂量分别为996512.21993024.4g g μμ、。 7、对于节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液中药量的变化并作图。 解:由题可算得: t=0:2:20 y=275*exp*t)+*exp*t) plot(t,y,'b:') 第二章 3、根据节中的流量数据(表2)和(2)式作插值的数值积分,按照连续模型考虑均流池的容量(用到微积分的极值条件)。 解:可以将表2中的数据建立散点图以及平均值,如下: h=0:1:23 , y=[,,,,,,,,,,,,,,,279,,,,,,,,] x1=0::23; t=sum(y)/24; plot(h,y,'-',x1,t) hold on 02468101214161820 50100150200250300350 400

数学建模模型与应用

Mathematica软件常用功能 【实验目的】 1. 用Mathematica软件进行各种数学处理; 2. 用Mathematica软件进行作图; 3. 用Mathematica软件编写程序. 【注意事项】 Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如 (x+(y^x+1/(2x)));[]方括号表示函数,如Log[x],BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如 {2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。 Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 命令行“Shift+Enter”才是执行这个命令。

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学模型在生物学中的应用

数学模型在生物学中的应用 摘要 数学模型是研究生命发展规律,发现和分析生命现状的工具。建立可靠的本文从生物数学的发展、分支了解生物数学的历史,紧接着又在数学模型在生物数学的地位中了解数学模型的地位,最后在数学模型的应用中知道了微分方程模型、差分方程模型以及稳定性模型.这将有助于在生物数学的研究中,依据数学模型的基础,建立符合规律的数学模型,在生命进程中验证新的规律、新的发现,使在研究生物学时更清晰、更明了. 关键词:数学模型;生物学;应用 Application of mathematical model in Biology Abstract: Mathematical models in biology such as a microscope can be found in biological mysteries, biological research through with the establishment of the mathematical rules of the law of development of life, which launched a new discovery, new rules and in biology established reliable model of the biological status of classified analysis and forecasting.The from the history of mathematical biology development, the branch of the understanding of mathematical biology, followed by another in the mathematical model in Mathematical Biology status in understanding the status of mathematical model. Finally, in the application of mathematical model know differential equation model, the differential equation model and the stability of the model.This will help in mathematical biology research, on the basis of the mathematical model, established in accordance with the law of the mathematical model, in the process of life to verify new rules, new found in biological research clearer, more clear. Keywords: mathematical mode;biology;application 目录 1 引言…………………………………………………………………………………… 2 文献综述……………………………………………………………………………… 2.1 国内外研究现

数学建模 在医药领域的应用

数学建模在医药卫生领域中的研究与应用 摘要:介绍数学模型及其重要性,讨论了数学建模的一般步骤,包括模型的准备、假设、建立、求解、检验、分析及其应用的全过程;并结合医药卫生领域中不允许缺货的存储模型、机械化传送系统的效率模型、流行病学以及肿瘤生长的数学模型等几个实际问题,探析了数学建模的技巧、分析了模型应用的局限性,对实际工作具有一定的指导意义和较好的借鉴作用。关键词:数学建模;创新思维;医药卫生;应用 1引言 数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。 数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。 2数学建模的过程 数学建模的过程是通过对现实问题的简化、假设、抽象提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。若检验结果符合实际或基本符合,就可以用来指导实践;否则再假设、再抽象、再修改、再求解、再应用。其过程如图1所示。 构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤: 2·1模型准备 在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。 2·2模型假设 在明确目的、掌握资料的基础上,抓住复杂问题的主要矛盾,舍去一些次要因素;对实际问题作出几个适当的假设,使复杂的实际问题得到必要的简化。 2·3建立模型 首先根据主要矛盾确定主要变量;然后利用适当的数学工具刻划变量间的关系,从而形成数学模型。模型要尽量简化、不必复杂,以能获得实际问题的满意解为标准。 2·4模型检验 建模后要对模型进行分析,用各种方法(主要是数学方法,包括解方程、逻辑推理、稳定性讨论等;同时利用计算机技术、计算技巧)求得数学结果;将所求得的答案返回到实际问题中去,检验其合理性;并反复修改模型的有关内容,使其更切合实际,从而更具有实用性。 2·5模型应用 用建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。总之,数学建模是一种创造性劳动,成功的模型往往是科学与艺术的结晶。一个“好”的数学模型应该具有以下特点:①考虑全面,抓住本质;②新颖独特,大胆创新;③善于检验,结果合理。而模型检验一般包括下列几个方面:①稳定性和敏感性分析;②统计检验和误差分析;③新旧模型的比较;④实际可行性检验。 因此,数学建模的分析方法和操作途径不可能用一些条条框框规定得十分死板,下面通过实例探析建模过程与技巧。

浅谈数值分析在数学建模中模型求解的应用

浅谈数值分析在数学建模模型求解中的应用 姓名:孙亚丽 学号:2013G0602015 专业:计算机技术 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2.数值分析在模型求解中的应用 2.1.插值法和拟合法在模型求解中的应用 2.1.1.拟合法求解 在数学建模中,我们常常建立了模型,也测量了(或收集了)一些已知数据,但是模型中的某些参数是未知的,此时需要利用已知数据去确定有关参数,这个过程通常通过数据拟合来完成。最小二乘法是数据拟合的基本方法。其基本思想就是:寻找最适合的模型参数,使得由模型给出的计算数据与已知数据的整体误差最小。 假设已建立了数学模型),(c x f y =,其中,T m c c c c ),,,(21 =是模型参数。已有一组已知数据),(1,1y x ,),(22y x ,…,),(,k k y x ,用最小二乘确定参数c ,使 ∑=-=k i i i c x f y c e 12)),(()(最小。 函数),(c x f 称为数据),,2,1)(,(,k i y x i i =的最小二乘拟合函数。如果模型函数),(c x f y =具有足够的可微性,则可用微分方程法解出c 。最合适的c 应满足必要条件m j c c x f c x f y c c e k i j i i i j ,,2,1,0),()),((2)(1 ==??--=??∑=。 2.1.2.插值法求解 在实际问题中,我们经常会遇到求经验公式的问题,即不知道某函数)(x f y =的具体表达式,只能通过实验测量得到该函数在一些点的函数值,即已知一部分精确的函数值数据),(1,1y x ,),(22y x ,…,),(,k k y x 。要求一个函数 )(i i x y ?=,k i ,,1,0 =, (2) 这就是插值问题。函数)(i i x y ?=称为)(x f 的插值函数。),,1,0(k i x i =称为插值节点,式(2)称为插值条件[2]。多项式插值是最常用的插值方法,在工程计算中样条插值是非常重要的方法。 2.2.模型求解中的解线性方程组问题 在线性规划模型的求解过程中,常遇到线性方程组求解问题。线性方程组求解是科学计算中用的最多的,很多计算问题都归结为解线性方程组,利用计算机求解线性方程组的方法是直接法和迭代法。直接法基本思想是将线性方程组转化为便于求解的三角线性方程组,再求三角线性方程组,理论上直接在有限步内求

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模与应用数学结合策略和实例分析

数学建模与应用数学结合策略和实例分析 数学建模与应用数学结合策略和实例分析 引言 1应用数学的应用价值及发展现状 1.1应用数学的价值 数学这门学科是我们对于生活规律的总结,是人类社会智慧的结晶和积累。正所谓,数学来源于生活,其思想高于生活,而其又在生活中发挥着重要的作用,为人们解决问题提供着方法。 可以说,以上三个方面然而,就目前的应用数学的实际教学和学习情况来看,教师往往存在着注重理论知识的传授而忽视了实践的练习,这就使得应用数学的教学成果常常难以转化为我们解决实际的问题的分析和处理能力。 1.2应用数学的发展现状 如上文所述,数学学科最终重要的价值在于通过对其学习来使我们具备科学的思维方式,这对我们理性分析问题、辩证思考事物有着重要的意义。从数学与应用数学这门学科来看,包括了数学史、基础数学、数学教育、应用数学、运筹学、概率论以及自动控制等七个研究方向。就其中的应用数来说,呈现出了较快地发展趋势,特别是在学科交叉研究与应用方面,应用数学已经发展到了保险精算、金融数学、生物数学等等交叉性学科之中。 可以说,当前应用数学所应用的领域已经不再是仅仅局限于传统的单一数学学科,而是横跨了人文社科、经济学、金融学等等各个学科,带动着各个学科研究的不断深入和发展。在这样的一个大背景下,应用数学的研究者也迫切需要高效的研究方法来展示数学的功能,由此,注重数学建模与应用数学的相结合便成为应用数学发展的趋势,成为了数学领域研究的新机遇。

2数学建模与应用数学结合的重要意义 通俗地来讲,所谓数学建模,就是通过数学思维将实际生活中的问题转化为数学语言描述出来,提出假设和预设结论,而后通过数 学工具建立数学模型,进而进行定量分析、验证、求解等工作,最 终得出结论并应用于实际问题,通过计算出的结果解释和解决实际 问题,这个过程就是数学建模的过程。 在数学这个学科的发展历史中,一直是与人类社会的现实问题所紧密联系在一起的,数学不仅具有姐严密的逻辑性、概念的抽象性 以及结论的确定性,还具备较强的应用性和实践性。随着人类社会 进入信息化、数字化时代,各种新型信息技术被广泛地运用到了社会、经济领域,在这个过程中,人们遇到了许多新的问题,这些问 题用传统数学的方法很难得到解决,由此就给数学建模与应用数学 的结合带来了前所未有的机遇。在这样的时代背景下,将数学建模 思想与应用数学深入地结合,将有助于我们更好地从多角度、多层 面地客观理性处理问题,而且对于提高我们的实践动手能力也是十 分有帮助的。所以将数学建模与应用数学结合起来学习和运用具有 重要的理论意义和实践价值。 3数学建模与应用数学结合策略 3.1发挥数学建模的桥梁纽带作用 数学建模是将抽象的数学理论应用到实际生活的重要桥梁和纽带。通过将实际问题进行抽象和建立模型,使复杂的问题简单化,将不 确定的因素进行量化,使之成为一个系统的具象的数学结构。 在将实际数学问题进行抽象转化时,应当进行全面的调查和数据采集,认真地确定影响因素,并找到所要量化的问题特征,进而分 析各个因素和特征之间的影响作用和规律,这样才能构建起用数学 方法解决实际问题的关系。所以,要发挥好建模思想作为联系应用 数学与实际问题的关键桥梁作用。 3.2在应用数学课程中融入数学建模思想

相关主题