搜档网
当前位置:搜档网 › 幽门螺杆菌毒力相关基因A及其亚型多样性与胃癌的关系

幽门螺杆菌毒力相关基因A及其亚型多样性与胃癌的关系

618解放军医学院学报 Acad J Chin PLA Med Sch Jun 2015,36(6) https://www.sodocs.net/doc/fe2731841.html,

综 述 幽门螺杆菌毒力相关基因A及其亚型多样性与胃癌的关系

刘 鹿1,王 林2,刘纯杰1

军事医学科学院,北京 100071 1生物工程研究所;2解放军第307医院

摘要:胃癌作为最常见的消化道恶性肿瘤之一,幽门螺杆菌(Helicobacter pylori,H.pylori)感染与胃癌的发生有密切的关系,其中H.pylori毒力相关因子A(CagA)成为胃癌发病机制研究的热点。本文用新的视角总结了CagA参与的病理活动和其在胃癌发生、发展中可能起到的作用,同时对CagA及其亚型多样性与胃病程度的关系进行论述。

关键词:幽门螺杆菌;毒力相关基因A;胃癌

中图分类号:R 377;R 735.2 文献标志码:A 文章编号:2095-5227(2015)06-0618-03 DOI:10.3969/j.issn.2095-5227.2015.06.026网络出版时间:2015-03-25 09:49 网络出版地址:https://www.sodocs.net/doc/fe2731841.html,/kcms/detail/11.3275.R.20150325.0949.001.html Relationship between cytotoxin-associated gene A protein of H.pylori, its subtype diversity and gastric cancer

LIU Lu1, WANG Lin2, LIU Chunjie1

1Institute of Biology Engineering; 2The 307th Hospital of Chinese PLA Academy of Military Medical Sciences, Beijing 100071, China Corresponding author: LIU Chunjie. Email: liucj317@https://www.sodocs.net/doc/fe2731841.html,

Abstract: Gastric cancer is one of the most common gastrointestinal malignancies and it has close relationship with the infection of H.pylori. The cytotoxin-associated gene A (CagA) of H.pylori has become a research hotspot for the study of the pathogenesis of gastric cancer. This study summarizes the pathological activities and its possible role in the occurrence of gastric cancer and discusses the relationship between CagA and gastric cancer.

Keywords: Helicobacter pylori; CagA; gastric cancer

胃癌是全球尤其是亚洲突出的健康问题。从病因上说,其不仅受环境因素和敏感基因变异的影响,同时也受到由遗传和表观遗传的改变引起的积累作用的影响[1]。研究显示,世界范围内77%的胃非贲门部癌症都与幽门螺杆菌(Helicobacter pylori,H.pylori)感染紧密相关[2]。H.pylori 是一种可以长期定植于人类胃黏膜的革兰阴性螺旋形微需氧菌,通过人与人之间口-口传播途径和粪-口传播途径,在全世界范围内感染率>50%,是引起胃炎、消化性溃疡、胃黏膜相关的淋巴样组织淋巴瘤和胃癌的重要病原体[3-4]。1994年,H.pylori被世界卫生组织列为Ⅰ类致癌因子。

H.pylori的致病因子可以分为两类,即直接导致细胞损伤的毒力因子和影响菌体存活、黏附及定植的相关因子。毒力因子包括CagA、VacA、DupA、OipA等,这些都被认为是可能造成严重临床结果的潜在威胁因素[5-6]。流行病学研究显示,感染可产生CagA蛋白的H.pylori可增加患胃癌的风险[7]。最近的研究也揭示了CagA进入宿主细胞后调节多种细胞信号转导通路的机制[8-10],分子流行病数据也揭示出更多H.pylori基因变化的地理分布详情[11-12]。

1 CagA及其分型

CagA于20世纪90年代首次被发现,它是由位于H.pylori 基因组的cag致病岛(cag pathogenicity island,cag PAI)末端cagA基因编码,大小为120 ~ 145 kU的免疫蛋白[13]。CagA 通过Ⅳ型分泌系统进入胃上皮细胞,它在宿主细胞内进行磷酸化的位点-“谷氨酸-脯氨酸-异亮氨酸-酪氨酸-丙氨酸”基序(EPIYA基序)数量及组合的不同决定了CagA 的多态性和亚型的分类。EPIYA基序分为4类,分别命名为EPIYA-A、EPIYA-B、EPIYA-C和EPIYA-D。EPIYA-C 和EPIYA-D成为CagA亚型分类的基础,凡具有EPIYA-C 的称为西方型CagA,凡具有EPIYA-D的称为东亚型CagA。目前尚无文献提及在单一的CagA蛋白中同时存在EPIYA-C 和EPIYA-D[14-15]。EPIYA基序高度保守,仅有非常少的一部分发生序列改变,如变成EPIYT(1 796个EPIYA中有5.1%),ESIYA(1.3%)或者ESIYT(0.4%)。西方型中,多数EPIYA基序改变都发生于EPIYA-B。

在日本冲绳地区发现了与东亚型不同的西式CagA,这可能是早年美国统治时期流动的美国人口携带的CagA菌株发生变异所致,我们称此种H.pylori菌株为日本西方型[16]。同时,在美洲印第安地区发现了异于西方型和东亚型的新型,称之为美国印第安型,它可分为两大类,分别是AM-Ⅰ和AM-Ⅱ型;分析显示美洲印第安型的EPIYA-B基序有所改变,两型的N端内部缺乏含有180个氨基酸的片段[17]。

收稿日期:2015-01-07

基金项目:国家级新药创制重大专项(2012ZX09301003-001-005) Supported by “Major Country to Create a Special New Drugs”S&T Major Project (2012ZX09301003-001-005)

作者简介:刘鹿,女,硕士。研究方向:微生物致病机制及免疫预防。Email: deer_3016@https://www.sodocs.net/doc/fe2731841.html,

通信作者:刘纯杰,男,博士,研究员,出站博士后,博士生导师。Email: liucj317@https://www.sodocs.net/doc/fe2731841.html,

解放军医学院学报 Acad J Chin PLA Med Sch Jun 2015,36(6) https://www.sodocs.net/doc/fe2731841.html,619

2 CagA进入宿主细胞后的生物学活动

2.1 膜相关的生物学活动 CagA通过Ⅳ型分泌系统进入宿主细胞锚定于胞膜内侧。CagA吸收和改变通常位于细胞连接处的紧密连接蛋白-1(zonula occludens-1,ZO-1)和连接黏附分子(junctional adhesion molecule,JAM)的分布,通过与ZO-1和JAM的相互作用,改变宿主细胞间顶端连接复合物的结构和功能。顶端连接的功能性失调可以趋化细胞骨架结构、细胞极性、细胞增殖及分化进行癌性改变[18]。CagA在Src家族激酶(Src family kinases,SFKs)的作用下于磷酸化位点EPIYA基序发生磷酸化反应被磷酸化[19],尽管所有的EPIYA基序都参与磷酸化反应,但EPIYA-A和EPIYA-B的作用明显弱于EPIYA-C和EPIYA-D。因为CagA诱导的宿主细胞发生转录约80%都依赖磷酸化,所以这一过程显得尤为重要[20]。EPIYA基序的数量与磷酸化水平及CagA生物学活性呈正相关,因此可以预测EPIYA基序的数量与胃癌相关。

2.2磷酸化依赖的生物学活动 磷酸化后的CagA通过EPIYA-C、EPIYA-D基序与蛋白酪氨酸磷酸酶-2(SHP-2)结合,SHP-2的两个区域(N-SH2和C-SH2)都与CagA形成稳定复合物的形式。SHP-2-CagA的相互作用不仅与磷酸化位点的个数相关,同时还与CagA分型相关[21]。东亚型CagA较西方型CagA拥有更强的与SHP-2结合的能力,这是由于EPIYA-D基序后紧随由6个氨基酸组成的序列(Y-A-T-I-D-F),这与同SHP-2的SH-2配位的基序相同,而西方型EPIYA-C基序中相对应的序列(Y-A-T-I-D-D)则以一个末端氨基酸(D对比F/W)的差异显示出较弱的结合能力[22]。

被磷酸化CagA激活后的SHP-2抑制黏着斑激酶(focal adhesion kinase,FAK),FAK可以调节细胞黏附、迁移及存活。FAK活性的降低刺激细胞骨架的重排从而出现以宿主细胞伸长和扩散为特征的独特形态学改变,像蜂鸟的嘴,故命名为“蜂鸟表型”。CagA激活的SHP-2同时也通过依赖Ras途径及非依赖Ras途径刺激细胞外信号调节激酶(extracellular signal-regulated kinase,Erk)[23]。与东亚型与SHP-2有更强结合能力相符的是,与西方型相比,东亚型CagA有更强的产生蜂鸟状表型的能力,同时对细胞生长及Erk活性都有更强的影响。因此,研究猜测东亚型CagA较西方型CagA有更强的致病性。

绝大多数磷酸化的CagA与SHP-2结合,但也有少部分与C末端Src激酶(C-terminal Src kinase,Csk)相互作用。CSK的激活与CagA的相互作用反过来抑制SFKs。因此与磷酸化CagA对SFKs的直接抑制一起通过CSK间接抑制旁路形式的负反馈循环解除了对SFKs的磷酸化活性的限制。这两种负反馈循环或许可以减轻由CagA磷酸化引起的细胞毒性[18]。与此同时,CagA介导的SFKs的抑制作用偏向于对其他宿主细胞蛋白去磷酸化,如黏着斑蛋白、埃兹蛋白和皮层蛋白,从而损害了宿主细胞同细胞外基质的黏附,并且扰乱了细胞肌动蛋白组织的功能[24],这些共同作用或许引起了宿主细胞的蜂鸟状表型改变。

2.3不依赖磷酸化的生物学活动 CagA可以通过不依赖磷酸化的途径对一些信号通路产生作用。CagA可与肝细胞生长因子(hepatocyte growth factor,HGF)受体c-Met相互作用,从而刺激细胞生长、运动和侵袭。CagA与生长因子受体结合蛋白2(growth factor receptor bound protein 2,Grb-2)结合,通过SOS途径激活Ras/Erk旁路,从而导致细胞分散和增殖[25-26]。CagA和Grb-2之间的相互作用严格依赖EPIYA 的存在,但并不需要进行酪氨酸磷酸化。值得一提的是,c-Met和Grb-2都曾被预测与细胞恶性转变有关[27]。

日本学者曾发现,通过与E-钙黏着蛋白的相互作用,CagA可干扰E-钙黏着蛋白/β-联蛋白复合物,从而导致β-联蛋白在细胞质和细胞核中的累积。解除管制的β-联蛋白信号传导可引起具有致癌倾向的基因转录增强[14,28]。此外,多种胃部肿瘤体中可检测到β-联蛋白在细胞质和细胞核中的过度表达。这些发现提示CagA可引起β-联蛋白的异常表达,并且可引发胃部肿瘤。

早先观察证明,胃上皮细胞感染敲除CagA的H.pylori 后仍保持分泌IL-8的能力,故并没有建立CagA与介导分泌炎症因子(如IL-8)的观念。研究发现,CagA可以不依赖SHP-2和c-Met,而是通过Ras/Raf/Mek/Erk/NF-κB信号旁路引起IL-8的释放。这些发现提出了尚未被证实的观点,即可激活Ras/Erk旁路的CagA-Grb-2相互作用可能是CagA 引起NF-κB刺激的一个上游事件[29]。CagA明确参与NF-κB/IL-8激活旁路表示了其在慢性胃黏膜炎症、癌前病变及胃癌中的直接作用[30]。

3 CagA及其亚型多样性与胃癌

H.pylori基因组在不同的分离株中显示出高度的遗传多样性。临床上H.pylori菌株大体分为cagA阳性菌株和cagA 阴性菌株。分子流行病学调查显示cagA阳性的H.pylori菌株较cagA阴性菌株能引起更为严重的胃黏膜炎症和消化道溃疡,并且增加胃癌的患病风险,在H.pylori感染的胃癌患者胃组织标本中,更易扩增出EPIYA-D基序,亦有调查显示东亚型中ABD亚型提高了患胃癌的风险[31]。动物和细胞模型实验也提示CagA在H.pylori感染及胃癌的关系中起着不可小觑的作用[32-33]。有研究发现,沙鼠感染缺失cagA 的菌株,其引起胃部炎症及胃溃疡的概率明显少于野生型H.pylori的感染。已建立的cagA转基因小鼠模型也证明了CagA可引起胃及小肠的增生与腺癌样变。

从东亚国家如日本、韩国和中国分离出的H.pylori菌株中90% ~ 95%携带cagA基因。而西方国家(如美国)和非洲国家分离出的H.pylori菌株中仅有60%携带cagA基因。东亚型和西方型CagA蛋白磷酸化位点的差异性可能是东亚国家胃癌发生率高于西方国家的部分原因。在西方型中,胃病的严重程度通常与EPIYA-C的个数呈正相关,而在东亚型中则无此规律[34]。含有EPIYA-D基序的H.pylori菌株相对于EPIYA-C型的西方型菌株有更显著分泌高水平IL-8的能力,提示东亚型CagA较西方型CagA更易引起胃病的发展及胃癌的发生。

4 结语

中国是胃癌高发国家,每年新发病例占全球的40%,

620解放军医学院学报 Acad J Chin PLA Med Sch Jun 2015,36(6) https://www.sodocs.net/doc/fe2731841.html,

死亡病例占全球35%,发病率和死亡率均是世界平均水平的两倍多。H.pylori感染与胃癌的关系已被广泛深入研究,揭示H.pylori编码的CagA引起胃癌的分子机制对疾病研究有重大意义,阐明由CagA在机体内参与病理活动的机制及不同CagA亚型与胃病程度的关系,有助于对临床预防和治疗H.pylori感染及胃癌提供新的思路。

参考文献

1 Ding SZ, Zheng PY. Helicobacter pylori infection induced gastric

cancer; advance in gastric stem cell research and the remaining challenges[J]. Gut Pathog, 2012, 4(1):18.

2 Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of

cancer in 2008: GLOBOCAN 2008[J]. Int J Cancer, 2010, 127(12):2893-2917.

3 Malnick SD, Melzer E, Attali M, et al. Helicobacter pylori: friend or

foe?[J]. World J Gastroenterol, 2014, 20(27):8979-8985.

4 孙永刚, 唐子美, 谭绪云, 等. 30例Barrett食管内镜下特点及与

幽门螺杆菌感染的关系[J]. 解放军医学院学报, 2014, 35(2):131-133.

5 Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors

in Helicobacter pylori[J]. J Dig Dis, 2013, 14(7):341-349.

6 Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence

factors[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(11):629-641.

7 Shim JH, Yoon JH, Choi SS, et al. The effect of Helicobacter pylori

CagA on the HER-2 copy number and expression in gastric cancer[J].

Gene, 2014, 546(2):288-296.

8 Hatakeyama M. Anthropological and clinical implications for the

structural diversity of the Helicobacter pylori CagA oncoprotein[J].

Cancer Sci, 2011, 102(1):36-43.

9 Mueller D, Tegtmeyer N, Brandt S, et al. c-Src and c-Abl kinases

control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains[J]. J Clin Invest, 2012, 122(4):1553-1566.

10 Tan S, Noto JM, Romero-Gallo J, et al. Helicobacter pylori perturbs

iron trafficking in the epithelium to grow on the cell surface[J].

PLoS Pathog, 2011, 7(5):e1002050.

11 Kersulyte D, Kalia A, Gilman RH, et al. Helicobacter pylori from

Peruvian amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain[J].

PLoS One, 2010, 5(11):e15076.

12 Duncan SS,Valk PL,Shaffer CL,et al. J-Western forms of

Helicobacter pylori cagA constitute a distinct phylogenetic group with

a widespread geographic distribution[J]. J Bacteriol, 2012, 194(6):

1593-1604.

13 Cover TL, Dooley CP, Blaser MJ. Characterization of and human

serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity[J]. Infect Immun,1990, 58(3):603-610.

14 牛磊, 郗洪庆, 陈凛. Lgr5-Wnt/β-catenin 信号通路与胃癌干细

胞的研究进展[J]. 解放军医学院学报, 2014, 35(12): 1268-1272.

15 Lee IO,Kim JH,Choi YJ,et al. Helicobacter pylori CagA

phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells [J]. J Biol Chem, 2010, 285(21):16042-16050.

16 Matsunari O,Shiota S,Suzuki R,et al. Association between

Helicobacter pylori virulence factors and gastroduodenal diseases in

Okinawa, Japan[J]. J Clin Microbiol, 2012, 50(3):876-883. 17 Suzuki M, Kiga K, Kersulyte D, et al. Attenuated CagA oncoprotein

in Helicobacter pylori from Amerindians in Peruvian Amazon[J]. J Biol Chem, 2011, 286(34):29964-29972.

18 Hayashi T, Morohashi H, Hatakeyama M. Bacterial EPIYA effectors-

-where do they come from? What are they? Where are they going?[J].

Cell Microbiol, 2013, 15(3):377-385.

19 Tegtmeyer N, Backert S. Role of Abl and Src family kinases in actin-

cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein[J]. Eur J Cell Biol, 2011, 90(11):880-890.

20 Safari F, Murata-Kamiya N, Saito Y, et al. Mammalian Pragmin

regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA)motif that is exploited by bacterial effectors[J]. Proc Natl Acad Sci U S A, 2011, 108(36):14938-14943.

21 Nagase L,Murata-Kamiya N,Hatakeyama M. Potentiation of

Helicobacter pylori CagA protein virulence through homodimerization [J]. J Biol Chem, 2011, 286(38):33622-33631.

22 Ying GX, Wen Sheng LI, Xia ZL, et al. CagA+ H. pylori filtrate

induces cytokine IL-8 secretion by esophageal squamous carcinoma EC 109 cells via a p38 pathway[J]. Indian J Pathol Microbiol,2014, 57(1):13-18.

23 Deng N, Goh LK, Wang H, et al. A comprehensive survey of genomic

alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets[J].

Gut, 2012, 61(5):673-684.

24 Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a

paradigm for hit-and-run carcinogenesis[J]. Cell Host Microbe,2014, 15(3):306-316.

25 Takahashi A,Tsutsumi R,Kikuchi I,et al. SHP2 tyrosine

phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver[J]. Mol Cell, 2011, 43(1):45-56.

26 Tsutsumi R, Masoudi M, Takahashi A, et al. YAP and TAZ, Hippo

signaling targets, act as a rheostat for nuclear SHP2 function[J].

Dev Cell, 2013, 26(6):658-665.

27 Neal JT, Peterson TS, Kent ML, et al. H. pylori virulence factor

CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model[J]. Dis Model Mech, 2013, 6(3):802-810.

28 Saito-Diaz K, Chen TW, Wang X, et al. The way Wnt works:

components and mechanism[J]. Growth Factors, 2013, 31(1):1-31.

29 O'Gorman A, Colleran A, Ryan A, et al. Regulation of NF-kappaB

responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2010, 299(1):G96-G105.

30 Lee KE, Khoi PN, Xia Y, et al. Helicobacter pylori and interleukin-8

in gastric cancer[J]. World J Gastroenterol, 2013, 19(45):8192-8202.

31 Jones KR, Joo YM, Jang S, et al. Polymorphism in the CagA EPIYA

motif impacts development of gastric cancer[J]. J Clin Microbiol,2009, 47(4):959-968.

32 Furth PA. Cancer prevention as biomodulation:targeting the

initiating stimulus and secondary adaptations[J]. Ann N Y Acad Sci, 2012, 1271:1-9.

33 Niller HH, Wolf H, Minarovits J. Viral hit and run-oncogenesis:

genetic and epigenetic scenarios[J]. Cancer Lett, 2011, 305(2):200-217.

34 Batista SA,Rocha GA,Rocha AM,et al. Higher number of

Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer[J]. BMC Microbiol,2011, 11:61.

幽门螺杆菌毒力相关基因A及其亚型多样性与胃癌的关系

作者:刘鹿, 王林, 刘纯杰, LIU Lu, WANG Lin, LIU Chunjie

作者单位:刘鹿,刘纯杰,LIU Lu,LIU Chunjie(军事医学科学院,北京 100071 生物工程研究所), 王林,WANG Lin(军事医学科学院,北京 100071 解放军第307医院)

刊名:

解放军医学院学报

英文刊名:Academic Journal of Chinese Pla Medical School

年,卷(期):2015,36(6)

参考文献(34条)

1.Ding SZ;Zheng PY Helicobacter pylori infection induced gastric cancer;advance in gastric stem cell research and the remaining challenges 2012(01)

2.Ferlay J;Shin HR;Bray F Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008 2010(12)

3.Malnick SD;Melzer E;Attali M Helicobacter pylori:friend or foe 2014(27)

4.孙永刚,唐子美,谭绪云,刘学军,杨小毛,杜选峰,王辉,赵倩,郑倩30例Barrett食管内镜下特点及与幽门螺杆菌感染的关系[期刊论文]-解放军医学院学报 2014(2)

5.Shiota S;Suzuki R;Yamaoka Y The significance of virulence factors in Helicobacter pylori 2013(07)

6.Yamaoka Y Mechanisms of disease:Helicobacter pylori virulence factors 2010(11)

7.Shim JH;Yoon JH;Choi SS The effect of Helicobacter pylori CagA on the HER-2 copy number and expression in gastric cancer 2014(02)

8.Hatakeyama M Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein 2011(01)

9.Mueller D;Tegtmeyer N;Brandt S c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains 2012(04)

10.Tan S;Noto JM;Romero-Gallo J Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface 2011(05)

11.Kersulyte D;Kalia A;Gilman RH Helicobacter pylori from Peruvian amerindians:traces of human migrations in strains from remote Amazon,and genome sequence of an Amerind strain 2010(11)

12.Duncan SS;Valk PL;Shaffer CL J-Western forms of Helicobacter pylori cagA constitute a distinct phylogenetic group with a widespread geographic distribution 2012(06)

13.Cover TL;Dooley CP;Blaser MJ Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity 1990(03)

14.牛磊,郗洪庆,陈凛Lgr5-Wnt/β-catenin信号通路与胃癌干细胞的研究进展[期刊论文]-解放军医学院学报 2014(12)

15.Lee IO;Kim JH;Choi YJ Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells 2010(21)

16.Matsunari O;Shiota S;Suzuki R Association between Helicobacter pylori virulence factors and gastroduodenal diseases in Okinawa,Japan 2012(03)

17.Suzuki M;Kiga K;Kersulyte D Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon 2011(34)

18.Hayashi T;Morohashi H;Hatakeyama M Bacterial EPIYA effectors--where do they come from? What are they? Where are they going 2013(03)

19.Tegtmeyer N;Backert S Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein 2011(11)

20.Safari F;Murata-Kamiya N;Saito Y Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors 2011(36)

21.Nagase L;Murata-Kamiya N;Hatakeyama M Potentiation of Helicobacter pylori CagA protein virulence through homodimerization 2011(38)

22.Ying GX;Wen Sheng LI;Xia ZL CagA+ H.pylori filtrate induces cytokine IL-8 secretion by esophageal squamous carcinoma EC 109 cells via a p38 pathway 2014(01)

23.Deng N;Goh LK;Wang H A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets 2012(05)

24.Hatakeyama M Helicobacter pylori CagA and gastric cancer:a paradigm for hit-and-run carcinogenesis 2014(03)

25.Takahashi A;Tsutsumi R;Kikuchi I SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver 2011(01)

26.Tsutsumi R;Masoudi M;Takahashi A YAP and TAZ,Hippo signaling targets,act as a rheostat for nuclear SHP2 function 2013(06)

27.Neal JT;Peterson TS;Kent ML H.pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model 2013(03)

28.Saito-Diaz K;Chen TW;Wang X The way Wnt works:components and mechanism 2013(01)

29.O'Gorman A;Colleran A;Ryan A Regulation of NF-kappaB responses by epigenetic suppression of IkappaBalpha expression in HCT116 intestinal epithelial cells 2010(01)

30.Lee KE;Khoi PN;Xia Y Helicobacter pylori and interleukin-8 in gastric cancer 2013(45)

31.Jones KR;Joo YM;Jang S Polymorphism in the CagA EPIYA motif impacts development of gastric cancer.[外文期刊] 2009(4)

32.Furth PA Cancer prevention as biomodulation:targeting the initiating stimulus and secondary adaptations 2012

33.Niller HH;Wolf H;Minarovits J Viral hit and run-oncogenesis:genetic and epigenetic scenarios 2011(02)

34.Batista SA;Rocha GA;Rocha AM Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer,but not duodenal ulcer 2011

引用本文格式:刘鹿.王林.刘纯杰.LIU Lu.WANG Lin.LIU Chunjie幽门螺杆菌毒力相关基因A及其亚型多样性与胃癌的关系[期刊论文]-解放军医学院学报 2015(6)

相关主题