搜档网
当前位置:搜档网 › MSA计数型测量系统分析指导书

MSA计数型测量系统分析指导书

MSA计数型测量系统分析指导书
MSA计数型测量系统分析指导书

莱州市XX机械有限公司作业文件

文件编号:JT/C-7.6J-004版号:A/0

(MSA)计数型测量系统

研究分析作业指导书

批准:

审核:

编制:

受控状态:分发号:

2006年11月15日发布2006年11月15日实施

计数型测量系统研究分析作业指导书 JT/C -7.6J -004

1

目的

为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统

计技术,对计数型测量系统进行分析研究,使测量结果的不确定度已知,为准确评定产品提高质量保证。 2适用范围

适用于公司使用的计数型测量仪器的测量系统的分析研究。 3职责

3.1检验科负责确定过程所需要的计数型测量仪器,并定期校准和检定,对使用的测量系统进行研究分析,对存在的异常情况及时采取纠正预防措施。 3.2工会负责根据需要组织和安排计数型测量系统分析所需应用技术的培训。

3.3生产科配合对测量仪器进行测量系统分析。 4计数型测量系统简介

计数型测量系统是一种测量数值为一有限的分类数量的测量系统,它与能获得一连串数值结果的计量型测

量系统截然不同。通/止规(go/no go gage )是最常用的

量具,它只有两种可能的结果;其它的计数型测量系统,

如目视标准,可能产生五到七个分类,如非常好、好、 一般、差、非常差。所以,针对计量性测量系统所描述的分析方法不能用于评价这样的系统。当使用任何测量系统进行决策时,都存在一定程度的风险。这些方法不能量化测量系统变异性,只有当顾客同意的情况下才能使用。选择和应用于这些技术应以基于一个良好的统计实践,了解影响产品和测量过程变差源,以及错误决定最终顾客的影响。

计数型测量系统的变差来源,应该通过利用了人为因素和人机工程学的研究结果使之最小化。 5研究分析方法

5.1某生产过程处于统计受控状态,其性能指数为Pp=PpK=0.5,这是不可

接受的。由于过程正在生产不合格的产品,于是被要求采取遏制措施,以便从生产过程中挑出不可接受的产品。见图1:

图1过程范例

5.2具体的遏制行动是,过程小组采用了一个计数型量具,来对每一个零件与一个指定的限定值进行比较。如果零件满足限定值就可接受该零件,不满足的零件则拒收(如通/止量具)。许多这样的计数型量具基于一套基准零件来设定接收与拒收。不象计量型量具,计数型量具不能显示一个零件有多好或多么坏,它只能指示该零件可接受或拒收(即2个分级。通或不通)。

1)小组使用了一个%GRR为公差的25%的特定量具。由于这还没有被小组文件化,于是需要对这测量系统进行研究。小组已决定从过

程中随机地选取50个零件,以获得涵盖了整个过程范围的零件。

2)使用三名评价人,每位评价人对每个零件评价三次。

3)设定1表示可接受的决定;0为不可接受的决定。表1中所示的参考决定和计量参考值在一开始还没有确定。表1还显示了“代码”列,

还分别用“-”、“+”、“×”代表零件是否在第I区、II区、及III区。

见表1

JT/C-7.6J-004

5.3假设试验分析-交叉表法范例

★由于小组不知道零件的参考判断值,他们开展了了交叉表格(cross-tabuiations)来比较每个评价人与其它人之间的结果。

★这些表格的目的在与确定评价人之间一致性的程度。为确定评价人一致性的程度,小组使用了(cohen科恩的)kappa,这是用来衡量两个评价人对同一物体进行评价时,其评定结论的一致性。Kappa为1时,表示有完全的一致性。为0时,表示一致性不比可能性来的好。Kappa仅用于表格,表中两个变数有相同的分类值,且两个变数具有相同的分类数量。

★Kappa一种对评价人内部一致性的测量。它测量在诊断区(获得相同评定的零件)中的数量与那些具与可能性期望的数量是否有差别。

设Po = 对角栏框中,观测比例的总和

Pe = 对角栏框中,期望部分的总和

则Kappa =(Po - Pe)/(1 - Pe)

★Kappa是一种程度而不是检验。通过使用一种渐进和标准误差以形成一个t统计值来判断其大小。通用的比例法则是Kappa值大于0.75,则表示很好的一致性(最大的Kappa值=1);Kappa值小于0.4则表示一致性不好。

Kappa不考虑评价人间的不一致量有多大,只考虑他们之间是不是一致。

★通过以上对评价人计算了Kappa程度,小组得到以下结论:

这分析表明所有评价人与其它评价人之间有良好的一致性。这种分析用来确定评价人之间是否有差异的需求。但不能告诉我们这测量系统从坏零件中挑出好零件的能力。在本分析范例中,小组使用一计量型测量系统来评价零件,并应用其结果来确定其参考决定。

★使用新的信息建立了另一组交叉表,以便将每个评价人与参考决定进行比较。

A与基准判断交叉表

B与基准判断交叉表

C与基准判断交叉表

★小组也计算了Kappa值以确定每个评价人与参考决定之间的一致性。

以上这些数据可被解释为每个评价人与标准之间有很好的一致性。然后,过程小组计算了这测量系统的有效性。

有效性=作出正确判断的次数/ 总决定次数

JT/C -7.6J -004

★ 每对评价人间多次试验的的假设可用零假设来表示:

Ho :两个评价人一致的有效性。

★ 经计算,由于每位评价人结果的计算值均落在其它人的置信度区间 内,小组决定不能拒绝零假设。这结论进一步证实了Kappa 测量得到的结论。

来源 总受检数 符合的

不相配 95%上限 计算得分 95%下限 95%95%

JT/C-7.6J-004

★为进一步分析,小组的一名成员得出下列数据表格,为每个评价人的结果提供指南:

对他们所已得到的所有信息进行汇总,小组得出以下结论:

这些结果显示,各个评价人对于该测量系统,在有效性、错误率与错误警报率上都有不同程度的结果;在所有三个项目中,没有一位评价者是以被接受的。是否需要为这过程更改其接收标准?这些风险可以被接受吗?评价者是否要更好的培训?测量的环境可不可以被改善?重要的是:顾客对着测量系统与其研究结果会有什么看法?顾客原本预期的情况是什么?

顾客是否接受这些风险。

★关注点:

1)关于可接受的风险,并没有以理论为基础的决策准则。以上指南是探索性的。并且是基于怎样才是“接受”的个别“信念”下所发展的。最终的决定准则应该取决于对后续过程和最终顾客的影响(如风险)。这是一个客观事物的决定-而不是统计上的决定。

2)上述分析是以数据为依据的。例如,如果过程能力指数为Pp=Ppk=1.00,那么所有的结论都可能是正确的,因为不会有零

JT/C-7.6J-004

件落在测量系统的II区(“灰色”区域)中。

图3 Pp=Ppk=1.00的过程范例

在这新情况下,可以得出这样的结论:所有的评价人都是可被接受的,因为将不会有决定的误差。

★通常对于交叉的结果的实际意义有一误解。以B的结果为例:

B 参考交叉表

由于检验的目的在于找出所有的不合格零件,许多人视左上角处一个测量找到坏零件的有效性。这个百分比表示将已经是坏的零件判定坏的零件的可能性:

Pr(称为坏零件一个坏零件)

假设过程已经被改进到Pp=Ppk=1.00,生产者关心的的概率是:

Pr(零件是坏的被称为怀的)

JT/C -7.6J -004

★ 从上面的数据中确定以上结果,必须应用贝叶斯Baye 的理论。

Pr (不合格\ 判不合格)=

Pr (不合格\ 判不合格)=

Pr (不合格\ 判不合格)= .11

也就是说,以上这些结果指出,如果某零件被判定为坏的,实际上它只有十分之一的可能是坏的。

★ 这种分析不必使用计量型数据信息,即是参考决定值已被确定,且为可获得时,也不需要安排这些相关的资料。

Pr (判不合格\ 判不合格)* Pr (不合格)

Pr (判不合格\ 判不合格)+ Pr (判不合格\ 判不合格)* Pr (不合格)

.938 * (.0027)

.938 * (.0027)+.020 * (.9973)

测量系统分析(MSA)方法82638

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 质管部负责测量系统分析的归口管理; 公司计量室负责每年对公司在用测量系统进行一次全面的分析; 各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 偏倚(Bias):指测量结果的观测平均值与基准值的差值。 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为。有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于有效分辨率,在99%置信水平时其标准估计值为GR&R。 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。

测量系统分析(MSA)

测量系统分析(MSA) 1目的和围 规测量系统分析,明确实施方法、步骤及对数据的处理、分析。 2规性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 3.2稳定性:是测量系统在某持续时间测量同一基准或零件的单一特性时获得的测量值总变差。 稳定性是整个时间的偏倚的变化。 3.3分辨率:为测量仪器能够读取的最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* 1.41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总的标准差 3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。%偏倚=偏倚的平均绝对值/TV。 3.5.3线性:在测量设备预期的工作量程,偏倚值的差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据的波动。测量系统分析的重点,包括:重复性和再现性 3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。再现性又被称为“评价人之间”的波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性 σ/ (USL-LSL) *100%。 公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

MSA测量系统分析作业指导书

1、目的提供一种评定测量系统质量的方法,从而对必要的测量系统进行评估,以保证本公司所使用的测量系统均能满足于正常的质量评定活动。 2、围适用于证实产品符合规定要求的所有测量系统。 3、职责品质部负责确定MSA项目,定义测量方法及对数据的处理和对结果的分析。APQP小组负责协助质量管理员完成测量系统的分析和改进。 4、定义 4.1 测量设备:实现测量过程所必需的测量仪器,软件,测量标准,标准样品或辅助设备或 它们的组合。 4.2 测量系统:是对被测特性赋值的操作、程序、量具、设备、软件、环境以及操作人员 的集合。 4.3 偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。 4.4 稳定性:经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行 测量所获得的总变差。 4.5 线性:在测量设备预期的工作(测量)量程,偏倚值的差异。 4.6重复性:用一位评价人使用相同的测量仪器对同一特性,进行多次测量所得到的测量 变差。 4.7 再现性:不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的 平均值的变差。 4.8零件间变差:是指包括测量系统变差在的全部过程变差。 4.9评价人变差:评价人方法间差异导致的变差。 4.10总变差:是指过程中单个零件平均值的变差。 4.11量具:任何用来获得测量结果的装置,包括判断通过/不通过的装置。 5、工作程序 5.1 测量系统分析实施时机 5.1.1新产品在生产初期,参见“产品实现策划控制程序”HNFH QP-08。 5.1.2控制计划中指定的检验项目每年需做MSA。 5.1.3客户有特殊要求时,按客户要求进行。 5.1.4测量系统不合格改善后需重新进行分析。

测量系统分析(MSA)

测量系统分析(MSA) 1目得与范围 规范测量系统分析,明确实施方法、步骤及对数据得处理、分析。 2规范性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测得特性进行评估,其所使用得仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设得集合;也就就是说,用来获得测量结果得整个过程。 3.2稳定性:就是测量系统在某持续时间内测量同一基准或零件得单一特性时获得得测量值总变差。 稳定性就是整个时间得偏倚得变化。 3.3分辨率:为测量仪器能够读取得最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)得十分之一。Minitab中常用得分辨率指标:可区分得类别数ndc=(零件得标准偏差/ 总得量具偏差)* 1、41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总得标准差 3.5准确性(准确度):测量得平均值就是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:就是指对相同零件上同一特性得观测平均值与真值得差异。%偏倚=偏倚得平均绝对值/TV。 3.5.3线性:在测量设备预期得工作量程内,偏倚值得差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据得波动。测量系统分析得重点,包括:重复性与再现性 3.6.1重复性:就是由一个评价人,采用一种测量仪器,多次测量同一零件得同一特性时获得得测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:就是由不同得评价人,采用相同得测量仪器,测量同一零件得同一特性时测量平均值得变差。再现性又被称为“评价人之间”得波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:就是测量系统得重复性与再现性波动与被测对象质量 σ/ (USL-LSL) *100%。 特性公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

MSA测量系统分析与结果解释

量具R&R 研究(交叉): 摘要: 每次测量过程结果时都会发现某些变异。产生这样的变异的变异源有两个:一是任何按照过程制造的部件都会存在差别,二是任何测量方法都不是完美无缺的?因此,重复测量同一部件不一定会产生同样的测量结果。 使用量具R&R 可以确定测量产生的变异性中哪一部分是由测量系统本身引起的。测量系统变异性包括由量具本身和操作员之间的变异性引起的变异。 此方法适用于非破坏性试验。当满足下列假定条件时它也可用于进行破坏性实验: (1)同一批内的所有部件都极为相似,以至于可以认为是同一种部件; (2)所有操作员都测量同一批部件。 可使用方差分析法、均值和R 法进行交叉量具R&R 研究。其中使用均值和R 法时计算更为简单,而方差分析法则更为准确。 在进行量具R&R 研究时,测量应按随机顺序进行,所选部件在可能的响应范围内提供了代表性样本,这一点非常重要。 1.1.1 数据说明 选择了十个表示过程变异预期极差的部件。由三名操作员按照随机顺序测量每个部件的厚度,每个部件测量两次。 1.1.2 方差分析法与均值-R 法的比较 由于利用控制图进行计算比较简单,因而首先产生了均值-R 法。但是,在某些方面方差分析法更为准确: (1)利用方差分析法可以研究操作员和部件之间会产生哪些交互作用,而均值-R 法却不同。 (2)利用方差分析法所用的方差分量对变异性进行的估计比使用均值-R 法的极差进行估计更准确。 1.1.3 量具R&R 的破坏性实验 量具R&R 研究的主要目的之一是要查看同一个操作员或多个操作员对同一个部件的重复测量结果是否相似。如果要进行破坏性实验,则无法进行重复测量。 要对破坏性测试应用Minitab 的量具R&R 研究,则需要假定某些部件“完全相同”,可视为同一个部件。如果假定是合理的,则可将同一批产品中的部件当作同一个部件。 如果上述情形满足该条件,则可以根据部件具体的测试方法选择使用交叉量具R&R 研究或嵌套量具R&R 研究。 如果每个操作员都要对每批部件进行检验,则使用交叉量具R&R 研究比较适合。 如果仅由一名操作员检验每批部件,则可使用嵌套量具R&R 研究。 2. 方差分析法 包含交互作用的双因子方差分析 通过双因子方差分析(方差分析)可以知道两个不同水平的因子是否可产生不同的响应变量平均值。 双因子方差分析表中列出了以下产生变异性的变异源: (1)部件,它表示由于测量不同的部件而产生的变异性。 (2)操作员,它表示由于进行测量的操作员不同而产生的变异性。 (3)操作员*部件,它表示测量过程中由于操作员和部件的不同组合而产生的变异性。如果操作员*部件项的p 值大于0.25,方差分析将在无交互作用项的情况下重新运行。 (4)误差或重复性,它表示在测量过程中不是由部件、操作员或者操作员与部件交互作用产生的变异性。

测量系统分析(MSA)方法56447

测量系统分析(MSA)方法

测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 3.1质管部负责测量系统分析的归口管理; 3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析; 3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。 4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。 4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于 有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。 4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。 4.11计量型与计数型测量系统:测量系统测量结果可用具体的连续的数值来表述,这样的测量

测量系统分析(MSA)控制程序

测量系统分析(MSA)控制程序 1 目的 对测量系统变差进行分析评价,以确定测量系统是否满足规定要求。 2 适用范围 本程序适用于证实产品符合要求的所有测量系统。 3职责 3.1 质管部负责制定测量系统分析计划并实施测量系统分析。 3.2APQP小组负责对检测能力不足的量具适用性重新进行评价。 3.3生产部配合测量系统分析工作。 4作业程序 4.1测量系统分析范围 对控制计划中规定的测量系统进行分析,也包括更新的量具。 4.2 测量系统分析的频率、计划 4.2.1对常规产品粗加工工序测量系统分析的频率为两年一次。对关键工序(四精加工)测量系统分析频率为一年一次。对于新产品粗加工工序的测量系统分析频率为一年一次,对其中的特殊特性暂定为半年一次。 4.2.2质管部负责制定测量系统分析计划,经管理代表批准后,由质管部组织生产部实施。 4.2.3新产品开发过程中根据试生产控制计划由质管部组织实施测量系统分析。 4.3 计量型量具重复性和再现性分析—(均值—极差法) 4.3.1 随机抽取10个零件,确定某一尺寸/特性做为评价样本。 4.3.2 对零件进行编号1~10,编号应覆盖且不被操作员知道某一零件具体编号。 4.3.3 指定3个操作员,每一个操作员单独地以随机动性顺序选取零件,并对零件的尺寸/特性进行测量,负责组织此项研究的人员观察编号并在表格中对应记录数值。3个操作员测完一次后,再从头开始重复测量1~2次。 4.3.4 将测量结果依次记录在?重复性极差控制图?上。 4.3.5 负责组织此项研究的人员,依据数据表和质量特性规格,按标准规定的格式出具报告。 4.3.6 结果分析 1)当重复性(EV)变异值大于再现性(A V)时,可采取下列措施: a)增强量具的设计结构。 b)改进量具的使用方式。 c)对量具进行保养。 2)当再现性(A V)变异值大于重复性(EV)时应考虑: a)修订作业标准,加强对操作员的操作技能培训。 b)是否需采用夹具协助操作,以提高操作的一致性。 c)量具校准后再进行R&R分析。 4.3.7 R&R接收准则 1)R&R<10%可接受。 2)10≤R&R≤30%,依据量具的重要性、成本及维修费用,决定是否接受。 3)R&R%>30%不能接受,必须改进。 4.4计量型量具研究极差法

测量系统分析(MSA)控制程序

【MeiWei_81重点借鉴文档】 测量系统分析(MSA控制程序 1目的 对测量系统变差进行分析评价,以确定测量系统是否满足规定要求。 2适用范围 本程序适用于证实产品符合要求的所有测量系统。 3职责 3.1质管部负责制定测量系统分析计划并实施测量系统分析。 3.2 APQP小组负责对检测能力不足的量具适用性重新进行评价。 3.3生产部配合测量系统分析工作。 4作业程序 4.1测量系统分析范围 对控制计划中规定的测量系统进行分析,也包括更新的量具。 4.2测量系统分析的频率、计划 4.2.1对常规产品粗加工工序测量系统分析的频率为两年一次。对关键工序(四精加工)测量系统分析频率为一年一次。对于新产品粗加工工序的测量系统分析频率为一年一次,对其中的 特殊特性暂定为半年一次。 4.2.2质管部负责制定测量系统分析计划,经管理代表批准后,由质管部组织生产部实施。 4.2.3新产品开发过程中根据试生产控制计划由质管部组织实施测量系统分析。 4.3计量型量具重复性和再现性分析一(均值一极差法) 4.3.1随机抽取10个零件,确定某一尺寸/特性做为评价样本。 4.3.2对零件进行编号1~10,编号应覆盖且不被操作员知道某一零件具体编号。 4.3.3指定3个操作员,每一个操作员单独地以随机动性顺序选取零件,并对零件的尺寸/特性进行测量,负责组织此项研究的人员观察编号并在表格中对应记录数值。3个操作员测完一次后,再从头开始重复测量1~2次。 4.3.4将测量结果依次记录在?重复性极差控制图?上。 4.3.5负责组织此项研究的人员,依据数据表和质量特性规格,按标准规定的格式出具报告。 4.3.6结果分析 1)当重复性(EV)变异值大于再现性(AV)时,可采取下列措施: a)增强量具的设计结构。 b)改进量具的使用方式。 c)对量具进行保养。 2)当再现性(AV)变异值大于重复性(EV)时应考虑: a)修订作业标准,加强对操作员的操作技能培训。 b)是否需采用夹具协助操作,以提高操作的一致性。 c)量具校准后再进行R&R分析。 4.3.7R&R接收准则 1)R&R<10% 可接受。 2)10眾&R W0%,依据量具的重要性、成本及维修费用,决定是否接受。 3)R&R% >3 0%不能接受,必须改进。 4.4计量型量具研究极差法 4.4.1随机抽取5个零件确定某一尺寸/特性做为评价样本。 4.4.2指定2名操作员对5个零件的某一尺寸/性进行测量,并把测量结果填入?测量系并联析极差法统计表?中 4.4.3负责组织此项研究的人员依据数据表和质量特性规格对测量结果进行分析,并出具报告 4.4.4R&R接收准则同4.3.7 4.5计数型量具小样法分析

相关主题