搜档网
当前位置:搜档网 › 利用ARCGIS实现滇池SRTMDEM数据的流域特征自动提取研究

利用ARCGIS实现滇池SRTMDEM数据的流域特征自动提取研究

利用ARCGIS实现滇池SRTMDEM数据的流域特征自动提取研究
利用ARCGIS实现滇池SRTMDEM数据的流域特征自动提取研究

DOI:CNKI:11-4415/P.20101119.1813.011 网络出版时间:2010-11-19 18:13

网络出版地址:https://www.sodocs.net/doc/f02484641.html,/kcms/detail/11.4415.p.20101119.1813.011.html

利用ARCGIS实现滇池SRTM DEM数据的流域特征自动提取研究

余杰①,左小清①,唐从国②

(①昆明理工大学国土资源工程学院,昆明650093;②中国科学院地球化学研究所环境地球化学国家重

点实验室,贵阳550002)

【摘要】以滇池流域为试验对象,在NASA发布的3弧秒SRTM DEM数据的基础上,运用Arc Hydro Tools 进行流域特征的提取,结果表明,以3弧秒的SRTM数据为基础提取的流域河网与水利部门提供的数字河网基本相符,而提取的流域面积与实际流域面积十分接近,显示了SRTM DEM数据在中小型湖泊流域地表水文模拟方面的优势。

【关键词】SRTM DEM;自动提取;流域特征;河网

【中图分类号】P231.5 【文献标识码】A 【文章编号】1009-2307(2011)02- -

Realizing automatic extraction of Dianchi Lake watershed characteristics based on STRM DEM by

ArcGIS

Abstract: In this paper, taking the basin of Dianchi Lake as an example, based on 3〞SRTM DEM which was issued by NASA, the watershed characteristics could be extracted automatically by Arc Hydro Tools. The results showed that the river network was in accord with the digital river network which was obtained from the Water Department, and the extraction of drainage was close to the actual drainage area. It indicated the advantage of SRTM DEM in hydrologic simulation of the surface for small lake basin.

Key words: SRTM DEM; automatically extracting; watershed characteristic; river network

YU Jie, ZUO Xiao-qing, T ANG Cong-guo(①Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China; ②State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China)

1 引言

自20世纪50年代后期DEM (Digital Elevation Model) 的概念一经提出就受到极大关注,作为一种独立产品的DEM已经在一定程度上替代了等高线在传统地形图中的作用,因其包含了丰富的地形、地貌、水文信息,能够反映各种分辨率的地形特征,可以提取大量的地表形态信息,在测绘、土木工程、地质、矿山工程、景观建筑、道路设计、防洪、农业、规划、军事工程、飞行器与战场仿真等领域得到广泛应用

[1]。流域河网水系是重要的基础地理要素之一,也是一个基本的水文参数,是描述一个地区地理地貌和水

文特征时不可或缺的条件,对流域整体规划、水资源优化配置、水利水电开发利用以及防洪抗旱、航运、养殖、灌溉和旅游等都具有十分重大的意义[2]。当前,通过DEM来进行地形、地貌分析已经发展成熟,而流域特征提取方面的应用还不是很广泛,传统获取流域河网的方法主要有两种:①通过野外实地测量获取河网水系;②对地形图进行量测和分析获取河网水系。显然,在人迹罕至的高山峡谷地区,地形图和河网水系的测量很困难,这两种方法会耗费大量的人力、物力和财力,不仅十分复杂,而且保存和更新都比较困难[2,3]。GIS、RS等科学技术的发展极大地促进了数字水文的发展,基于DEM提取水文特征在水资源评价、规划和管理,水沙模拟,污染物运移等方面的应用日益广泛,是解决流域水文、生态和环境问题的一个有效的途径,DEM不仅表达了地面高程的空间分布,而且据此可以自动生成流域的水系和分水线、自动提取地形坡度和其他地貌参数。将DEM与表达土壤、植被、地质、水文地质特性的参数的空间分布叠加在一起,还可以描述这些下垫面参数与地面高程之间的关系。但免费获取的高精度的DEM数据在实际应用中较为困难,现在广泛应用的是美国国家地球物理数据中心(NGDC)的GLOBE数据库及美国联邦地质调查局(USGS)的GTOPO30数据库,空间分辨率只能达到1km,而今SRTM向公众免费提供了全球陆地近80%区域的精度达到90 m的DEM数据[4],这对水文学研究具有非常重要的意义。

本文试图探讨利用一种全新的SRTM DEM数据,选择云南省滇池流域作为研究区域,在ArcGIS平台下进行流域地表水文分析,模拟水流方向,自动提取流域河网和流域边界及子流域,建立滇池流域地表水文模拟模型。

2 基于SRTM的流域特征自动提取

2.1 SRTM数据的基本特征

SRTM(Shuttle Radar Topography Mission)航天飞机雷达地形测量是在德国和意大利航天机构的参与

下,由美国国家航空航天局(National Aeronautics and Space Administration, NASA )和国家空间信息情报局(National Geospatial-Intelligence Agency, NGA )共同合作完成[10],2000年2月,通过装载干涉雷达于“奋进”号航天飞机在太空飞行11天,获得地球北纬60o至南纬56o之间约全球80%的陆地表面,面积超过1.19亿km 2的雷达影像数据,由此生产的常用STRM 数据产品分辨率为1弧秒(约30m )和3弧秒(约90m ),覆盖中国区域的是90m 分辨率数据(标准绝对高程精度±16m ,绝对平面精度±20m ),这些数据都是免费公开发布的[5-7]。SRTM 生产的地图是迄今为止由一个科学任务创建的最有价值的、全球受益的数据之一,该数据可广泛应用于科研、军事、民用等各个领域。

SRTM DEM 有两种版本:SRTM 版本1.0(V1.0)数据和SRTM 版本2(V2)数据,也称“终结(Fininshed )”版数据;SRTM 版本2(V2)数据是NGA 对V1.0数据进行了后处理,包括编辑、削峰填洼、定义水体和海岸线等操作产生的,V2数据虽然在数据质量上有了很大的改进,但只对少于16个连续数据点的缺失区域进行了填补,仍有较大面积的数据缺失区没有进行处理。

本文使用的3弧秒的全球无空洞无缝SRTM DEM 数据(简称CGIAR-CSI SRTM ),是由国际农业研究咨询顾问集团((Consortium 3(V3),±16 m ,辅助信息,“空2.2 获取的1:250 的图幅下载数据格式,(采用ALBERS 25°N 和47°N ),得到滇池流域28′,是长江流为山地丘陵、10.3%。-

051,000102,000153,000204,00025,500Meters 他

图1 滇池流域CGIAR-CSI SRTM 90m DEM

2.3 研究方法

目前,利用DEM数据提取流域数字河网的模型主要有谷点提取模型和基于流向的提取模型,其中基于流向的提取模型因生成的河网连续应用最广泛。本文通过美国环境系统研究所(ESRI)公司和美国德克萨斯州奥斯汀大学水资源研究中心(CRWR)联合开发的内嵌于ArcGIS的Arc Hydro Tools构建数字滇池流域。Arc Hydro Tools是基于D8算法,以最陡坡度原则确定栅格单元的水流流向,以集水面积阈值确定河道起始点及河道来生成数字河网[9]。基于STRM数据使用Arc Hydro Tools提取数字河网的基本流程如下:1)SRTM DEM数据预处理:DEM的预处理包括“burn-in”主干河网和填洼削峰。本文是将国家基础地理信息系统1:250 000数字水系图叠加到高程数据,通过“burn-in”主干河网消除STRM中存在的无效数据区域,使水系和高程数据紧密的嵌合在一起,同时用FILL命令对每个单元格进行搜索,找出凹陷点并使其高程等于与其相邻的8个单元格的最小高程值,最终得到一个与原DEM对应的无洼地的DEM。

2)栅格水流方向的确定:预处理后的有效SRTM DEM成为了一个具有“水文学意义”的DEM,可以进行各栅格流向的确定。流向的判断主要有多流向法和单流向法,单流向法简单方便而被广泛应用,其

3

4

2.4

,

),它

3

1)

2)

数据,

监测和防治。

参考文献

[1] 李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社,2001.

[2] 曹玲玲,张秋文.基于SRTM的数字河网提取及其应用[J].人民长江,2007,38(8).

[3] 马玲,杨武年,等.基于DEM的流域牲提取方法初步研究[J].地理空间信息,2008,6(2).

[4] 凌峰,王乘,张秋文.SRTM无效数据填充方法在数字河网提取中的应用[J].华中科技大学学报,2005,33(12).

[5] 蔡玉林,朱红春,杨丽,孙林.基于SRTM DEM的流域特征信息提取—以鄱阳湖流域为例[J].遥感信息,2008,(2).

[6] 龙恩,等.利用STRM DEM和TM数据提取平原山地信息的研究[J].测绘科学,2008,33(2).

[7] 汪凌.美国航天飞机雷达地形测绘使命简介[J].测绘通报,2000,(12).

[8] Jarvis A, Reuter H I, Nelson A, et al. Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT)[EB/OL].

[9] 唐从国,刘丛强. 基于Arc Hydro Tools的流域特征自动提取——以贵州省内乌江流域为例[J].地球与环境,2006,34(3).

[10] United States Geological Survey. Shuttle Radar Topography Mission documentation: SRTM Topography [EB/OL].

https://www.sodocs.net/doc/f02484641.html,/pub/data/srtm/documentation/SRTM_Topo.

[11] 郑丙辉,郅永宽,郑凡东,李子成.滇池流域生态环境动态变化研究[J].环境科学研究,2002,15(2).

[12] 郭有安.滇池流域水资源演变情势分析[J].云南地理环境研究,2005,17(2).

[13] 陈俊勇.对SRTM3和GTOPO30地形数据质量的评估[J].武汉大学学报(信息科学版),2005,30(11).

作者简介:余杰(1978-),女(彝族),籍贯:贵州毕节,在读硕士研究生,从事地理信息系统开发与应用方面研究。

E-mail:371638861@https://www.sodocs.net/doc/f02484641.html,

收稿日期:2009-09-08

利用ArcGIS水文分析工具提取河网水系的方法.docx

利用ArcGIS水文分析工具提取河网水系的方法 DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个大步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox->Spatial Analysis Tools->Hydrology -> Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DEM 采用第一步的Fill1_exam1

3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation 工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。 4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。 6.矢量河网处理 由于Stream to Feature工具.将所有栅格象素均转为矢量线段。所以要进行处理,方法是利用属性查询的方法把所有GRID_CODE为1的全部选择出来。

ArcGIS环境下基于DEM的水文特征提取研究

论文题目ArcGIS环境下基于DEM的水文特征提取研究姓名 所在学院 专业班级 学号109042010006 指导老师 二○一三年一月四日

数字高程模型10GIS姜婷109042010006 ArcGIS环境下基于DEM的水文特征提取研究 ——以闽江流域建溪水系为例 姜婷 (福建师范大学地理科学学院,福建省福州市350108) 摘要:选择闽江流域建溪水系为研究对象,以数字高程模型DEM(Digit Elevation Models)为基础,利用ArcGIS软件的水文分析工具从DEM数据中提取研究区域的流域水文特征的详细过程。主要包括:DEM的生成和预处理、水流方向的确定、水流累积量提取、河网的提取和子流域的划分。结果表明,利用该方法提取的河网与利用手工方法提取的河网基本一致,从而证明该方法具有较高的精度。 关键词:数字高程模型;水文特征;ArcGIS;提取;建溪水系 21世纪以来水资源危机日益突出,水文模型已经成为目前国内外水文学研究的热门课题。随着“3S”技术的发展,为水文科学注入了新的血液。目前水文模拟技术趋向于将水文模型同GIS 与RS集成,以便充分利用GIS在数据管理、空间分析及可视性方面的功能。数字高程模型DEM (Digital ElevationModel)是用一组有序数值阵列形式表示地面点的平面坐标(x,y)和高程z的一种实体地面模型。它包含了大量的地理信息,是构成GIS的基础数据,其用途十分广泛,利用DEM可以提取流域的许多重要水文特征参数,如坡度、坡向、水沙运移方向、汇流网络、流域界线等。目前,利用DEM进行流域分析的工具很多,ArcGIS的水文分析模块(Hydro logymodel)是美国环境系统研究所公司(ESRI)为ArcGIS推出的一个水文分析模块,主要用于地形和河流网系的提取和分析,实现地形模型可视化,其强大的流域特征分析功能可以满足各种流域DEM处理的需要。 1流域概况 建溪是闽江上游三大溪中最大的溪流,是一个树枝状水系。水系源头在武夷山脉和仙霞岭余脉,南平以上流域面积16396平方公里,占闽江流域的27%。河系贯通崇安、建阳、浦城、松溪、政和、建瓯、南平七个县市。河流总长635.6公里,流域内有大小溪流120多条。流域内气候温和湿润,处于高雨区,年平均降雨量1800~2200毫米。建溪的年均流量每秒521立方米,年径流量164亿立方米,约占闽江总流量的1/3。流域内山区海拔差异明显,因而该水系具有河流比降大、源短流急、易发洪水等特点。本文基于该流域的数字高程提取流域水文信息为不同尺度的水文模型提供参数,并可满足各种水文模拟的应用需求。 2基于DEM的流域水文信息提取 流域水文信息是进行水文模拟的必要信息,提取流域信息也是构建现代化水文模型、进行水文模拟以及其他相关研究的前提。作为研究水文模型和水文状态变量空间分布的基础数据,DEM 的一个重要用途就是提取地貌指数。本文采用ArcGIS中的水文分析模块进行流域水文信息的提取。流域水文特征提取的主要过程包括:DEM 的生成和预处理、水流方向的确定、汇流累积量的计算、河网的提取和子流域的划分。 2.1DEM数据的来源和预处理 本文的栅格DEM数据采用国际科学数据服务平台(https://www.sodocs.net/doc/f02484641.html,/index.jsp)提供的SRTM90米空间分辨率基础高程的数据。根据闽江流域建溪水系的经纬度坐标,确定出该数据的列号为60行号为7。 首先利用ArcGIS软件切出建溪流域所在区域的DEM,其中包括崇安、建阳、浦城、松溪、政和、建瓯、南平七个县市,从而生成本实验所需的DEM数据,见图1。

ArcGIS Hydrology水文分析-基本原理

ArcGIS Hydrology水文分析功能介绍(1)-基本原理 1.基本原理 DEM是数字高程模型的英文简称(Digital Elevation Mode),是流域地形、地物识别的重要原始资料。自20世纪60年代以来,在利用数字高程模型DEM提取流域水文特征,模拟地表水文过程方面,国内外都开展了大量的研究。 1.1基于DEM进行流域分析的原理 从DEM提取流域特征,一个良好的流域结构模式是确定算法的前提和关键。1967年ShreveL¨描述的流域结构模式一直被后来的水文学者所引用.并设计了一些成熟的算法。 Shreve使用一个具有一个根的树状图来描述流域结构(如图 1 流域结构模式图所示)。在这个结构中,主要包括两个部分,一部分是结点集,一部分是界线集。沟谷结合点和沟谷源点共同组成一个沟谷结点集。所有的沟谷段组成沟谷段集,形成一个沟谷网络;所有的分水线段组成分水线段集,形成一个分水线网络;沟谷段集和分水线段集共同组成界线集。 沟谷网络中的每一段沟谷都有一个汇流区域,这些区域由流域分水线集来控制。外部沟谷段有一个外部汇流区.而内部沟谷段有两个内部汇水区,分布在内部沟谷段的两侧。整个流域被分割成一个个子流域.每个子流域好象是树状图上的一片“叶子”。 Shreve的树状图流域结构模型是简单明确的.虽然沟谷网络的结点模型和线模型与在栅格DEM中用于表示沟谷结点和沟谷线的栅格点和栅格链之间存在着拓扑不一致性。但它给出了沟谷网络、分水线网络和子汇流区的定义,明确表达了它们之间的相关关系,成为设计流域特征提取技术的基础。

1.2 常用算法 流向判定建立在3×3 的DEM 栅格网的基础上,其方法有单流向法和多流向法之分,但单流向法因其确定简单、应用方便而应用广泛。 1.2.1 单流向法 单流向法假定一个栅格中的水流只从一个方向流出栅格,然后根据栅格高程判断水流方向。目前应用的单流向法是D8法。此外,还有Rho8 方法、DEMON 法、Lea 法和D∞ 法等。最常用的是D8 法:假设单个栅格中的水流只能流入与之相邻的8 个栅格中。它用最陡坡度法来确定水流的方向,即在3×3 的DEM 栅格上,计算中心栅格与各相邻栅格间的距离权落差(即栅格中心点落差除以栅格中心点之间的距离),取距离权落差最大的栅格为中心栅格的流出栅格。 所谓最陡坡度法的原理是假设地表不透水,降雨均匀.那么流域单元上的水流总是流向最低的地方“窗口滑动指以计算单元为中心,组合其相邻的若干个单元形成一个窗口”,以“窗口”为计算基本元素,推及整个DEM,求取最终结果。目前应用最广泛的是基于流向分析和汇流分析的流域特征提取技术。Jenson and Domingue (1988)设计了应用该技术的典型算法,该算法包括3个过程:流向分析,汇流分析和流域特征提取。 1) 流向分析:以数值表示每个单元的流向。数字变化范围是1~255。其中1:东;2:东南;4南;8:西南;16:西;32:西北;64:北;128:东北。除上述数值之外的其它值代表流向不确定,这是由DEM中洼地”和“平地”现象所造成的。所谓“洼地”即某个单元的高程值小于任何其所有相邻单元的高程。这种现象是由于当河谷的宽度小于单元的宽度时,由于单元的高程值是其所覆盖地区的平均高程,较低的河谷高度拉低了该单元的高程。这种现象往往出现在流域的上游。“平地指相邻的8个单元具有相同的高程,与测量精度、DEM单元尺寸或该地区地形有关。这两种现象在DEM 中相当普遍,Jenson and Domingue 在流向分析之前,将DEM进行填充;将“洼地”变成“平地”,再通过一套复杂的迭代算法确定“平地”流向。流向分析过程如图所示。 2) 汇流分析:汇流分析的主要目的是确定流路。在流向栅格图的基础上生成汇流栅格图.汇流栅格上每个单元的值代表上游汇流区内流入该单元的栅格点的总数,既汇入该单元的流入路径数(NIP),NIP较大者,可视为河谷,NlP等于0,则是较高的地方,可能为流域的分水岭。

ArcGIS提取斜坡单元步骤详解要点

斜坡单元 地质灾害危险性区划中常用的单元类型有网格单元、地域单元、均一条件单元、子流域单元、斜坡单元等。其中: 网格单元形状较规则,便于实现快速剖分,离散后得到的矩阵形式的数据有利于进一步运算,但是不能完全反映地势起伏,与地质环境条件联系不够紧密; 均一条件单元没有考虑不同区域的地质环境条件差异; 子流域单元适用于泥石流灾害危险性区划,对滑坡、崩塌等则不适用。斜坡单元是滑坡、崩塌等地质灾害发育的基本单元,并且在各类控制或影响因素中,河流和沟谷的发育阶段对滑坡、崩塌的形成具有明显的控制作用,因此采用基于幼年期沟谷划分的斜坡单元作为评价单元,可以与地质环境条件紧密联系,综合体现各类控制或影响因素的作用,使评价结果更贴近于实际。因此,在满足DEM 精度要求的前提下,斜坡单元划分较适用于地质灾害危险性区划【1】。 斜坡单元划分原理 斜坡单元划分的实质是基于DEM 的地表水文分析,包括正反地形无洼地DEM 的生成、水流方向的提取、汇流累积量的计算、河网的生成、集水流域的生成等关键步骤,其基本原理是利用正反地形分别提取山谷线和山脊线( 分别对应于汇水线和分水线),把生成的集水流域与反向集水流域融合,再经后期处理人工修改不合理的单元,最终得到的由汇水线与分水线所组成的区域即为斜坡单元。斜坡单元划分流程见图【1】。

ArcGIS划分斜坡单元操作步骤 1、生成无洼地DEM ——原理:DEM 是一种比较光滑的地形表面模型,由于DEM 误差以及一些真实地形的存在,使DEM表面存在一些凹陷的区域,在进行水流方向计算时往往会导致不合理的甚至错误的水流方向,因此计算前应先对原始DEM数据进行洼地填充,得到无洼地的DEM。基本过程是: 首先,利用水流方向数据计算出DEM 数据中的洼地区域和洼地深度;其次,依据洼地深度并参考真实地形,确定填充阈值对洼地进行填充; 再次,一次洼地填充完毕后又会产生新的洼地,因此需要重复上述过程,反复填充【1】。 ——操作:填洼

利用ArcGIS水文分析工具提取河网的具体操作

利用ArcGIS水文分析工具提取河网的操作ArcGIS 水文分析工具提取河网 DEM包含有多种信息,ArcToolBox提供了利用DEM提取河网的方法,但是操作比较烦琐(帮助可参看Hydrologic analysis sample applications),今天结合我自己的使用将心得写出来与大家分享。提取河网首先要有栅格DEM,可以利用等高线数据转换获得。在此基础上,要经过洼地填平、水流方向计算、水流积聚计算和河网矢量转化这几个不步骤。 1.洼地填平 DEM洼地(水流积聚地)有真是洼地和数据精度不够高所造成的洼地。洼地填平的主要作用是避免DEM 的精度不够高所产生的(假的)水流积聚地。洼地填平使用ArctoolBox->Spatial Analysis Tools->Hydrol ogy->Fill工具。 2.水流方向计算 水流方向计算就可以使用上一步所生成的DEM为源数据了(如果使用未经洼地填平处理的数据,可能会造成精度下降)。这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Direction 工具。输入的DE M采用第一步的Fill1_exam1 3.水流积聚计算 这里主要使用ArctoolBox->Spatial Analysis Tools->Flow Accumulation工具流向。栅格数据就是第二步所获得的数据(FlowDir_fill1)。可以看到,生成的水流积聚栅格已经可以看到所产生的河网了。现在所需要做的就是把这些河网栅格提取出来。可以把产生的河网的支流的象素值作为阀值来提取河网栅格。

4.提取河网栅格 使用spatial analyst中的栅格计算器,将所有大于河网栅格阀值的象素全部提取出来。至于这个阀值是多少因具体情况而定。通常是要大于积聚计算后得到栅格的最低河流象素值。这里采用的是500这个值。最 后生成只有0、1值的栅格数据。其中1表示是河网,0是非河网。 5.生成河网矢量 这里主要使用ArctoolBox->Spatial Analysis Tools->Stream to Feature工具.Input Stream raster 为第 四步只有0、1值的河网栅格。流向栅格使用第二步所生成的栅格数据。

Arcgis流域水系提取步骤

网址: 2、拼接DEM图形 喇ArcTocIbox 完成图:(保存为XXfill) 4、流向计算 依次选中 □唏Spatial Analyst Tools 完成图:(保存为XXdir) 5、汇流累积量计算 依次选中3 Q Spatial Analy&tTools 依次选中 I-)尊Ddta Management Tools 完成图:(保存为XXdem) 3、填洼 吕野Spatial Analyst 1 ools 依次选中

完成图:(保存为XXacc) 6、插入控制点 Exce I准备(经纬度以小数形式表示)点击Add Data 右击

选中 Display XY Data J 三 Lasers B H R\KUhlMlNG\KM,xk H 0 选中 Data — Export Data 完成图:(保存为Export_Output ) 7、 设置提取精度 完成图: (保存为XXras ) 8、 提取流域 依次选中 □唏 Spatial Analyst Tools 完成图: (保存为XXwat ) 9、 制作流域掩膜 依次选中 3 Spatial Analy&tTools 完成图: (保存为XXmask ) 10、 河网矢量化 依次选中 E 7 勒匚onversiori Tocls 完成图: (保存为XXline ) 11、 添加流域边界线 0 ■ 3D Analyst Took 右击 SI Sheetl^ 依次选中 E ? Spatial Analyst Took 依次选中

完成图:(保存为XXok) 12、出图 图中只保留Export_Output、XXok和XXIine 点击Layout View 点击Insert 根据需要依次插入Lege nd (图例)、North Arrow (指北针)、Scale Bar (比例尺)等 点击File 点击Export map ,输出为自己需要的文件格式

基于DEM的ArcGIS水文分析—河网和流域的提取

基于DEM的ArcGIS水文分析 —河网和流域的提取 一、实验背景 水文分析是DEM 数据应用的一个重要方面。而利用DEM生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 二、实验目的 通过本实验,使读者理解基于DEM数据进行水文分析的基本原理,掌握利用ArcGIS 提供的水文分析工具进行水文分析的基本方法和步骤,并利用DEM数据提取出河网及流域。 三、实验数据 某地区栅格数据DEM,数据来源于随书光盘(…\Chp9\Ex2)。 四、实验要求 根据DEM利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。

五、实验流程图 六、实验内容及步骤 1.无洼地DEM生成 DEM 是比较光滑的地形表面模型,但由于DEM 误差以及一些真实地形或特殊地形的影响,使得DEM 表面存在一些凹陷的区域。 在进行水流方向计算时,由于这些区域的存在,往往得到不合理的甚至错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM。

洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,并计算洼地深度,然后,依据这些洼地深度设定填充阈值进行洼地填充。 1.1 水流方向的提取 水流的流向是通过计算中心格网与邻域格网的最大距离权落差来确定。对于每一格网的水流方向指水流离开此网格的指向。在ARCGIS 中,通过对中心栅格的1、2、4、8、16、32、64、128 等8个邻域栅格编码,中心栅格的水流方向便可有其中的某一值来确定。例如,若中心栅格的水流流向左边,则水流方向赋值16。 流向的生成是个自动的过程,可能要等一段自时间,运算的时间跟电脑性能和DEM图的精度与大小有关.。 方法是利用ArcToolbox\Spatial Analysis Tools\ Hydrology \Flow Direction,生成方向水流流向图:若从DEM中作出来的流向分析的最大数值为128则不需要填洼,否则需要填挖。

Arcgis水系流域提取步骤

用等高线生成 DEM

水文分析 Hydroloy ③ ①④ ⑤② ⑦ ⑥

1导入原始的 DEM 2 flowdirection 计算流向 3 sink 提取洼地 4分析填充洼地的域值 ①计算洼地贡献区 双击watershed ,将2的结果填入input flow direction raster 中,将3的结果装入input raster or feature pour point 中,output raster 中写watersink(写个好记的名字)。OK 。 ②计算各洼地的贡献区最低高程 选acrtool box\spatial analyst tools \zonal\zonal statistic ,填写如右图

③计算各洼地出水口的高程 选acrtool box\spatial analyst tools \zonal\zonal fill ,填写如右图 ④计算洼地的深度 洼地深度就是填流的域值,计算的方法就是用③减④这种高难的工作还是让软件自已做吧。使用spatial analyst 工具栏忘了在那找吗?在file 、window 附近的空白的地方右键。在出现的对话框里填上图上的东东,点Evaluate 。

5 fill填洼啦! DEM 6 计算新生成dem图的flowdirection, sink。如果此时没有sink了,做步骤7吧。 如果还有sink,太不幸了,重复步骤2~5吧。 7 Basin 流域盆地

8 Watershed集水流域 ①flow accumulation 看看,很像是河流吧,嘿嘿。要是得到 了漆黑的图,别害怕,去文件管理窗口看看。 ②河网

基于ArcGIS的水文分析功能汇总

1基本原理 DEM是数字高程模型的英文简称(Digital Elevation Mode),是流域地形、地物识别的重要原始资料。自20世纪60年代以来,在利用数字高程模型DEM提取流域水文特征,模拟地表水文过程方面,国内外都开展了大量的研究。 1.1基于DEM进行流域分析的原理 从DEM提取流域特征,一个良好的流域结构模式是确定算法的前提和关键。1967年ShreveL¨描述的流域结构模式一直被后来的水文学者所引用.并设计了一些成熟的算法。 Shreve使用一个具有一个根的树状图来描述流域结构(如图1所示)。在这个结构中,主要包括两个部分,一部分是结点集,一部分是界线集。沟谷结合点和沟谷源点共同组成一个沟谷结点集。所有的沟谷段组成沟谷段集,形成一个沟谷网络;所有的分水线段组成分水线段集,形成一个分水线网络;沟谷段集和分水线段集共同组成界线集。 图1 流域结构模式图 (a) (b) (c) (f) (d) (e) (g) (h) 沟谷网络中的每一段沟谷都有一个汇流区域,这些区域由流域分水线集来控制。外部沟谷段有一个外部汇流区.而内部沟谷段有两个内部汇水区,分布在内部沟谷段的两侧。整个流域被分割成一个个子流域.每个子流域好象是树状图上的一片“叶子”。 Shreve的树状图流域结构模型是简单明确的.虽然沟谷网络的结点模型和线模型与在栅格DEM中用于表示沟谷结点和沟谷线的栅格点和栅格链之间存在着拓扑不一致性。但它给出了沟谷网络、分水线网络和子汇流区的定义,明确表达了它们之间的相关关系,成为设计流域特征提取技术的基础。

1.2常用算法 流向判定建立在3×3 的DEM 栅格网的基础上,其方法有单流向法和多流向法之分,但单流向法因其确定简单、应用方便而应用广泛。 1.2.1单流向法 单流向法假定一个栅格中的水流只从一个方向流出栅格,然后根据栅格高程判断水流方向。目前应用的单流向法是D8法。此外,还有Rho8 方法、DEMON 法、Lea 法和D∞法等。最常用的是D8 法:假设单个栅格中的水流只能流入与之相邻的8 个栅格中。它用最陡坡度法来确定水流的方向,即在3×3 的DEM 栅格上,计算中心栅格与各相邻栅格间的距离权落差(即栅格中心点落差除以栅格中心点之间的距离),取距离权落差最大的栅格为中心栅格的流出栅格。 所谓最陡坡度法的原理是假设地表不透水,降雨均匀.那么流域单元上的水流总是流向最低的地方“窗口滑动指以计算单元为中心,组合其相邻的若干个单元形成一个窗口”,以“窗口”为计算基本元素,推及整个DEM,求取最终结果。 目前应用最广泛的是基于流向分析和汇流分析的流域特征提取技术。Jenson and Domingue (1988)设计了应用该技术的典型算法,该算法包括3个过程:流向分析,汇流分析和流域特征提取。 1)流向分析:以数值表示每个单元的流向。数字变化范围是1~255。其中1:东;2:东南;4南;8:西南;16:西;32:西北;64:北;128:东北。除上述数值之外的其它值代表流向不确定,这是由DEM中洼地”和“平地”现象所造成的。所谓“洼地”即某个单元的高程值小于任何其所有相邻单元的高程。这种现象是由于当河谷的宽度小于单元的宽度时,由于单元的高程值是其所覆盖地区的平均高程,较低的河谷高度拉低了该单元的高程。这种现象往往出现在流域的上游。“平地指相邻的8个单元具有相同的高程,与测量精度、DEM单元尺寸或该地区地形有关。这两种现象在DEM 中相当普遍,Jenson and Domingue 在流向分析之前,将DEM进行填充;将“洼地”变成“平地”,再通过一套复杂的迭代算法确定“平地”流向。流向分析过程如图所示。

相关主题