搜档网
当前位置:搜档网 › 生命活动中的金属元素

生命活动中的金属元素

生命活动中的金属元素
生命活动中的金属元素

生命活动中的金属元素江苏省六合县第一中学211500 陈益Tel: (Office)7112354 (025)7108561(Home)

在人体生命活动必需的二十多种元素中,有许多是金属,其中钠、镁、钾、钙为常量元素。

钠。维持体内水平衡、酸碱平衡以及神经肌肉的应激性等。缺钠表现:倦怠、眩晕、恶心、食欲不振、心跳加快、脉搏细弱、血压下降、肌肉痉挛等,严重者可出现昏迷。

镁。是构成骨骼、牙齿和细胞浆的主要成分,还可调节神经和肌肉的活动,维持体内酸碱平衡,激活体内多种酶。人体缺镁可出现震颤、手足徐动甚至抽搐等症状。

钾。对维持人体内体液渗透压和酸碱平衡起重要作用。摄入量减少时,会产生周身疲乏、血压下降、多尿、肠梗塞等症状,严重者可因呼吸困难、心肌病变而死亡。

钙。虽然体内绝大部分钙质都存在于骨、牙中,溶于血中很少,但作用十分重要,如它与镁、钾协同,调节神经肌肉的兴奋性,保持心肌的正常功能,钙还参与凝血过程。

已知人体必需微量元素有15种,它们质量的总和不到人体的0.1%,其中有11种金属,它们是:铁、铜、锌、钴、铬、钼、锰、镍、钒、锡、,其余为硒、碘、氟、硅、硼。

微量元素在人体中的主要功能:1.运载常量元素,把大量元素带到各组织中去。

2.充当生物体内各种酶的活性中心,促

进新陈代谢。

3.参与体内各种激素的作用。

铁。铁在人体中含量约为4~5g。铁在人体中的功能主要是参与血红蛋白的形成而促进造血,参与O2、CO2的运输和交换。在血红蛋白中的含量约为72%。人体铁缺乏时引起缺铁性贫血,同时一些含铁酶活性降低,造成智力发育障碍。铁元素在菠菜、瘦肉、蛋黄、动物肝脏中含量较高。

铜。正常成人的体内含铜100~200mg。其主要功能是参与造血过程,促进无机铁变成有机铁,有利于吸收。铜还能促进铁由储存场所进入骨髓,加速血红蛋白的合成。铜能增强抗病能力,参与色素的形成,有人发现缺铜也是引起“少年白”的原因之一,甚至还会引起白癜风和脱发。近期的研究还表明,铜与身高有密切的关系:当骨细胞中铜不足时,酶系统的活性降低,并延缓了蛋白质的代谢作用,导致骨组织生长缓慢、身材矮小。铜在动物的肝脏、肾、鱼、虾、蛤蜊中含量较高,果汁、红糖中也有一定含量。

锌。据报道锌是人体中100多种酶的组成成分,对人体多种生理功能起着重要作用,参与各种酶的合成,加速生长发育和智力发育,增强创伤组织再生能力,增强抵抗力,促进性器官的发育和性机能,并通过唾液蛋白——含锌蛋白对味觉和食欲起促进作用。锌在鱼类、肉类、动物肝肾中含量较高。

钴。是维生素B12的重要组成部分,

钴对蛋白质、脂肪、糖类代谢、血红蛋白的合成都具有重要的作用,并可扩张血管、降低血压。钴能使维生素B12的活性提高20倍,甚至更高。但钴过量可引起红细胞过多症,还可引起肠胃功能紊乱、耳聋、心肌缺血。

铬。可协助胰岛素发挥作用,增加胰岛素的结合、增加胰岛素受体数和增加胰岛素受体磷酸化作用。防止动脉硬化,促进蛋白质代谢合成,促进生长发育。但当铬含量增高,如长期吸入铬酸盐粉,可诱发肺癌。糖尿病患者增加铬营养可降低对胰岛素或口服降糖药的需要量,也可改善血脂水平,包括总胆固醇、甘油三脂和高密度脂蛋白水平。

钒。钒可促进牙齿的矿化。缺乏时易出现血脂(胆固醇及甘油三酯)升高,在动物观察到使生长发育迟缓。钒酸盐具有胰岛素样作用,并能增强组织对胰岛素的敏感性。大量体外实验、动物模型证明,不论是1型或2型糖尿病,钒酸盐均显示降糖效果。世界卫生组织提出钒的每日需要量为3微克。主要存在于谷物、蔬菜、硬果等食物中

锰。锰与骨骼的结构及生长、造血、脂肪代谢、糖代谢等有关,还能促进血红蛋白的合成。动物实验证实,缺锰胰腺发育不全,糖耐量异常,血糖升高,糖的利用率降低。另外缺锰是癫痫病因之一,其患者血液中锰含量明显偏低。锰是超氧化物歧化酶的组成部分:其活性需要锰元素激发。具有活性的超氧化物歧化酶(SOD)是超氧自由基——促人生病、衰老的重要物质的克星,所以锰有长寿金丹的美誉。

镍。镍可通过多种途径影响胰岛素的分泌,有人认为,镍是胰岛素分子的一个成分,相当于辅酶,它还可以稳定凝血机制中的易变因子。缺乏镍的动物可出现生长减慢、贫血、铁吸收减少,肝内脂肪及糖元下降。在人体中,镍有刺激造血功能,促进红细胞再生的生理功能。镍在植物性食物中含量较高,不挑食、不偏食的人不易缺乏。

锡。锡对蛋白质的结构起作用,有促进蛋白质及核酸反应,维持黄酶活性的生理作用。人体内约含5~20毫克的锡。在骨骼和牙齿中含量高。人体每日需要量3.5毫克。吸收率低,主要随粪便排出体外。动物内脏和谷类食品是锡的良好来源。罐头食品含锡量高,摄入过多的锡引起贫血并损害肝脏。

钼。钼是醛、亚硫酸盐、黄嘌呤等氧化酶的成分,为能量交换所必需。动物缺乏症表现为产仔困难、生长抑制。据研究报道,前苏联许多钼过量接触的地区与当地居民的类痛风综合症有关。食管癌高发区人群低钼。固氮酶中含有铁蛋白和铁钼蛋白,在自然固氮催化过程中起着决定性作用。

有文献认为锶也是人体必需的微量元素之一,它是骨骼、牙齿的组成部分,在机体中起着促进钠排出、减少钠吸收的生理作用。

研究表明,微量元素过少或过多都会导致人体内多种元素代谢的不平衡,从而引发多种免疫系统紊乱的综合症。因而,从环境、食物、药品等渠道获取微量元素的平衡,才能发挥其在生命活动中正常和积极的作用。

各种化学元素在钢中的作用

本文出自一本很不好买的书,相当全面,偶然整理,希望对大家学习有帮助 —————————————————————— 有几位选手把我给气乐了,话说这段文章来自我爷爷的手抄本(不过现在老人家现在改复印了,挺时髦的),原书我没看到过所以不知道书名(我们有时候还是比较喜欢上世纪的老版书,比较严谨,实验室王老有本金相可是他老人家的宝贝,轻易不示人)。话说我码字是自娱自乐,目标受众也是学材料的同门,你们一帮连论文都没写过的大神忽然跳出来跟我这指责不尊重知识产权,真是好笑。想讨论问题,我欢迎,想骂人,出门左转菜市场。 —————————————————————— 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度29.4Pa。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍3.5%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。

化学第二章第二节第四课时 配合物

配合物的形成和应用 【学习目标】 1.掌握配合物的概念2.了解配合物是如何形成的 【学习重、难点】配合物的基本概念 【教学过程】 复习:水分子在特定条件下容易得到一个H+,形成水合氢离子(H3O+).下列对上述水变为H3O+过程的描述不合理的是______ A.氧原子的杂化类型发生了改变 B.微粒的形状发生了改变 C.微粒的化学性质发生了改变 D.微粒中的键角发生了改变 分析:水中氧的杂化为sp3,H3O+中氧的杂化为sp3,则氧原子的杂化类型没有改变,故A 不合理;B、水分子为V型,H3O+为三角锥型,则微粒的形状发生了改变,故B合理; C、因结构不同,则性质不同,微粒的化学性质发生了改变,故C合理; D、水分子为V型,H3O+为三角锥型,微粒中的键角发生了改变,故D合理;故答案为:A。〖活动与探究〗书P76 实验1、实验2 观察实验现象,讨论所得结论。 在CuSO4溶液中滴入少量稀氨水,现象是:__________,反应的离子方程式为_________ ___________;继续滴入过量稀氨水,发现难溶物溶解并生成深蓝色溶液,测得该溶液中的主要离子是[Cu(NH3)4]2+,反应的离子方程式为___________________。 〖交流与讨论〗分析[Cu(NH3)4]2+的形成过程,讨论所得结论。 答案:出现淡蓝色沉淀;Cu2+ + 2NH3·H2O = Cu(OH)2↓+ 2NH4+ ; Cu(OH)2+ 4NH3 = [Cu(NH3)4]2+ + 2OH- 一、配位化合物的形成 1.配位化合物(配合物):由____________的_______与____________的_______以___________结合形成的化合物。 常见配合物: 因为过渡金属____________或_________都有接受_________的________,它们都能与可提供孤电子对的_______或_______以______________结合形成配合物。 2.配合物的组成 (1)中心原子:含有空轨道的原子或离子。一般是过渡金属的阳离子,如______________;也有中性原子,如_________________。

《搭建生命体的“积木” 》案例与评析

《搭建生命体的“积木”》案例与评析 红旗中心小学王丹教学资源的开发 本课指导学生对植物和动物的观察深入到细胞水平,使学生体验和发现生命体的奥秘。本课的重点是让学生通过用显微镜观察各种动、植物的细胞结构,了解细胞是构成生命体的基本结构,不同的细胞有不同的形状、大小和功能。 鉴于以上的教学目标,我对本课教学内容做如下处理: 首先,利用学生儿时的搭积木游戏,引发学生思考,引导学生提出:搭建生命体的“积木”是什么?然后,发给学生容易观察的洋葱表皮或芦荟的叶子,让他们分别用肉眼、放大镜和显微镜观察,从中可以使学生体会到人类对自然事物的认识是伴随着工具的进步而逐步发展的。 关于显微镜的构造和使用方法,学生在科技馆活动时已经学会了。这样,我就可以把更多的时间安排在观察细胞形态和大小上。由于人体表皮细胞无现成装片,观察起来也不清晰,我便选用南瓜茎切片、玉米茎切片、神经细胞装片、骨细胞装片等细胞形态和大小有明显区别的标本来让学生观察。在组织学生进行观察的同时,让学生将自己观察到的情况画下来进行交流,比较它们的相同和不同。通过比较,学生很容易发现:各种装片中都有一块一块的小“积木”,但“积木”的形状和大小是不同的。 在认识细胞这部分主要有两方面内容:一方面指导学生阅读书上科学史故事,了解胡克发现细胞。在这里我特意加入制造显微镜并发现微生物的列文虎克进行比较,让学生注意区别,以加深记忆。另一方面是有关细胞的基本知识,细胞有生长发育、衰老、死亡的过程。不同的细胞,功能也不同,教师可以参照书上讲解叶保卫细胞控制气孔的开关、白细胞吞噬病菌等。然后,组织几名学生表演白细胞消灭病菌的活动。 最后,利用图片介绍没有细胞结构的病毒。组织学生讨论(1)有病毒引起的传染病有哪些及其传播途径。(2)预防传染病的办法。 教学目标 过程与方法:会用显微镜观察洋葱表皮细胞等。 能够绘制并描述洋葱表皮细胞。 能够比较各种细胞的不同与相同。 能够设计游戏活动,解释白细胞吞噬病菌的作用过程。 科学知识:理解构成生命体的基本单位是细胞,细胞有不同的形状、大小和功能。 知道胡克利用自制的显微镜最早观察到细胞 情感、态度与价值观:意识到科学技术是不断发展的。 体验到探索生命奥秘的快乐与重要意义。 教学过程设计 一、导入新课 讲述:我们小的时候都玩过积木,你们用它搭过什么?如果把我们把自己的

钢铁中的元素及作用

各种元素在钢铁中的作用 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 各种元素在钢铁中有什么作用 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。 铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈 锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。 钼(Molybdenum) 碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒 按钢的用途分类 一、结构钢 (1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。 (2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等 根据含碳量和用途的不同﹐这类钢大致又分为三类﹕ 1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐ 2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。调质多少22~34HRC,能得到综合机械性能,也便于切削. 3. 大于0.6%C为高碳钢﹐多用于制造弹簧﹑齿轮﹑轧辊等﹐根据含锰量的不同﹐又可

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

化学元素对人体的重要性

化学元素对人体的重要性 水是生命之源,是自然界最普通的物质,是人类环境的重要组成部份。人们日常生活需要水,水是人体中含量最多的一种物质。人体内的水分大约占体重的60%~70%,由于各个器官功能不同,水占的比重也不同,肌肉里70%是水,即使骨骼也占有20%的水。在占体重60%~70%的水中,有40%在细胞内,20%在组织细胞间,5%在血液里。 水是沟通组织细胞之间,机体与外界环境之间的媒介。生物体内有许多化学反应,按一定的规律无时无刻不在连续不断地进行着,参加这些化学反应的不仅有生物大分子,如蛋白质、脂类、核酸等,而更多和更重要的还是小的分子和离子,其中水分子至关重要,如果没有水,不能移动的生物分子就不会产生巧夺天工的生物化学反应,生命活动便会停止,生物就会死亡。水既是组成各类细胞的重要物质,又是消化液,淋巴液的主要构成成分;既能帮助消化食物,吸收营养,又能输送废物并排出体外;既参加呼吸、循环的过程,又起体温调节作用;既是细胞内外电解质的平衡者,又是非电解质的传递者;既有润滑眼球的作用,又有滋润、丰满体表皮肤的功能,等等。人如果3~7天连续不喝水,人体缺水达20%时,血液就会高度浓缩,就无法进行氧化、还原、分解、合成等生命活动,就会导致死亡[1]。从医学观点看,人类为维持正常生存,每人每天至少需要饮两升水,加上卫生方面的需要,全部生活用水量约需40~50升/日·人。因此水与人类

有非常密切的关系,可以说,没有水就没有生命。 一、维持人类生命和健康的水,应是洁净的水 (一)我国生活饮用水卫生标准规定,生活饮用水应满足如下要求[2] (1)要保持感官性状良好水必须是透明、无色、无臭、无异味,不存在肉眼可见的物质。为此对能产生颜色和异味的铜、锌、铁、锰等元素的含量制定了具体的限量。 (2)要保证流行病学上的安全在水中不得含有病源微生物和寄生虫卵,以免引起“介水传染病”,为此对细菌总数,大肠杆菌群数,消毒后供水管网末端的余氯有明确的限量。 (3)要保证化学组成上无害因此要严格限制水里的一些有毒化学物质,如镉、汞、铅、铬、氰化物、挥发酚……等,以免造成人体的急性、慢性中毒。 (二)水环境对人类健康的影响 俗话说:“一方水土养一方人”,说的是在自然条件下,不同的地区往往有不同的水土环境,这种差异不仅表现在不同地域的水文地质等特征方面,还在于水土化学组成上的不同。水不仅是维持生命和人体健康不可缺少的物质,而且还是人体从环境中摄取无机矿物质的途径之一,水环境中某些化学元素含量过多或过少时、都能对人群健康产生损害作用,同时水中的有毒物质也能通过各种途径进入人体而危害人体健康。 人体中已发现了近六十种元素,其中氧、碳、氢、氮、钙、磷、钾、硫、钠、氯和镁等十一种元素占人体重量组成的99.9%,余下不

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

生物体的化学元素及其作用

生物体的化学元素及其作用 存在于生物体(植物和动物)的元素大致可分为: (1)必需元素,按其在体的含量不同,又分为常量元素和微量元素; (2)非必需元素; (3)有毒(有害)元素。 人体大约含 30 多种元素,其中有 11 种为常量元素,如 C , H , O ,N , S , P , Cl , Ca , Mg , Na , K 等,约占 99.95 %,其余的 0.05 %为微量元素或超微量元素。 必需元素是指下列几类元素: (1)生命过程的某一环节(一个或一组反应)需要该元素的参与,即该元素存在于所有健康的组织中; (2)生物体具有主动摄入并调节其体分布和水平的元素; (3)存在于体的生物活性化合物的有关元素; (4)缺乏该元素时会引起生化生理变化,当补充后即能恢复。 哪些是构成人体的必需元素?19世纪初,化学家开始分析有机化合物,清楚地认识到活组织主要由C,H,O 和 N四种元素组成。仅这四种元素就约占人体体重的96%。此外,体还有少量P。将人体这五种元素的化合物挥发后就会留下一些白灰,大部分是骨骼的残留物,这灰乃是无机盐的集合,在灰里可找到普通的食盐(NaCl)。食盐并不仅仅是增进食物味道的调味品,而是人体组织中的一种基本成分。食草动物有时甚至达到要舔吃盐渍地,以便弥补食物中所缺乏的盐。 在实际研究中,确定某元素是否为必需元素,既与该元素在体的浓度

有关,也与它的存在状态和生物活性密切相关。人体中的每一元素呈现不同的生物效应,而效应的强弱依赖于特定器官或体液中该元素的浓度及其存在的形态。对于每种必需元素,都有一段其相应的最佳健康浓度,有的具有较大的体恒定值,有的在最佳浓度和中毒浓度之间只有一个狭窄的安全限度。元素浓度和生物功能的相关性可用图表示。 有 20 ~ 30 种普遍存在于组织中的元素,它们的浓度是变化的,而它们的生物效应和作用还未被人们认识,有待于研究,所以称它们为非必需元素。另外一些则是能显著毒害机体的元素。如,血液中非常低浓度的铅、镉或汞,具有有害的作用,就可称为有毒元素,亦称有害元素。 从海水中必需微量元素的含量与人体中主要元素的对比,说明赖以生存的环境中的元素是生物进化的结果。人类在适应生存和进化中,逐渐形成一套摄入、排泄和适应这些元素的保护机制,即人体的元素,不论是常量或微量,维持平衡状态是经过人类长期进化形成的。许多元素是否是必需还是有害,和摄入量(即在体的浓度)有关。每一种必需元素在体都有其合适的浓度围,超过或不足都不利于人体健康。例如,人们对碘的最小需要量为 0.lmg /天,耐受量为1000mg /天,当大于 10000mg /天即为中毒量。若人体自身用以维持稳态的调节机制出现障碍,便会发生疾病。有时元素的过量可能比缺乏更令人担忧,因为某个元素的缺乏易于补充,而过量往往则难以清除,或清除过程中会产生副作用。另外共存元素的相互影响——在生物体存在协同或拮抗作用,对元素浓度比例的

合金元素在钢中的作用

第六章合金钢 合金钢的优点:高的强度和淬透性 第一节合金元素在钢中的作用 常用合金元素: 非碳化物形成元素——Co Ni Cu Si Al 碳化物形成元素——Zr Nb V Ti W Mo Cr Mn Fe 强中强弱 一、合金元素对钢中基本相的影响 1、形成合金铁素体 合金元素→溶入A →形成合金铁素体→固溶强化(Cr,Ni较好)2、形成合金碳化物 弱碳化物形成元素形成合金渗碳体(Fe,Mn)3C 中强碳化物形成元素形成合金碳化物(Cr23C6,Fe3W3C) 强碳化物形成元素形成特殊碳化物(VC,TiC) 熔点、硬度和稳定性: 特殊碳化物> 合金碳化物> 合金渗碳体> Fe3C 二、合金元素对Fe-FeC相图的影响 合金元素对A相区影响 扩大A相区元素(Mn)——E、S点左下移 缩小A相区元素(Cr)——E、S点左上移 奥氏体钢:1Cr18Ni9 铁素体钢:1Cr17 莱氏体钢:W18Cr4V

三、合金元素对热处理的影响 1、对加热的影响 多数元素减缓A形成,阻碍晶粒长大 2、对冷却的影响 多数元素溶入A后→过冷A稳定性↑→Vc↑→淬透性↑ →Ms点↓→残余A量↑提高淬透性的意义: ①增加淬硬层深度 ②减少工件变形、开裂倾向3、对回火的影响 ①回火稳定性→抗回火软化的能力 ②产生二次硬化(析出特殊碳化物,产生弥散强化;A残→M或B下) 第二节低合金钢 一、低合金高强度钢 碳素结构钢:Q195,Q215,Q235,Q255,Q275 低合金高强度钢:Q295,Q345,Q390,Q420,Q460 Q235+Me(<3%) →Q345 1、成分:0.1~0.2%C,合金元素2~3% 主加元素:Mn ——固溶强化 辅加元素:Ti,Cr,Nb ——弥散强化 使用状态:热轧或正火(F + P),不需最终热处理 2、性能:较高的σs ,良好的塑性韧性, 焊接性,抗蚀性,冷脆转变温度低

生命化学

浅论生命与化学 生命是生物体所表现的种种现象的一种抽象的概念。从古至今,对探寻生命本质的探索从来没有停止过。古时,人们便以五行、阴阳划分世间万物,以精气神囊括生命最重要的部分。现如今,化学、物理、生物的发展突飞猛进,曾经困扰人们的许多谜题都清晰地展现在了我们眼前。 早在物理学的微观粒子和化学的元素概念被提出的时候,人们便有了一个很合理又无法证实的假说:生命是由元素构成的。这个假说看上去无比正确,因为生命的各种元素都来源于这个世界,世界是由元素构成的,生命理应也由元素构成。但这个假说就如同曾经的相对论,人们公认为正确的,却无法被证明。因为有一点一直无法突破:为什么一群“死气沉沉”的元素堆到了一起,就有了生命?可以生长、繁殖、代谢、应激、进化、运动、行为,甚至于,有了“意识”和“思想”?直到现在。 2010年5月20日,美国科学家向世界宣布,首例人造细胞正式被制造成功。该细胞从DNA、蛋白、脂质,所有的一切都来自于实验室的制造。这次实验的成功终于打破了持续了数百年的僵局,第一次证实了简单的化学物质通过某种“玄奥”的组合,可以“制造”出生命!化学与生命的联系,从来没有这样的密不可分。 其实,化学与生命从一开始就紧紧相连。让我们将时光追溯到地球刚刚诞生的那个年代。“混乱”是这个时代的主题。喷涌的岩浆、沸腾的海水、剧毒的空气,所有的一切都向我们证明了这个时代中绝不应该有生命出现,除非发生奇迹。而事实上,生命的出现,就是奇迹。 现在我们知道,从某种角度讲,生命其实就是各种化合物的堆砌(当然这是极度简化的说法)。科学家通过研究化石的组成发现原始地球的条件确实相当的恶劣,一氧化碳,二氧化碳,甲烷,氮气。没有有机物和氧气。生命的奇迹就是从这些简单而毫无美感的化合物中诞生的。著名的米勒实验向我们揭示了其中的奥秘。雷电、简单的C、N化合物的叠加产生了生命的基础:氨基酸、核酸、糖。世界就是这么奇妙。 这期间或许经历了数万年,亦或是数亿年,至今已无法考证。但生命的种子就是从这个时候开始萌发的。64亿年之后的今天,人们终于重复了那足以划分

《搭建生命体的“积木”》教案

4、搭建生命体的“积木” 教学目标 1、能够用调试好的显微镜观察洋葱皮表皮和人体表皮细胞,并且进行比较,了解两种表皮细胞的异同之处。 2、知道构成生命体的基本单位是细胞,并且知道细胞也是有生命的。 3、知道细胞有不同的形态、结构和功能。 教学重点:观察洋葱表皮和人体表皮的细胞,并且进行比较。 教学难点:理解细胞是构成生命体的基本单位。 教学准备:显微镜、洋葱表皮观察切片、人体表皮观察切片 预习要求: 仔细阅读第四课《搭建生命体的“积木”》,初步了解细胞的形态结构和功能。 教学过程: 一、导入新课 1、同学们,你们玩过积木吗?你们用积木搭过什么东西呢? 学生自由交流。 2、你们知道我们的身体是由哪些东西组成的吗? 学生再次交流,教师引导:同学们,如果把我们的身体和其他有生命的物 体比作房子,那么搭建这座房子的“积木”又是什么呢? 学生思考,做出自己的推测。 3、教师引导并小结:细胞是生命体的微小结构,是构成生命体的“积木”。 二、认识细胞的形状结构特点 1、出示课本第11 页的细胞图,引导学生仔细观察,初步了解细胞的各种 形状。 全班交流,引导学生说一说这些细胞的形状和结构的特点。 2、教师相机指导,进一步引导学生了解紫丁香叶细胞、人的红血球细胞、 人的骨骼细胞、动物的脂肪细胞、人的心肌细胞的形状。 3、教师小结:细胞是构成生命体的“积木”,大多数细胞都是很小很小的,要借助显微镜才能看得清楚,但是个别细胞却很大,如鸡蛋中的蛋黄,未 受精的蛋就是一个细胞。 三、比较洋葱表皮细胞和人体表皮细胞的异同之处。 1、教师引导:细胞在显微镜之下,是什么样子的呢?大家想不想亲眼看一

生 命 物 质

生命物质 生命物质 生命物质的本质在生物学和化学知识体系中,生命物质的本质主要指组成生物的各种具有化学式的化合物,如水、无机盐、糖类、脂类、蛋白质和核酸等。 生命物质的来源生命物质一般是在生物细胞内合成的,如糖类、脂肪、蛋白质和核酸等。也有的生命物质是生物体从外界吸收的,并在生物的新陈代谢过程中有一定作用的物质,如水、某些无机盐等。 生命物质的作用水是新陈代谢的代谢的场所。无机盐是生命活动的必要条件。糖类是生命活动的主要能源物质。脂肪是生物体内主要的储能物质。蛋白质是各项生命活动的体现者。核酸是遗传信息的携带者,其中DNA是绝大多数生物的遗传物质。 综合各种生命物质的作用又不外乎这三个方面:一是组成生物体的结构,二是完成生物体的各项生命活动,三是为各项生命活动提供能量。不同的生命物质的作用的侧重点是不同的,例如:蛋白质主要是组成生物体的结构物质,也是完成各项生命活动的物质。糖类和脂肪主要是为生命活动提供能量的物质。核酸是生物的遗传物质等。 生命物质与化学元素的关系生命物质是各种化合物,

所以它们都是由化学元素组成的。其中糖类和脂肪的组成元素是C.H.O。蛋白质的必需元素是C.H.O.N。核酸的组成元素是C.H.O.N.P。在组成生物体的化学元素中,含量最多的化学元素是C.H.O.N.P.S。 生命物质发挥作用的条件一般地说,生命物质只有在一定的结构如细胞中才能发挥作用,离开了细胞,很难发挥作用。 生命的物质性世界是统一的物质世界,生命也不例外,生命是由蛋白质和核酸等物质组成的多分子物质体系。构成生命的几十种化学元素中,没有一种是生命所特有的,都是可以从无机自然界中找到的。从新陈代谢上看,生命物质是生物体通过同化作用从无机自然界中的物质吸收和转化而来的;从生命起源上看,生命物质是从无机自然界中的非生命物质逐步发展演变而来的;这就是生命的物质性。 生命物质的特殊性虽然生命具有物质性,但生命物质又具有不同于非生命物质的特点,这就是生命物质的特殊性。在生命物质中,蛋白质是各项生命活动的体现者,DNA 是遗传信息的携带者。生命物质的最大特点就是能自我更新,生命物质中的DNA能自我复制是生命物质能自我更新的根本原因,DNA的自我复制是细胞增殖、生物生殖和遗传的基础。由于蛋白质和核酸等有机物是生命物质所特有的,所以生命物质又体现了不同于非生命物质的特殊性。

化学元素与生命健康

化学元素与生命健康 生命是一种化学现象,在我们人类的身体里进行着无数的化学反应,这些反应使得我们的身体能够正常运行。从化学的角度来看,生命就可以说成是一系列的不以生物体意志为转移的化学反应的过程和传递化学信息的过程,这也就是化学进化的过程。所以要真正地了解生命,就必须首先从了解生命中的化学元素及其变化开始。由王林老师给我们带来的化学元素与生命健康这一门课正是在向我们详细介绍化学元素与我们的生命健康息息相关的课程。下面就谈谈上这门课以来的心得体会。 1、处好人际关系至为重要。 我还记得上这门课的第一节课时,老师给我们讲了清华女才子铊中毒事件,让我不禁联想到上海复旦大学的高材生林森浩投毒案这一事件。他们都是因为与人交往时发生一点小矛盾而做出这种冲动没有料想到后果的事。再加上马加爵杀人事件和频繁发生的宿舍杀人事件,都让我不禁感叹,处好人际关系的重要性,我们都得感谢舍友这么多年的“不杀之恩”啊! 2、化学元素与我们的生命健康息息相关。 在上化学元素与生命健康的第一节课,我便了解到有些

我们并不是很了解的化学元素对我们的身体的危害性。例如元素铊,白色,质柔软。其化合物有毒。它的主要用途是制造硫酸铊──一种烈性的灭鼠药。铊是无味无臭的金属,和淀粉、糖、甘油与水混合即能制造一种“款待”老鼠的灭鼠剂。在扑灭府谷鼠疫中颇有用。铊中毒严重危害危害人体健康,一不小心就会失去生命。 3、有害元素随时潜伏在我们身边,我们应该加以注意。 在上化学元素与生命健康课的第二节课时,我了解到了铅其实在我们的生活中随处可见。铅因为具有美白功效,因此常用化妆品中就含有铅。铅是柔软和延展性强的弱金属,有毒,也是重金属。铅原本的颜色为青白色,在空气中表面很快被一层暗灰色的氧化物覆盖。可用于建筑、铅酸充电池、弹头、炮弹、焊接物料、钓鱼用具、渔业用具、防辐射物料、奖杯和部份合金,例如电子焊接用的铅锡合金。铅是一种金属元素,可用作耐硫酸腐蚀、防丙种射线、蓄电池等的材料。其合金可作铅字、轴承、电缆包皮等之用,还可做体育运动器材铅球。我还了解到在我们经常用的铅笔芯其实不含铅,而铅笔的壳才是含铅量较高的地方,因此在使用铅笔的时候千万不能用嘴咬。王林老师的化学元素与生命健康的课上,我还知道每天早上宿舍水管的含铅量是最高的。因此早上起床之后刷牙的水应该先放出部分水在接水刷牙,否则长期使

第一单元4《搭建生命体的“积木”》教学设计_200909120941416

4《搭建生命体的“积木”》教学设计 教学目标:过程与方法 ●会通过显微镜观察洋葱表皮和人体表皮细胞; ●能够绘制并描述简单的洋葱表皮细胞和人体表皮细胞图; ●能够比较洋葱表皮细胞和人体表皮细胞的不同与相同; ●能够设计游戏活动,解释白细胞吞噬病菌的作用过程。 知识与技能 ●理解构成生命体的基本单位是细胞,细胞有不同的形状、大小和功能; ●知道胡克利用自制显微镜最早观察到细胞,从而使人类发现和认识了生命体的微观结构——细胞; ●知道生物体的生长发育过程就是细胞的生长发育过程。 情感、态度与价值观 ●意识到科学技术是不断发展的; ●体验到探索生命奥秘的快乐与重要意义; ●在探究活动中体验与人合作与交流的乐趣,愿意与同学合作交流; ●意识到科学技术给人类与社会发展带来的好处。 教学重难点 1、重点:认识细胞是构成生命体的“积木”。 2、难点:白细胞消灭病菌的过程。 教学准备: 显微镜、抹布、洋葱切片、人体表皮切片、图片等 课时安排:1课时 教学过程;一、调动学生已有经验,导入新课 1.提问:你们见过建房子吗?建房子大概需要哪些材料? 小时候,你们或许都玩过积木,你们用它搭过什么呢? 2.提问:如果把我们把自己的身体或其他有生命的物体比做房子、比做搭积木,那么搭建生命体的“积木”又是什么? 3.学生思考、交流、推测。 怎样证明我们的推测是正确还是错误呢?下面我们就通过做实验来进行验证。 二、指导学生观察洋葱表皮和人体表皮 1.教师提供洋葱表皮和人体表皮的切片。 2.学生借助显微镜来观察,并将观察到的情况画下来。 3.汇报:你们发现了什么?是否看到了一个神秘的生命世界? 4.学生汇报、交流。 5.教师提问:在显微镜下看到的洋葱表皮和人体表皮结构有什么不同? 6.学生汇报。 7.教师带领学生小结:洋葱表皮是由许多个近似于长方形的格子组成,每个格子实际上是一个近似的长方体,这就是一个细胞。人体表皮也是由许多不规则的细胞构成的,细胞之间的界限不是很清晰。 三、指导学生认识细胞的有关知识 1.请学生仔细观察教材第11页的图片。提问这些图片上展示的是什么细胞?它们的形状、大小一样吗? 2.教师带领学生小结:两种细胞的形状、大小不完全一样,不同的细胞有不同的形状和功能。

各种元素在金属材料中的作用

6、铬(Cr):在结构钢和工具钢中,铬能显着提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 抗氧化和防腐蚀的含钼不锈钢 钼是银灰色的难熔金属,主要用于钢铁工业,其中大部分以工业氧化钼形式压块后直接用于炼钢或铸铁,少部分熔炼成钼铁后再用于炼钢。低合金钢中钼含量不大于1%,但这方面的消费却占钼消费量的50%左右。不锈钢中加入钼,能改善钢的耐腐蚀性。铸铁中加入钼,能提高铁的强度和耐磨性能。含钼18%的镍基超合金具有熔点高、密度低和热胀系数小

的特性,用于制造航空和航天的各种高温部件。金属钼在电子管、晶体管及整流器等电子器件方面应用广泛。氧化钼和钼酸盐是化学和石油工业中的优良催化剂。二硫化钼是一 种重要的润滑剂,用于航天和机械工业部门。钼还是人体必须的微量元素之一,缺少钼会引起肾结石和龋齿。根据《中国科技百科全书》第544 页保健篇记载:“钼对防治心血管病和癌症方面有着特殊的功能。” 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感 性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。 钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和 耐磨性。在工具钢加钨,可显着提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钻(Co):钻是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气 腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显着降低。当铜含量小

浅谈人体中的化学元素

自然中的一切物质都由化学元素组成,人体也不例外。人体中几乎含有地球表层存在的90余种元素与且与我们生命活动密切相关的元素被称为“生命元素”。根据元素在人体中含量的不同,可分为:①宏量元素:碳、氢、氧、钙、磷、硫、钾、镁、钠、氯,共占体重的99。9%,是构成人体组织的主要元素; ②微量元素:约占人体体重的万分之五,如铁、锌、铜、钴、铬、锰、镊、锡、硅、硒、钼、碘、氟、钒共14种。这些元素虽含量甚少,却是人体所必需的,对人体的发育及许多脏器的生理功能起着不可替代的作用。 1.“生命元素” 目前已知的生命元素有27种,其中13种是非金属元素,14种是金属元素。生命元素能组成各种化合物,例如糖,脂肪,水和各种盐,它们是构成生物体的主要元素。 人体内至少大约有30多种化学元素,它们大致分为必需元素,非必需元素和有害元素三类。 2.人体中的宏量元素 人体中大约65%是水,余下的35%固体物质中,绝大部分是宏量元素。人体中11种宏量元素的含量如下表所示:

钙是一种生命必需元素,也是人体中含量最丰富的大量金属元素,含量仅次于C、H、O、N,正常人体内含钙大约1~1.25kg。每千克无脂肪组织中平均含20~25g。钙是人体骨骼和牙齿的重要成分,它参与人体的许多酶反应、血液凝固,维持心肌的正常收缩,抑制神经肌肉的兴奋,巩固和保持细胞膜的完整性。缺钙会引起软骨病,神经松弛,抽搐,骨质疏松,凝血机制差,腰腿酸痛。人体每天应补充0.6~1.0g钙。食物中含有较丰富的钙(但要注意不要与会与钙生成不溶于水的物质一起食用):动物骨、鸡蛋、鱼虾和豆类等含钙丰富。 氮是构成蛋白质的重要元素,占蛋白质分子重量的16%~18%。蛋白质是构 成细胞膜、细胞核、各种细胞器的主要成分。动植物体内的酶也是由蛋白质组成。此外,氮也是构成核酸、脑磷脂、卵磷脂、叶绿素、植物激素、维生素的重要成分。由于氮在植物生命活动中占有极重要的地位,因此人们将氮称之为生命元素。植物缺氮时,老器官首先受害,随之整个植株生长受到严重阻碍,株形矮瘦,分枝少、叶色淡黄、结实少,子粒不饱满,产量也降低。蛋白质是生物体的主要组成物质,有多种蛋白质的参加才使生物得以存在和延续。例如,有血红蛋白;有生物体内化学变化不可缺少的催化剂——酶(一大类很复杂的蛋白质);有承担运动作用的肌肉蛋白;有起免疫作用的抗体蛋白等等。各种蛋白质都是由多种氨基酸结合而成的。氮是各种氨基酸的一种主要组成元素。 钠占细胞外液中阳离子总数的90%以上。细胞外液的渗透压主要由钠维持,钠含量的增加可直接影响细胞外液量。钠增多可引起水肿,减少可造成脱水或血容量不足。钠能增加神经肌肉的兴奋性。正常血清钠浓度平均为142mmol/L。钠的平衡主要由肾脏调节。钠盐摄入多时肾排出增加,摄入减少时排出减少,禁食时尿钠可减至最低限度,几乎绝迹。大量消化液丧失可引起不同程度缺钠。正常成人每天需要氯化钠5~9g,相当于等渗盐水500~1000ml。 钾为细胞内液中的主要阳离子,全身钾总量的98%在细胞内。钾在细胞外液中含量不多,为3.5~5.3mmol/L,但有极为重要的生理作用。钾能增加神经肌肉的应激性,但对心肌却起抑制作用。钾的来源全靠食物中摄入,85%由肾排出。肾对钾的调节能力很低,在禁食和血钾很低的情况下,每天仍然要从尿中排出相当

生命元素及其在生物体内的作用

第17卷第1期渝州大学学报(自然科学版)2000年3月V ol.17N o.1 JOURNA L OF Y UZH OU UNI VERSITY(Nat.Scien.Edit.) Mar.2000 文章编号:1006-3293(2000)01-0090-04 生命元素及其在生物体内的作用Ξ 胥江河 (渝州大学教务处,重庆400033) 摘 要 介绍了生命元素的生物功能,指出了微量元素过低或过高都会引起疾病,讨论了微量元素缺少或过量的原因及采取的相应措施。 关键词 生命元素;生物功能;宏量元素;微量元素 中图分类号:O61 文献标识码:E 生物赖于生存的化学元素称为生命元素。 1 宏量元素的生物功能 生物体内存在的12中宏量元素都是必需元素,其中H、C、N、O、P、S有机元素约占人体总重量的99%;K、Na、Mg、Ca共占1%,而所有微量元素的总含量<0.1%。 1.1 K+、N a+ K+和Na+间的主要差别是它们的离子半径和水合能差异很大,这对于生物体系而言是本质的。因此K+、Na+离子在细胞内外的浓度分布很不平衡,在细胞内部,主要集中着K+ (0.1051m ol.L-1),Na+离子浓度很低(0.01m ol.L-1);在细胞外部,主要分布着Na+(0.1431 m ol.L-1),K+离子浓度很低(0.005m ol.L-1)。Na+是体液中浓度最大和交换很快的阳离子。例如血浆中的Na+离子浓度可高达0.143m ol.L-1,它的主要功能是调节渗透压,保持细胞中的最适水位。K+离子的电荷密度低,因而它具有扩散通过输水溶液的能力。 1.2 C a2+ Ca2+离子在细胞内的浓度(10-5m ol.L-1)比在细胞外的浓度(10-3m ol.L-1)小得多。钙是构成植物细胞壁和动物骨骼(主要成份是羟基磷灰石)的重要成份。人体内99%的钙存在于骨骼和牙齿中,钙在维持心脏正常收缩、神经肌肉兴奋性,凝血和保持细胞膜完整性等方面起着重要作用。钙最重要的生物功能是信使作用;细胞内的信号传递依靠细胞内外Ca2+的浓度差。 1.3 Mg2+ Mg2+是一种内部结构的稳定剂和细胞内酶的辅因子,细胞内的核苷酸以其Mg2+配合物形式存在。因为Mg2+倾向于与磷酸根结合,所以Mg2+对于DNA复制和蛋白质生物合成都是必不可少的。钙和镁许虽同属碱土金属,又均为宏量元素,但在生物学中仍有较大差 Ξ收稿日期:1999-06-02;修订日期:1999-07-01 作者简介:胥江河(1963-),男,重庆长寿人,讲师,无机化学。

相关主题