搜档网
当前位置:搜档网 › 第六章 第七节 数学 归纳法(理)

第六章 第七节 数学 归纳法(理)

第六章  第七节 数学 归纳法(理)
第六章  第七节 数学 归纳法(理)

第六章 第七章 数学 归纳法(理)

1.得当n =k +1时,该命题也成立,现已知n =5时,该命题不成立,则有 ( ) A .当n =4时,该命题成立 B .当n =6时,该命题成立 C .当n =4时,该命题不成立 D .当n =6时,该命题不成立

解析:因为当n =k (k ∈N *

,k ≥1)时,该命题成立,则一定可推得当n =k +1时,该命题也成立,所以当n =5时,该命题不成立,则一定有n =4时,该命题不成立. 答案:C

2.已知f (n )=1n +1n +1+1n +2+…+1

n 2,则 ( )

A .f (n )中共有n 项,当n =2时,f (2)=12+1

3

B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1

4

C .f (n )中共有n 2

-n 项,当n =2时,f (2)=12+13

D .f (n )中共有n 2

-n +1项,当n =2时,f (2)=12+13+14

解析:项数为n 2

-(n -1)=n 2-n +1. 答案:D

3.用数学归纳法证明1+2+3+…+n 2

=n 4+n 2

2

,则当n =k +1时左端应在n =k 的基础

上加上 ( ) A .k 2+1 B .(k +1)2 C.(k +1)4+(k +1)22

D .(k 2

+1)+(k 2

+2)+(k 2

+3)+…+(k +1)2

解析:当n =k 时,等式左端=1+2+…+k 2

,当n =k +1时,等式左端=1+2+…

+k 2+22

211k k k ++

(+1)+(),增加了2k +1项. 答案:D

4.设f (n )=1+12+13+ (1)

(n ∈N *

).

求证:f (1)+f (2)+…+f (n -1)=n ·[f (n )-1](n ≥2,n ∈N *). 证明:当n =2时,左边=f (1)=1, 右边=2[1+1

2-1]=1,

左边=右边,等式成立. 假设n =k 时,结论成立,即 f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时,

f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k

=(k +1)[f (k +1)-1

k +1]-k

=(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1],

∴当n =k +1时结论仍然成立.

∴f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N *).

5.设f (x )是定义在正整数集上的函数,且f (k )满足:当“f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么下列命题总成立的是 ( ) A .若f (3)≥9成立,则当k ≥1,均有f (k )≥k 2

成立 B .若f (5)≥25成立,则当k <5,均有f (k )≥k 2成立 C .若f (7)<49成立,则当k ≥8,均有f (k )<k 2成立 D .若f (4)=25成立,则当k ≥4,均有f (k )≥k 2成立

解析:由题意设f (x )满足:“当f (k )≥k 2

成立时,总可推出f (k +1)≥(k +1)2

成立.”, 因此,对于A ,不一定有k =1,2时成立. 对于B 、C 显然错误.

对于D ,∵f (4)=25>42,因此对于任意的k ≥4,有f (k )≥k 2成立. 答案:D

6.对于不等式n 2+n <n +1(n ∈N *),某同学的证明过程如下:

(1)当n =1时,12+1<1+1,不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立,

即k 2+k <k +1,

则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2 <(k 2

+3k +2)+(k +2) =(k +2)2=(k +1)+1, ∴当n =k +1时,不等式成立.

则上述证法 ( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确

D .从n =k 到n =k +1的推理不正确

解析:用数学归纳法证题的关键在于合理运用归纳假设. 答案:D

7.(2010·昆明模拟)已知数列{a n }满足:a 1=-1

2

,a 2n +(a n +1+2)a n +2a n +1+1=0.

求证:(1)-1<a n <0;

(2)a 2n >a 2n -1对一切n ∈N *都成立; (3)数列{a 2n -1}为递增数列.

证明:已知条件可化为(a n +1+a n )(a n +2)+1=0, 即a n +1=-a n -1

a n +2.

(1)①当n =1时已成立;

②假设当n =k 时结论成立,即-1<a k <0, 那么当n =k +1时,a k +1=-(a k +2)-1

a k +2+2.

∵1<a k +2<2,又y =t +1

t 在t ∈(1,2)内为增函数,

∴a k +2+

1a k +2∈(2,52

), ∴a k +1∈(-1

2,0),则-1<a k +1<0,

∴当n =k +1时结论成立.

由①②知,对一切n ∈N *均有-1<a n <0. (2)①当n =1时,a 2=-16>a 1=-1

2

成立;

②假设当n =k (k ≥1且k ∈N)时结论成立,即a 2k >a 2k -1, ∴1<a 2k -1+2<a 2k +2<2,

∴a2k

-1+2+

1

a2k-1+2

<a2k+2+

1

a2k+2

∴-a2k

-1-

1

a2k-1+2

>-a2k-

1

a2k+2

,即a2k>a2k

+1

.

同上法可得a2k

+2>a2k

+1

∴当n=k+1时结论成立.

由①②知对一切n∈N*均有a2n>a2n

-1

成立.

(3)a n+1+a n=-1

a n+2,则a n

+2

+a n

+1

=-

1

a n+1+2

.

两式相减得

a n+2-a n=1

a n+2-

1

a n+1+2

a n+1-a n

(a n+2)(a n+1+2)

.

若把上式中的n换成2n-1,

则a2n

+1-a2n

-1

a2n-a2n-1

(a2n-1+2)(a2n+2)

>0,

∴数列{a2n

-1

}为递增数列.

8.如图,这是一个正六边形的序列:

(1)(2)(3)

则第n个图形的边数为________.

解析:第(1)图共6条边,第(2)图共11条边,第(3)图共16条边,…,其边数构成等差数列,则第(n)图的边数为a n=6+(n-1)×5=5n+1.

答案:5n+1

9.如图,第n个图形是由正n+2边形“扩展”而来的(n=1,2,3,…),则第n-2个图形中共有________个顶点.

解析:观察规律:第一个图形的顶点个数为32+3=(1+2)2+(1+2);第二个图形的顶点个数为(2+2)2+(2+2)=42+4;第三个图形的顶点个数为(3+2)2+(3+2)=52+5;…;第n-2个图形的顶点个数为(n-2+2)2+(n-2+2)=n2+n.

答案:n 2+n

10.满足1×2+2×3n 等于 ( )

A .1

B .1或2

C .1,2,3

D .1,2,3,4 解析:当n =1时,左端=1×2=2, 右端=3×12-3×1+2=2,命题成立; 当n =2时,左端=1×2+2×3=8, 右端=3×22-3×2+2=8,命题成立; 当n =3时,左端1×2+2×3+3×4=20, 右端=3×32-3×3+2=20,命题成立; 当n =4时,左端1×2+2×3+3×4+4×5=40, 右端=3×42-3×4+2=38,命题不成立. 答案:C

11.设函数f (n )=(2n +9)·3n +1+9,当n ∈N *时,f (n )能被m (m ∈N *)整除,猜想m 的最大

值为 ( ) A .9 B .18 C .27 D .36 解析:由f (n +1)-f (n )=36·3n -1(n +6)知m 的最大值为36. 答案:D

12.是否存在常数a ,b ,c 使得等式1·22+2·32+…+n (n +1)2=n (n +1)12

(an 2+bn +c )对于

一切正整数n 都成立?并证明你的结论. 证明:假设存在符合题意的常数a ,b ,c , 在等式1·22+2·32+…+n (n +1)2 =

n (n +1)12

(an 2

+bn +c )中, 令n =1,得4=1

6(a +b +c )①

令n =2,得22=1

2(4a +2b +c )②

令n =3,得70=9a +3b +c ③ 由①②③解得a =3,b =11,c =10, 于是,对于n =1,2,3都有

1·22+2·32+…+n (n +1)2=n (n +1)12

(3n 2

+11n +10)(*)成立.

下面用数学归纳法证明:对于一切正整数n,(*)式都成立.

(1)当n=1时,由上述知,(*)成立.

(2)假设n=k(k≥1)时,(*)成立,

即1·22+2·32+…+k(k+1)2

=k(k+1)

12

(3k2+11k+10),

那么当n=k+1时,

1·22+2·32+…+k(k+1)2+(k+1)(k+2)2

=k(k+1)

12

(3k2+11k+10)+(k+1)(k+2)2

=(k+1)(k+2)

12

(3k2+5k+12k+24)

=(k+1)(k+2)

12

[3(k+1)2+11(k+1)+10],

由此可知,当n=k+1时,(*)式也成立.

综上所述,当a=3,b=11,c=10时题设的等式对于一切正整数n都成立.

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

(完整版)1数学归纳法习题(含答案)

1# 数学归纳法 一、选择题(每小题5分,共25分) 1.(2011·怀化模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在 第二步时,正确的证法是 ( ) A .假设n =k (k ∈N +),证明n =k +1命题成立 B .假设n =k (k 是正奇数),证明n =k +1命题成立 C .假设n =2k +1(k ∈N +),证明n =k +1命题成立 D .假设n =k (k 是正奇数),证明n =k +2命题成立 2.(2011·鹤壁模拟)用数学归纳法证明“1+12+13+…+12n -1 1)”时,由n = k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 ( ) A .2k - 1 B .2k -1 C .2k D .2k +1 3.(2011·巢湖联考)对于不等式n 2+n 12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13 +…+131>52 ,…,由此猜测第n 个不等式为________(n ∈N *). 8.(2011·东莞调研)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4), (2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

数学归纳法

《数学归纳法》说课稿 各位专家、评委:大家好! 我是陇西一中的数学教师王耀文,很高兴能有机会参加这次说课活动. 我要讲的课题是《数学归纳法》(第一课时),用的教材是人民教育出版社出版的全日制普通高级中学教科书(试验修订本)数学第三册(选修Ⅱ),本课是高中数学第三册第二章第一节. 下面我就从教材分析、教学目标的确定、教学方法的选择、学法的指导、教学过程的设计和板书设计六个方面进行说明. 1教材分析 1.1教材的地位和作用 数学中许多与正整数有关的命题,用不完全归纳法证明是不可靠的,用完全归纳法证明又是不可能的,为解决这一“有限”与“无限”的矛盾,数学归纳法应运而生.所以数学归纳法是一种十分严谨而又重要的方法,也是历年高考中比较常考的证明方法. 它可以证明某些与正整数有关且具有递推性的数学命题,也可以通过“有限”来解决某些“无限”问题. 1.2重点、难点 重点是如何在较短的时间内,使学生理解“归纳法”和“数学归纳法”的实质,接受数学归纳法的证题思路. 难点有两个,一是学生初步对数学归纳法原理的理解;二是数学归纳法的两个步骤及其作用. 2教材目标的确定

2.1知识目标使学生了解数学归纳法的发现过程,理解数学归纳法原理;理解数学归纳法的操作步骤;能用数学归纳法证明一些简单的数学命题并能正确书写证明步骤. 2.2能力目标培养学生观察、猜想、归纳、发现问题的能力;培养学生数学思维能力、推理论证能力以及分析问题和解决问题的能力. 2.3情感目标使学生在发现数学归纳法的过程中,体验数学研究的过程和发现的乐趣,激发学生学习数学的兴趣,使学生经历数学思维过程,获得成功的体验. 3教学方法的选择 本节课我主要采用“…发现?的过程教学”和“启发探究式”的教学方法,根据教材特点和学生实际在教学中体现两点: ⑴由学生的特点确定启发探究和感性体验的学习方法. 由于本节课安排在高三阶段,且为数学基础较好的理科学生的选修内容,考虑到学生的接受能力比较强这一重要因素,在教学中我通过创设情境,启发引导学生在观察、分析、归纳的基础上,自主探索,发现数学结论和规律,掌握数学方法,突出学生的主体地位. ⑵由教材特点确定以引导发现为教学主线. 根据本节课的特点,教学重点应该是方法的应用.但是我认为虽然数学归纳法的操作步骤简单、明确,教师却不能把教学过程简单的当作方法的灌输,技能的操练.对方法作简单的灌输,学生必将半信半疑,兴趣不大.为此,我在教学中通过实例给学生创造条件,让学生直观感受到数学归纳法的实质,再在教师的引导下发现理解数学归纳法,揭示数学归纳法的实质. 对于数学归纳法的应用,只要求学生在理解原理的基础上掌握应用原理证题的步骤,学会证明一些简单的问题. 4学法的指导

第六章 第七节 数学归纳法

A 组 考点能力演练 1.用数学归纳法证明:1+122+132+…+1n 2<2-1 n (n ∈N +,n ≥2). 证明:(1)当n =2时,1+122=54<2-12=3 2,命题成立. (2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1 k . 当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1 命题成立. 由(1),(2)知原不等式在n ∈N +,n ≥2时均成立. 2.已知数列{a n }的前n 项和为S n ,通项公式为a n =1 n f (n )=????? S 2n ,n =1,S 2n -S n -1 ,n ≥2, (1)计算f (1),f (2),f (3)的值; (2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 证明:(1)由已知f (1)=S 2=1+12=3 2, f (2)=S 4-S 1=12+13+14=13 12, f (3)=S 6-S 2=13+14+15+16=19 20; (2)由(1)知f (1)>1,f (2)>1; 下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1; ②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +1k +1+…+1 2k <1,那么 f (k +1)=1k +1+1k +2+…+12k +12k +1+1 2k +2 =??? ?1k +1k +1+1k +2+…+1 2k + 12k +1+12k +2-1 k <1+????12k +1-12k +????12k +2-12k =1+ 2k -(2k +1)2k (2k +1)+2k -(2k +2)2k (2k +2)=1-12k (2k +1)-1 k (2k +2) <1,所以当n =k +1时,f (n )<1也成立. 由①和②知,当n ≥3时,f (n )<1. 所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1. 3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *).

解析数学归纳法思想

解析数学归纳法思想 嘉兴教育学院吴明华 从数学和思想的含义去理解,所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想是人们对数学知识的本质认识,是对数学规律的理性认识(文①第1页).数学思想广泛存在于数学的概念、方法和过程之中,具有奠基性、总结性和广泛性的特征.与数学方法相比,数学思想具有更高的概括抽象水平,因而更本质、更深刻.可以这么说,数学思想是数学方法的精神实质与理论基础,而数学方法则是实施有关数学思想的技术与操作程式. 数学归纳法是一种特殊的证明方法,它的基本形式是:对于一个与自然数(此处约定最小的自然数为1,即正整数)有关的命题,如果①当时命题成立;②假设当时命题成立,则当时命题也成立,那么命题对一切自然数n都成立. 在“中学数学核心概念、思想方法体系及其教学设计”课题第8次活动中,围绕两位教师的课堂展示,课题组对数学归纳法及其教学进行了广泛和深入的讨论,涉及到一些本质性的问题但尚未达成统一的认识.本文阐述笔者对数学归纳法所蕴涵的数学思想的一些认识,试图从本质上去理解数学归纳法. 1.数学归纳法中的归纳思想 对于一个与自然数有关的命题,数学归纳法将命题理解为一系列命题: ,,,…,即N}.然后由命题,,,…都成立去下结论“命题成立”,这就是笔者重点所指的数学归纳法中的归纳思想.所谓归纳,是指从特殊到一般,从局部到整体的推理.命题是一般的、整体的,而命题,,,…中的每一个都是特殊的、局部的,即使从所有命题,,

,…都成立去概括得出命题成立,其思想也是归纳的思想(完全归纳).让我们想想,对于一个与自然数有关的命题,我们是否有过不用归纳法去处理的经历?譬如说,求证,我们曾经这样做过: 设,则, 所以,故. 我们的证明只是“就一般的自然数n而言”,也就是说,我们并没有逐个地去考察 ,,…命题是否成立,而只是把n当作“某个”(当然是任意一个)自然数直接去考察命题是否成立,这在数学上叫做“不失一般性”.其实,这样的例子在数学中比比皆是. 让我们从更一般的情形来阐述归纳思想.对于一个数学对象P,如果P可以分解为若干个种类,,,…,那么从研究,,,…入手,概括得到对象P的属性的思想,就是归纳的思想.这与分类讨论有点相似,但分类讨论常常是获得对象P在各种情况下的不同结果,而归纳则取向于获得,,,…的共性,以及由这些共性所反映的对象P的本质. 有几个问题是必须讲清楚的.首先,数学归纳法中的“归纳奠基”与“归纳递推” 工作,实际上是两个命题的证明,即证明①命题“”成立,②命题“若,则”成立,而这两个命题自身的证明常常用的是“演绎法”.其次,以“归纳递推”为大前提,以命题成立为小前提,得出命题成立,等等的推理过程也是演绎的.还有,若将自然数公理中的归纳公理(见本文后述)理解为大前提,将数学归纳法中的“归纳奠基”与“归纳递推”理解为小前提,那么得出命题成立的推理过程也是演绎的(文①第110页).但这些都不妨碍数学归纳法在处理与自然数有关的命题时所体现出来的归纳思

1.5 归纳法原理与反归纳法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1.5 归纳法原理与反归纳法 1.5 归纳法原理与反归纳法数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的: 如果一个命题与自然数有关,命题对 n=1 正确;若假设此命题对 n-1 正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法: 命题对 n=1 正确,因而命题对 n=2 也正确,然后命题对 n=3 也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明.定理 1.19 如果某个命题T,它的叙述含有自然数,如果命题T对 n=1 是正确的,而且假定如果命题T对 n 的正确性就能推出命题T对 n+1 也正确,则命题T对一切自然数都成立.(第一数学归纳法)证明设M是使所讨论的例题T正确的自然数集合,则 M1.设Mn ,则命题T对 n 正确,这时命题对(2) Mn 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立.下面我们给出一个应用数学归纳法的命题.例1求证(1) nn=+1也正确,即6) 证明 (1)当 n=1 时,有 16) 112 () 11 (112=+++= 所以 n=1,公式正确. (2)假设当 k=n 时,公式正确,即那么当 k=n+1时,有 1 / 9

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

7-4数学归纳法(理)

1.(2010·广东中山模拟)用数学归纳法证明1+12+13+…+12n -1 1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13 <2 C .1+12+13 <3 D .1+12+13+14 <3 [答案] B [解析] ∵n ∈N *,n >1,∴n 取的第一个数为2,左端分母最大 的项为122-1=13 ,故选B. 2.对于不等式n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 1°当n =1时,12+1≤1+1,不等式成立. 2°假设n =k (k ∈N *)时不等式成立,即k 2+k

[解析]上述证明过程中,在由n=k变化到n=k+1时,不等式的证明使用的是放缩法而没有使用归纳假设.故选D. 3.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,则可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得() A.n=6时该命题不成立B.n=6时该命题成立 C.n=4时该命题不成立D.n=4时该命题成立 [答案] C [解析]∵“若n=k(k∈N*)时命题成立,则当n=k+1时,该命题也成立”,故若n=4时命题成立,则n=5时命题也应成立,现已知n=5时,命题不成立,故n=4时,命题也不成立.[点评]可用逆否法判断. 4.在应用数学归纳法证明凸n边形的对角线为1 2n(n-3)条时,第一步检验第一个值n0等于() A.1B.2C.3D.4 [答案] C [解析]因为凸n边形的边数最少为3,故验证的第一个值n0=3. 5.已知S k= 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k(k=1,2,3,…),则S k+1 等于() A.S k+ 1 2(k+1) B.S k+ 1 2k+2 - 1 k+1 C.S k+ 1 2k+1 - 1 2k+2 D.S k+ 1 2k+1 + 1 2k+2

数学归纳法巧记高中数学公式大全

高中数学公式大全及巧记口诀 离2012年高考只剩63天了,因为高中数学在高考中占有较大的比分,很多同学在数学上失分很多,其主要原因是同学们对数学基础知识记忆和掌握不够到位。因此我们乐恩特教育网整理了高中数学公式大全及巧计口诀,以便同学们轻松掌握数学公式,在高考数学复习上达到事半功倍的效果!以下就是整理的高中数学公式大全及巧记口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

数学归纳法原理:【第二归纳法】【跳跃归纳法】【反向归纳法】

数学归纳法原理(六种):【第二归纳法】【跳跃归纳法】【反向归纳法】 一行骨牌,如果都充分地靠近在一起(即留有适当间隔),那么只要推倒第一个,这一行骨牌都会倒塌;竖立的梯子,已知第一级属于可到达的范围,并且任何一级都能到达次一级,那么我们就可以确信能到达梯子的任何一级;一串鞭炮一经点燃,就会炸个不停,直到炸完为止;……,日常生活中这样的事例还多着呢! 数学归纳法原理设P(n)是与自然数n有关的命题.若 (I)命题P(1)成立; (Ⅱ)对所有的自然数k,若P(k)成立,推得P(k+1)也成立. 由(I)、(Ⅱ)可知命题P(n)对一切自然数n成立. 我们将在“最小数原理”一章中介绍它的证明, 运用数学归纳法原理证题的方法,是中学数学中的一个重要的方法,它是一种递推的方法,它与归纳法有着本质的不同.由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,用归纳法可以帮助我们从具体事例中发现一般规律,但是,仅根据一系列有限的特殊事例得出的一般结论的真假性还不能肯定,这就需要采用数学归纳法证明它的正确性. 一个与自然数n有关的命题P(n),常常可以用数学归纳法予以证明,证明的步骤为:(I)验证当n取第1个值no时,命题P(no)成立,这一步称为初始验证步. (Ⅱ)假设当n=k(k∈N,后≥no)时命题P(k)成立,由此推得命题P(k+1)成立.这一步称为归纳论证步. (Ⅲ)下结论,根据(I)、(Ⅱ)或由数学归纳法原理断定,对任何自然数(n≥no)命题 P(n)成立.这一步称为归纳断言步, 为了运用好数学归纳法原理,下面从有关注意事项与技巧及运用递推思想解题等几个方面作点介绍. 运用数学归纳法证题时应注意的事项与技巧三个步骤缺一不可 第一步是递推的基础,第二步是递推的依据,第三步是递推的过程与结论.三步缺一不可.数学归纳法的其他几种形式还有:第二数学归纳法;跳跃数学归纳法;倒推数学归纳法(反向归纳法);分段数学归纳法二元有限数学归纳法;双向数学归纳法;跷跷板数学归纳法;同步数学归纳法等。 1.5归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n=1正确;若假设此命题对n-1正确,就能推出命题对n也正确,则命题对所有自然数都正确.通俗的说法:命题对n=1正确,因而命题对n=2也正确,然后命题对n=3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而

数学归纳法、同一法、整体代换法

数学归纳法、同一法、整体代换法 一、函数方程思想 从而解决问题的一种思维方式,函数方程思想就是用函数、方程的观点和方法处置变量或未知数之间的关系。很重要的数学思想。 并研究这些量间的相互制约关系,1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达进去。最后解决问题,这就是函数思想; 确立变量之间的函数关系是一关键步骤,2.应用函数思想解题。大体可分为下面两个步骤:1根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;2根据需要构造函数,利用函数的相关知识解决问题;3方程思想:如何学好高中数学某变化过程中,往往需要根据一些要求,确定某些变量的值,这时经常列出这些变量的方程或(方程组)通过解方程(或方程组)求出它这就是方程思想; 之间相互渗透,3.函数与方程是两个有着密切联系的数学概念。很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 二、数形结合思想 对于所研究的代数问题,数形结合是中学数学中四种重要思想方法之一。有时可研究其对应几何的性质使问题得以解决(以形助数)或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形)这种解决问题的方法称之为数形结合。 发挥数的思路的规范性与严密性,1.数形结合与数形转化的目的为了发挥形的生动性和直观性。两者相辅相成,扬长避短。 宇宙间万事万物无不是数和形的和谐的统一。因此,2.恩格斯是这样来定义数学数学研究现实世界的量的关系与空间形式的科学”这就是说:数形结合是数学实质特征。数学学习中突出数形结合思想正是充分掌握住了数学精髓和灵魂。 数量关系决定了几何图形的性质。 3.数形结合的实质是几何图形的性质反映了数量关系。形少数时难入微;数形结合百般好,隔裂分家万事非。数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,4.华罗庚先生曾指出:数缺性时少直观。或者借助于形的几何直观性来说明数之间的某种关系. 历年高考解答题都有关于这个方面的考查(即用代数方法研究几何问题)而以形为手段的数形结合在高考客观题中体现。 5.把数作为手段的数形结合主要体现在解析几何中。 6.要抓住以下几点数形结合的解题要领: 可直接从几何图形入手进行求解即可; 1对于研究距离、角或面积的问题。 可通过函数的图象求解(函数的零点,2对于研究函数、方程或不等式(最值)问题。顶点是关键点)作好知识的迁移与综合运用; 3对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的 三、分类讨论的数学思想 当问题的对象不能进行统一研究时,分类讨论是一种重要的数学思想方法。就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 引起分类讨论的原因大致可归纳为如下几种: 1.有关分类讨论的数学问题需要运用分类讨论思想来解决。 1涉及的数学概念是分类讨论的 2运用的数学定理、公式、或运算性质、法则是分类给出的 3求解的数学问题的结论有多种情况或多种可能性;

数学归纳法知识点大全

数学归纳法 数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位. (1)第一数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. (2)第二数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ①当0n n =(N n ∈0)时,)(n P 成立; ②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立. 2.数学归纳法的其他形式 (1)跳跃数学归纳法 ①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,

②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立. (2)反向数学归纳法 设)(n P 是一个与正整数有关的命题,如果 ① )(n P 对无限多个正整数n 成立; ②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有 在证明中,由 真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要 型的自然数)为真;从而证明 ,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如 ①P(n0)成立; ②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立; 综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;

数学中的归纳法及应用

题目归纳法在数学中的应用与地位学生 学号 指导老师 年级 学院 系别 xx年xx月

目录 目录 (2) 摘要 (3) 引言 (4) 一、数学归纳法的历史由来 (4) 二、归纳法的特点 (4) 二基本步骤 (5) 三数学归纳法的常用方法举例 (6) 3.1求同法 (6) 3.2求异法 (6) 3.3求同求异并用法 (7) 3.4共变法 (7) 3.5剩余法 (7) 四、在高等数学中的归纳法运用举例 (8) 五、数学归纳法解决应用问题 (9) 5.1代数恒等式方面的问题 (9) 5.2几何方面的应用 (9) 5.3排列和组合上的应用 (10) 5.4对于不等式的证明上的应用 (11) 六、总结 (11) 参考文献 (12) 致谢 (13)

摘要 数学归纳法是中学数学中一种常用的证题方法,是从特殊的具体的认识推进到一般的抽象的认识的一种思维方式,它是科学发现的一种长用的有效的思维方式. 它的应用极其广泛.本文讨论了数学归纳法的步骤,它集归纳,猜想,证明于一体,体现了数学归纳法的证题思路.本文归纳总结了数学归纳法解决代数恒等式,几何,排列组合等方面的一些应用问题的方法,并对应用中常见的误区加以剖析,以及一些证法技巧介绍,有利于提高对数学归纳法的应用能力. 数学归纳法的具体应用时,有许多更为灵活的形式,这一点是宜于注意的. 不完全归纳法仅仅依据同一事实的几次重复作出结论,只是停留在对事物的表面现象的观察上,没有深入地分析产生现象的原因,只有对现象产生的原因有了了解,才会提高结论的可信程度. 人们在长期的科学实践过程中,总结出了确定因果关系的几种逻辑方法:求同法、求异法、求同求异并用法、共变法、剩余法. 归纳法在数学中运用十分广泛. 关键词:数学归纳法数学归纳法的特点步骤应用. Abstract Mathematical induction is a common evidence method in secondary school mathematics, it is have very broad application. In this paper, author reaserch into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz themethod of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application.So-called mathematics inductive method is from the special concrete understanding propulsion to general of abstract of a kind of mode of thinking of[with] understanding, it is science discovers of a kind of long use of valid mode of thinking. The inductive method is in mathematics make use of very extensively. Key words:Mathematical induction; steps;Application.

数学归纳法教案(新)

教材背景: 归纳是一种由特殊事例导出一般规律的思维方法.归纳推理分完全归纳推理与不完全归纳推理两种.不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的.完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来.数学归纳法是用来证明某些与正整数n有关的数学命题的一种推理方法,在数学问题的解决中有着广泛的应用. 教学课题:数学归纳法 教材分析: “数学归纳法”既是高中代数中的一个重点和难点容,也是一种重要的数学方法。它贯通了高中代数的几大知识点:不等式,数列,三角函数……在教学过程中,教师应着力解决的容是:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。只有真正了解了数学归纳法的实质,掌握了证题步骤,学生才能信之不疑,才能用它灵活证明相关问题。本节课是数学归纳法的第一节课,有两大难点:使学生理解数学归纳法证题的有效性;递推步骤中归纳假设的利用。不突破以上难点,学生往往会怀疑数学归纳法的可靠性,或者只是形式上的模仿而不知其所以然。这会对以后的学习造成极大的阻碍。根据本节课的教学容和学生实际水平,本节课采用“引导发现法”和“讲练结合法”。通过课件的动画模拟展示,引发和开启学生的探究热情,通过“师生”和“生生”的交流合作,掌握概念的深层实质。 教学目标 1、知识和技能目标 (1)了解数学推理的常用方法(归纳法) (2)了解数学归纳法的原理及使用围。 (3)初步掌握数学归纳法证题的两个步骤和一个结论。 (4)会用数学归纳法证明一些简单的等式问题。 2、过程与方法目标 通过对归纳法的复习,说明不完全归纳法的弊端,通过多米诺骨牌实验引出数学归纳法的原理,使学生理解理论与实际的辨证关系。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会用总结、归纳、演绎类比探求新知识。

本文主要对数学归纳法的教学进行较为完整的研究

本文主要对数学归纳法的教学进行较为完整的研究。 数学归纳法是一种证明与正整数有关的命题的极为有效的科学方法。了解数学归纳法的发现和发展的历史,明确数学归纳法与归纳法的区别与联系,是教师教授和学生掌握数学归纳法的基础。对数学归纳法逻辑基础即原理的准确理解,是教师进行数学归纳法教学的前提,也是学生能否掌握这种证明方法的关键。 数学归纳法的教学首先是一种程序性教学。为了让学生能够正确应用数学归纳法,还要进行形式化教学。在形式化现象下的本质规律的教学,即内涵教学,则是数学归纳法教学的内在精髓。数学归纳法通过有限的程序,完成了验证无限的结论,它的灵魂就是递归思想。 归纳法是发现问题的一种有效方法。在数学归纳法的教学过程中,恰到好处地进行数学归纳法的教学,既可帮助学生区分这两种方法,又可引领学生了解发现问题的途径,可谓一举两得。培养学生“观察一归纳一猜想一证明”的链条式思维模式,开发学生的创造性思维能力,将会对未来数学的发展起到推波助澜的作用。数学归纳法的应用是数学归纳法教学中很重要的一个环节。数学归纳法可以用来证明与正整数有关的恒等式、不等式、整除性问题和几何问题等。 本文针对数学归纳法应用过程中,学生常见错误出现的心理因素进行了问卷调查。在应用数学归纳法证题时,导致学生犯错误的主要原因是对数学归纳法的原理没有真正理解;另一个原因是数学归纳法应用中的思维定势。要克服学生使用数学归纳法的心理障碍,一个有效的方法就是要了解数学归纳法应用的局限性。能运用非数学归纳法证明另外一些与正整数有关的命题,也是学生学习和使用数学归纳法时所要克服的心理依赖和必经过程。 1. 2数学归纳法的研究现状 对“数学归纳法”的研究国内己有不少论文,这些论文在某些具体方面作出了详尽的论述。例如,赵龙山在《有关数学归纳法教学中的逻辑问题》一文中,对数学归纳法的逻辑基础问题进行了论述和研究,形象地引入“递推机”,从而加深了对数学归纳法本质的理解,有助于学生更好地、合逻辑地运用数学归纳法证题,也有助于学生克服对于数学归纳法的模糊甚至是错误认识。文中还指出了数学归纳法与归纳法、完全归纳法是完全不同的证题方法,只是没有对一三者的内在关系进行系统详细地阐述。罗增儒在《关于数学归纳法的逻辑基础》一文中指出:历史上数学归纳法曾被称为“逐次归纳法”、“完全归纳法”,后来被称为“数学归纳法”,既区别于逻辑上的“完全归纳法”,又比“逐次归纳法”更能表明它论证的可靠性。在此文中还引述了一些学者的观点,就数学归纳法的本质进行了表述。 刘世泽在《数学归纳法的另外两种形式》一文中,介绍了除数学归纳法第I型和第II 型以外的另两种形式:跳跃归纳法和二元有限归纳法;朱孝建在《数学归纳法的构造》一文中,给出了数学归纳法的一个一般性定理,由此可推导出数学归纳法的各种常见形式,还可根据具体问题的需要构造出其它数学归纳法的形式,进一步开拓了数学归纳法的应用范围,从而对数学归纳法的本质有了一个较为全面深入地了解;李淑文、孙德菊在《累积数学归纳法》一文中,比较了数学归纳法的第一种形式和第二种形式,并就第二种形式,即累积数学归纳法作了举例说明。以上三篇论文都是针对数学归纳法的形式或构造的论述。 邵光华所作的论文《对中学“数学归纳法”教材教法的几点思考》,主要针对教材教法中对数学归纳法内容的安排和教学,提出了值得思考的五个具体问题,并简单地说明了数学归纳法和归纳法的区别。文中提到了不完全归纳法,但未作深入论述。唐以荣在《中学数学综合题解题规律讲义》中指出:“早在五十年代的苏联的教学法书籍中,己明确指出数学归纳法是演绎法的特殊形式;八十年代的中国中学数学课本和教学法书籍却没有做到这一点不能不令人遗憾。”①即使是现在的中学教材也还是没有改进这些。 齐智华在《“数学猜测”的教学构想与实践》一文中,介绍了“数学猜测”的教学纲目,

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

高考数学一轮总复习6.7数学归纳法练习

— 解析 当 n = k +1 时,等式左边=1 + 3+ 5+-+ (2k + 1) + (2k + 3) = (k + 1) + (2k + 第七节数学归纳法 时间:45分钟分值:100分 [基 [础|必| |做 一、选择题 111 1 1.已知 f (n ) = '+ + +???+=,则( ) n n +1 n + 2 n 1 1 A. f (n )中共有 n 项,当 n = 2 时,f (2) = -+ 3 2 3 1 1 B. f (n )中共有 n + 1 项,当 n = 2 时,f (2) = - + 3 1 1 C. f (n )中共有 n 2 — n 项,当 n = 2 时,f (2) = -+- 2 1 1 1 D. f (n )中共有 n —n + 1 项,当 n = 2 时,f (2) = - + 3+ 4 2 1 1 1 解析 总项数为n —n + 1, f (2) = 2+ 3+ 4.故选D. 答案 D 2?用数学归纳法证明不等式 1 1 1 127 * 1 + - + 4 +…+ 2一1>64(n € N)成立,其初始值至少应取 ( ) A. 7 C. 9 B. 8 D. 10 解析 1 1 1 1 + 2+ 4+…+ 产= 1 1 — 2 127 1>64, 1-- 整理得2n >128,解得n >7. ???初始值至少应取 8. 答案 B 3.用数学归纳法证明等式 1 + 3 + 5+-+ (2n + 1) = (n + 1)2 (n € N *)的过程中,第二步 假设n = k 时等式成立,则当 n = k + 1时应得到( ) 2 A. 1+ 3 + 5+-+ (2 k + 1) = k B. 1 + 3 + 5+???+ (2 k + 3) = (k + 2) C. 1 + 3 + 5+- + (2 k + 1) = (k + 2) D. 1 + 3 + 5+- + (2 k + 3) = (k + 3)

相关主题