搜档网
当前位置:搜档网 › 氮化基本原理及操作指南

氮化基本原理及操作指南

氮化基本原理及操作指南
氮化基本原理及操作指南

氮化基本原理及操作指南

本人多年从事氮化炉的安装及工艺调试工作,总结了一些氮化操作原理和要点,和大家一起讨论,请大家多多指教。

氮化基本原理及操作指南(仅供参考)

一、概论:

1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。

2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。

3 、氮化过程:氮化共有三个过程:

( 1 )氨的分解

随着温度的升高,氨的分解程度加大,生成活性氮原子。

2NH3 →6H + 2 [ N 〕

( 2 )吸收过程

钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。

2mFe + 2 [ N 〕→2FemN

( 3 )扩散过程

氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。

二、工件如何进行氮化

1 、组织准备

氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。

2 、气密性检查

氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。

3 、工件工作面的抛光清洁

要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。

4 、防止工件局部氮化

有些工件某些部位不需要氮化,可以用以下几种方法加以防止。

( 1 )镀金属法a , b (略)

( 2 )涂料法a , b , c , d (略)

5 、通入氨气前应注意事项

( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。

( 3 )进行设备的漏气检查

氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。

( 4 )检查漏气

①用酚酞试纸浸湿后放在怀疑的漏气处,试纸变为红色就证明漏气现象。

②用盐酸棒蘸,产生白色烟雾。③硫磺棒,产生白烟等方法。

三、氮化过程的操作

1 、升温

用挂具将零件和试样装入罐中,封闭炉盖。对于有风扇的氮化炉可将风扇打开,把氨气瓶中液氨经过减压阀,通过氨柜(氨气干燥柜)通入炉内,流量在500 一15O0L / h ,使进气压力达到20 一100mmH2O(或200 一1000P ) ( U 型压力计如何使用:把水注入U 型压力计中,把炉盖上炉气接入U 型压力计一个接口,炉内有压力就会形成一个水压差,其差值就是炉压:毫米水柱。用氨气将氮化罐和管道中的空气充分排出稀释。当罐内空气量< 5 %左右或分解率为零时才允许升温。这时可降低氨气流量,维持炉内有一定的正压,保证零件不被氧化即可。

在升温过程中,对于不复杂的、变形要求不严的零件,升温速度可不控制;对形状较复杂、易变形的零件,如大齿轮等,可采用阶梯升温方法,以减少零件的变形。

当护温为450 ℃左右时,就要拉制升温速度,不要太快,以免造成保温初期超温现象。同时,应加大氨气流量,使分解率控制在工艺要求的下限。这样,到温后分解率就会保持在要求的范围内,以便零件吸收氮原子,迅速提高表面层的氮浓度。在到温前5 一10 ℃时或到温初期,都应校正温度。氮化温度以罐内温度为标准

2 、保温

当氮化罐内达到要求温度时,氮化过程就进入保温阶段。根据氮化工艺规范,调节氨气流量,保持温度和分解率的正确和稳定。氮化工艺可根据情况采用等温氮化、二段氮化或兰段氮化。保温初期,当测得分解率在要求范围时,记下此时的氨气进气和排气压力。在保温过程中,应尽量保持压力不变,同时每隔半小时至一小时测量氨气分解率一次。并将氨气分解率及其相应的氮化温度、炉压等一起记录下来。

此外,还要经常观察炉温控制系统和风扇运转是否正常;进气及排气压力是否稳定;火焰颜色、火焰长度及稳定性。炉内工作情况,通常由流量计、压力计和冒泡瓶反映出来。

在操作过程中,若发现氮化罐和炉内管道焊缝破裂漏气时,要立即停电降温,重新换罐装炉。

3 、冷却

保温结束、停电降温时,必须继续通氨气,保持炉罐有一定的正压,防止空气进入使零件表面产生氧化色。

对于一般零件,当罐内温度降到450 ℃以下时,可将炉门打开加速冷却。对变形要求较严的零件,可随炉降炉。当罐内的温度降到200 ℃及200 ℃以下时(视工件大小摆放),便可停风扇,断绝供给氨气。过一段时间然后打开炉盖,取出零件及试样,进行氮化层的质量检查,必要时检查零件的变形量。

四、氮化操作应注意的五个方面:

1 、在氮化过程中除了保证炉温均匀一致和固定不变外,应集中注意氨的分解率,而氨的水柱高和流量只作为校正的参考。

2 、注意钢瓶内存留的液氨量,以保证氮化的顺利进行,称重差数即为液氨的重量(正在氮化时,可用手在筒外壁测试,手感冷的位置线以下即为液氨储量)。

3 、氨的分解率水测瓶(俗称泡泡瓶)使用300 一400 次后,由于氨的影响,会使水测瓶壁发生白色乳状细小粉末,用10v0 盐酸溶液清洗,以保证分析器的清晰。

4 、输氨管、系统中管子的接头处,应用橡皮或锡做成垫圈。

5 、氮化罐内的吊钩等物如用普通钢作成的最好镀镍后再用,否则会发脆。

五、操作中可能出现的问题与补救方法:

1 、氨流中断,现象― 水测瓶停止冒出泡泡。

原因:( l )干燥箱的干燥剂(吸水达到饱和);

( 2 )降压器前段的管道为杂物所阻塞;

(3 )或是呼料息的进气端为杂物所阻塞?

2 、氮化罐及导管漏气。

应立即断绝热源,加大氨流量,使工件较快冷却下来,至180℃左右出炉,如在发现漏气的同时而氧化罐内的温度又突然升高,氮化箱中发生了燃烧,必须尽可能地加大氨的压力和流量,至180 ℃左右这就很可能是把氮化罐内的危险气体排出去。

3 、氨的分解率

控制氨的分解率,主要调节减压阀和针形阀(流量计阀),同时校正氮化罐内的压力。

分解率为10 一40 %时活性氮原子多,零件表面可大量吸收氮。分解率超过60 %则气氛中的氢含量高达52 %以上,将产生脱氮作用,此时不仅活性氮原子数量减小,而且大量氢分子和氮分子停滞于零件表面附近,使氮原子不易为表面所吸收,从而使零件表面含氮量降低,渗氮层深度也减薄。氨分解率对渗氮层硬度与深度的影响,主要表现在渗氮初期几个小时内,如果早期的5 一10 小时以内,以低的氨分解率(15 一30 % )渗氮,随后即使将分解率提高到60 %以上保温,对渗层深度与硬度影响仍旧不大。4 、氨的分解率不正常( 1)氨的分解率太低的原因:氨的流量太大或流速太低,还可能是温度太低,也可能是温度计不正确,指示温度较实际温度高。

( 2 )氨的分解率太高,也可能是温度计不准确,指示温度较实际温度为低。如在氮化过程中温度并未变动,而氨的分解率突然增高,则可能是钢筒内的液氨蒸发完毕,或因蒸发太快钢筒内凝霜,这时应立即把备用的液氨筒(瓶)的阀门打开,使氨继续供应。凝霜的钢筒用温水冲开。如确系用完应及时替换。

5 、氮化炉出了故障或电源突然中断

无论是炉子本身的故障(如电热丝熔断,燃烧器喷嘴阻塞等),或工厂因故障停电使炉子停止加热时,仍继续向炉罐通氨气,修复供电后再升到规定温度,并应适当增加保温时间。

6 、硬度不高

氮化工件硬度不高的原因,可能为:

( 1 )氮化温度太高或者在氮化过程中温度一度升高;

( 2 )氨的分解率太高,可能是温度过高,也可能是氮化箱内存在的“触媒”物而引起的;

( 3 )氮化层太浅,氮化时间太短;

( 4 )氮化钢不合规定。

7 、产生不正常变形

氮化工件变形的主要原因是氮化前没有彻底消除加工应力和工件本身构造不

对称而造成的,;但是氮化温度过高或采用分段氮化也是发生变形有因素(采取相应措施)。

8 、氮化层硬度和深度不均匀

( 1 )罐内氨气分布不均匀…

( 2 )炉内各部分温度不均匀;

( 3 )氮化箱太大工件装的不好,位置不恰当;

( 4 )工件表面不清洁有污物存在。

9 、氮化层表面很脆或有裂纹

这主要是组织粗大或者是预先热处理,使工件表面脱碳,致使表面层含氮浓度过高而又突然过渡故使表面组织脆性增加大而产生裂纹甚至剥落以降低表面的氮浓度。

氮化规范对氮化层质量的影响

1 、温度影响

氮化后的硬度主要由氮化物的弥散度亦即它的尺寸、大小所决定的,氮化温度愈高,氮化物的弥散度减小,氮化层的硬度随之降低,若温度超过595 ℃时,氮化物强烈的聚集长大,表面硬度显著降低。故表面以获得高的硬化层为目的氮化处理都不宜选择太高的氮化温度,一般都在500 ℃左右,最高不超过530 ℃。如果氮化温度选择太低,氮化速度慢,要求一定氮化深度的时间势必很长。

随着氮化温度的升高,氮原子扩散速度显著增大,使氮化层深度增加。为得到一定氮化层深度,提高氮化温度,可以缩短氮化周期,如二段氮化和三段氮化,提高第二段的温度就是为了加快氮化速度。

氮化层的重量增加反映氮原子的渗入量。

氮化温度对零件变形影响很大,在相同氮化时间内,氮化温度愈高,氨分解率愈大,活性氮原子愈多,并且容易向零件表层扩散,因而氮化层愈深,变形也愈大,一般氮化后外径尺寸都胀大0.01~0.03mm。

2 、时间影响

氮化保温时间主要决定氮原子渗入的深度,但是氮化时间的选择与温度有密切的关系。为了得到同样深度的氮化层,如果把氮化温度提高一些,氮化时间就可大为缩短。

3 、氨的分解率的影响

氨的分解率是氮化过程中的一个重要工艺参数,它表示在某一温度下分解的N2 、H2 混合气体占炉中气体(主要指未分解的氨气和已分解的N2 、H2 气体三者的总和)体积的百分比,即表示炉内氨的分解程度。分解率的大小取决于氮化温度,氨气的流量进气和排气压力(与排气管插入液面下的深度有关)以及零件的氮化表面有无催化剂等因素。

( 1 )氮化温度和氨的分解率合理范围

随着氮化温度的升高,分解率增大,氮化时一般把氨的分解率控制在巧一65 %范围以内,若分解率>80%,由于炉中氢气浓度很高,吸附在零件表面,反而影响渗氮。

氮化温度和氨的分解率合理范围(仅供参考)

氮化温度(。c ) 500 510 525 540 600

氨分解率(% ) 15 ~25 20 ~30 25 ~35 35~50 45~60

( 2 )当氮化温度一定时,氨的流量愈大则分解率愈低,氨的流量愈小则分解率愈高,因此,一探温过程中经常采用调节氨气流量,将分解率控制在合适的范围内,若延长氨气在炉内停留时间,可使分解率增大。

LF精炼炉工艺技术操作规程

一、原辅材料技术(质量)要求 1、石墨电极材质要求 1)电极直径:φ350mm或φ400mm 2)电极长度:1800mm 3)体积密度:1.74g/cm3 4)单重:301kg或393kg 5)电阻率:4.4 2、埋弧渣 1)主要理化指标 2)使用方法: a、质量要求较高的钢种应采用无渣工艺,或扒去初炼炉渣重新造精炼渣。 b、出钢过程中应向钢包内加入脱氧剂,使钢中溶解氧含量≤10ppm,TFeO<1.0%。 c、到LF工位,加精炼渣料后给电,加热熔化后再加入埋弧渣。按3—5kg/t钢(交流钢包炉)或5—8kg/t钢(直流钢包炉)加入,具体根据发泡高度确定。 d、加入埋弧渣后,要有氩气搅拌,氩气流量控制在3—5NL/min。 3、合金包芯线 1)钙铁包芯线主要理化指标(使用量0.5kg—1.0kg/t钢)

2)铝线和金属钙线等主要技术条件 3)硅钙线成份要求: 4、预熔型精炼合成渣的作用及主要理化指标 1)主要理化指标 2)使用方法: 加入量为5—7kg/t钢左右,出钢前全部加入钢包底部。也可分两次加入,先包底加入50%,剩余部份随钢流加入,LF炉视情况进行少量调整,具体加入量根据现场工艺条件决定。 二、LF炉主体设备 1、变压器及二次回路 2、电极、电极提升柱及电极臂 3、炉盖及抽气罩 4、吹氩搅拌系统 5、钢包及钢包运输车 6、渣料、合金加入及称量系统

三、LF炉工艺流程 80吨顶底转炉挡渣出钢(全程吹氩)吹氩站吹氩测温、定氧、取样喂铝线测温、定氧、取样钢包吊运到LF炉精炼站钢包车上进准备位测温预吹氩钢包入加热位加热、造渣调成份取样、测温定氧喂线、软吹氩(喂钙铁线或硅钙线)加保温剂连铸 四、白渣精炼工艺要点 1、主要化学反应 1)石墨电极与渣中氧化物反应: C+(FeO)=【Fe】+{CO} C+(MnO)=【Mn】+{CO} 上述反应不仅提高了熔渣的还原性,而且还提高合金吸收率,生成CO使LF炉内气氛更具还原性。 2)脱硫反应式为: 【FeS】+(CaO)=(CaS)+ (FeO) 脱硫能力用分配系数Ls表示: Ls=(S)%/【S】% 当溶解氧不变时,硫的分配系数随(CaO)的增大而增大,随(FeO)、(SiO2)的增加而减少。 2、白渣精炼工艺要点 1)挡渣出钢,控制吨钢水下渣量不大于5kg/t。

工艺运行操作规程

目录 一、工艺简介--------------------------------------------------------02 二、预处理系统-----------------------------------------------------04 三、臭氧催化系统--------------------------------------------------0 6 四、水解酸化工艺--------------------------------------------------0 8 五、接触氧化工艺--------------------------------------------------1 0 六、芬顿流化床-----------------------------------------------------13 七、加药系统--------------------------------------------------------16

八、污泥脱水系统--------------------------------------------------1 9 九、水质化验分析--------------------------------------------------2 1 十、工艺巡视--------------------------------------------------------45 十一、机械设备-----------------------------------------------------47 十二、设备维护和保养--------------------------------------------50 附:工艺设备表

45万吨年丙烷脱氢制丙烯(PDH)装置工艺操作规程(UOP C3 Oleflex 工艺)

45万吨/年丙烷脱氢制丙烯(PDH)装置 工艺技术规程 (UOP C3 Oleflex 工艺) 2018年11月13日

目录 1 预处理工段 (1) 2 丙烷脱氢反应工段 (1) 3 催化剂再生工段 (4) 4 冷箱分离工段 (8) 5 SHP工段 (9) 6 精馏工段 (9) 7 PSA工段 (10) 8 全厂系统(蒸汽凝液系统) (12) 9 丙烷低温储罐及其辅助系统 (12) 10 中间罐区 (13) 11 火炬 (14) 12 空压站及氮气辅助系统 (17) 13 本项目涉及的主要化学反应 (19)

1 预处理工段 来自新鲜丙烷进料加热器(21E0601)的新鲜丙烷原料先进入进料保护床(21D0101-1/2),在此用树脂吸附剂除去氮化物和有机金属化合物。这两台保护床可以通过调整进出料管道来改变两台保护床的前后。接着丙烷原料流过汞脱除器(21D0102)除汞,然后进入进料干燥器(21D0103-1/2))以脱除原料中的水分(原料中如果含水将在分离系统结冰,就可能堵塞系统。这两台干燥器一般在系统开车时用来干燥进料,正常运行时可不用。进料干燥器装填分子筛以从丙烷中脱除水分。 进料干燥器设计为每周再生一次,再生用干燥的丙烷气来完成,丙烷在进料干燥再生蒸发器(21E0120)中用蒸汽先加热到60℃,然后用原料干燥再生过热器(21E0122)加热到232℃左右,以与丙烷进料相反的方向进入进料干燥器去再生干燥床层,然后进入进料干燥再生冷凝器(21E0102),被冷凝后送到进料干燥再生收集器(21D0104),在此水与再生丙烷分离,丙烷用进料干燥再生泵(21P0101)输送到在线操作的干燥器入口,废水送至反应工段与含硫废液混合后一并送至含硫/盐污水处理装置处理。 2 丙烷脱氢反应工段 (1)原料预热及反应 自冷箱分离工段回收冷量后的原料丙烷送至热联合进料换热器(21E0201-1/2/3/4)内与出反应器的粗产品气进行换热进一步提高进料温度同时降低粗产品的温度。预热后的原料气中注入少量的二甲基二硫。经预热的物料经过进料加热炉(21F0201),加热至~615℃后自反应器底部进入第一反应器(21R0201),原料气穿过反应器内件与反应器顶部流下的催化剂接触后发生脱氢反应。从第一反应器出来的物料进入第一中间加热炉(21F0202)。由于脱氢反应是吸热反应,因此需要在过程中补充物料放出的热量。物料再次被加热至~622℃后进入第二反应器(21R0202)继续进行脱氢反应,之后物料依次进入第二中间加热炉(21F0203)、第三反应器(21R0203)、第三中间加热炉(21F0204)、第四反应器(21R0204),从第四反应器出来的反应粗产品再次经过热联合进料换热器中与混合原料换热回收热量后,送至反应产物压缩部分。 在反应物料依次进入反应器的同时,来自催化剂连续再生工段的净化气(从

渗氮与氮化处理

渗氮 渗氮,是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。常见有液体渗氮、气体渗氮、离子渗氮。传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,保温较长时间后,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。如果在渗氮过程中同时渗入碳以促进氮的扩散,则称为氮碳共渗。常用的是气体渗氮和离子渗氮。 原理应用 渗入钢中的氮一方面由表及里与铁形成不同含氮量的氮化铁,一方面与钢中的合金元素结合形成各种合金氮化物,特别是氮化铝、氮化铬。这些氮化物具有很高的硬度、热稳定性和很高的弥散度,因而可使渗氮后的钢件得到高的表面硬度、耐磨性、疲劳强度、抗咬合性、抗大气和过热蒸汽腐蚀能力、抗回火软化能力,并降低缺口敏感性。与渗碳工艺相比,渗氮温度比较低,因而畸变小,但由于心部硬度较低,渗层也较浅,一般只能满足承受轻、中等载荷的耐磨、耐疲劳要求,或有一定耐热、耐腐蚀要求的机器零件,以及各种切削刀具、冷作和热作模具等。渗氮有多种方法,常用的是气体渗氮和离子渗氮。 钢铁渗氮的研究始于20世纪初,20年代以后获得工业应用。最初的气体渗氮,仅限于含铬、铝的钢,后来才扩大到其他钢种。从70年代开始,渗氮从理论到工艺都得到迅速发展并日趋完善,适用的材料和工件也日益扩大,成为重要的化学热处理工艺之一。

气体渗氮 一般以提高金属的耐磨性为主要目的,因此需要获得高的表面硬度。它适用于38CrMoAl等渗氮钢。渗氮后工件表面硬度可达HV850~1200。渗氮温度低,工件畸变小,可用于精度要求高、又有耐磨要求的零件,如镗床镗杆和主轴、磨床主轴、气缸套筒等。但由于渗氮层较薄,不适于承受重载的耐磨零件。 气体参氮可采用一般渗氮法(即等温渗氮)或多段(二段、三段)渗氮法。前者是在整个渗氮过程中渗氮温度和氨气分解率保持不变。温度一般在480~520℃之间,氨气分解率为15~30%,保温时间近80小时。这种工艺适用于渗层浅、畸变要求严、硬度要求高的零件,但处理时间过长。多段渗氮是在整个渗氮过程中按不同阶段分别采用不同温度、不同氨分解率、不同时间进行渗氮和扩散。整个渗氮时间可以缩短到近50小时,能获得较深的渗层,但这样渗氮温度较高,畸变较大。 还有以抗蚀为目的的气体渗氮,渗氮温度在 550~700℃之间,保温 0.5~3小时,氨分解率为35~70%,工件表层可获得化学稳定性高的化合物层,防止工件受湿空气、过热蒸汽、气体燃烧产物等的腐蚀。 正常的气体渗氮工件,表面呈银灰色。有时,由于氧化也可能呈蓝色或黄色,但一般不影响使用。 离子渗氮

生产工艺和操作规程

生产工艺和操作规程 生产车间岗位职责 建湖子木实业有限公司

魔芋小结生产工艺及其说明(表式)

魔芋小结生产操作规程 序言: 根据Q/JHCG0001S-2010 制定以下操作规程 一、个人生产前清洁卫生 1. 所有员工必须穿着统一工作服、工作鞋,戴工作帽,换衣后内衣不得外露,裤脚必须塞在工作鞋里,头发和耳朵不得露在帽子外面。 2. 进入生产区域不得佩戴首饰,不得留有长指甲,每周检查一次。 3. 洗手消毒:清水洗一洗手液一清水冲洗一消毒液浸泡30秒一烘干 4. 用滚轮除去身上灰尘和毛发。 二、生产前设备检查、工具清洗消毒 1. 生产前对设备进行检查,排除故障和安全隐患。 2. 生产前工器具清洗后用消毒液消毒。 3. 设备清洗后100C蒸汽消毒。 4. 预先配好定型流槽的专用水。 5. 定型流水槽放水前清洗,检查槽壁。 6. 检查管道口是否清洁,放掉管道内的剩水,待清洁水色正常后方可放水。 三、配制工艺用水和生产用水 1. 配制定型流槽用水:1700升清水,加入1.1千克食用氢氧化钙,完全溶解。 pH 值:11.0-11.7 。 2. 配制养护水:按照6.5-7.0 ? 比例,在清水内加入食用氢氧化钙,完全溶解 pH 值:11.5-11.8 。 3. 配制塑封水:按照6.0-6.5 ? 比例,在清水内加入食用氢氧化钙,完全溶解pH 值:11.6-12.0 4. 各种工艺用水和生产用水调节pH值,用清水或食用氢氧化钙。 5. 质检人员全程监督配制过程,并且将检测和调整数据记录在案。 四、备料

1. 质检部门对每一批次原料都应该进行仔细检查,检查内容包括:产地、包装、数量、清洁度、白洁度和统一性。 2. 质检部门对每一批次原料都应该事先做小样试验,计算好膨胀倍率,将结果填写在备用原料单(货卡)上。 3. 质检部门对每一批次食用氢氧化钙以及辅料进行严格检查和测试。 4. 生产时操作工应该按照领料单说明,向仓库领取指定批号的原料及辅料。 5. 领取指定批号的原料及辅料时,应该做到两人复核。 五、投料 1. 向清洗好的搅拌桶内注入清水,至750升时质检员取第一次水样。 2. 启动循环泵,清水注至1000升时,质检员在循环泵出水口取第二次水样。 3. 当水温达到20C±2C时,打开搅拌机,一分钟后,将原料缓慢投入搅拌桶内使其充分搅拌均匀,此时循环泵将原料从底部抽出,从上部注入搅拌桶。 4. 原料搅拌7分钟时,用长柄橡皮刮板将搅拌桶边缘的原料仔细刮入搅拌桶内。 5. 原料搅拌8至10分钟,停止搅拌机,倒开循环泵,使管道内原料全部进入搅拌桶内。 6. 关闭电源,盖上搅拌桶盖子,使搅拌桶内原料静置膨胀。 7. 原料静置,按照不同的倍率,膨胀时间90分钟一120分钟。 六、食用氢氧化钙溶液配制和均质机操作 1. 按照领料单规定,向仓库领取规定数量的食用氢氧化钙。 2. 在清洁的250L容量不锈钢桶内注入20C±2C的净化水100升,加入食用氢氧化钙,充分搅拌,使食用氢氧化钙完全溶解。 3. 测定并调整食用氢氧化钙溶液,使其pH值控制在12.0-12.5之间。 4. 将符合要求的食用氢氧化钙溶液倒入离心桶内,开动搅拌使其保持均匀。 5. 将均质机、离心桶、搅拌桶,三者管道准确连接。 6. 膨胀原料与食用氢氧化钙溶液混合比为10:1,食用氢氧化钙溶液流量为:70升/小时。 7. 均质机转速650转/分钟。 七、定型流槽准备 1. 将配好的定型流槽水注入流槽加热至70C。 2. 加入300g原料溶解于水槽中。 3. 用丝网清除水中络合物,直至看不见络合物为止。 八、出丝 1. 在定型流槽的喷头上安装带有标准孔径和密度的出丝板,出丝板应该安装紧密,不能出现泄漏。

铸造工艺操作规程

铸造工艺操作规程1、目的 通过配比原铝液,提高铝锭品位,获得合格产品,满足客户需求。 2、范围 适用于铸造车间各工种,贯穿铸锭全过程。 3、设备工器具 天车、地磅、混合炉、铸造机组、扎捆机、叉车、铸锭工具。 4、材料零部件 钢带、钢带扣、除渣剂、石棉板、铸造机组配件 5安全 按渑池铝厂《安全作业规程》铸造车间各岗位《安全作业规程》执行。6、操作 6.1原铝配比 6.1.1配料前的检查和准备 a)认真分析原铝分析化验报告,联系电解车间按质量要求进行排包。 b)准备好出铝任务单,原铝衡量记录单等必需品。 6.1.2配料作业 a)根据生产的产品质量标准和原铝分析报告单确定各原铝应进的混合炉号。 b)配料时所加配料的重量用下面公式计算。 A-B 所加配料重量=—————×W

C-A 式中:A:要求达到某种成分含量的百分比。 B:铝液本身已有某种成份含量的百分比。 C:配料中所含某种成份的百分比。 W:待配铝液的重量。 6.2混合炉的进铝作业 6.2.1进铝前的检查和准备 a.检查混合炉是否符合进铝条件,各出铝口是否用塞杆加石棉套塞紧,塞杆是否固定好。 b.准备好棉手套、有机面罩、取样勺、溜槽、滑石粉等。 c.联系好天车司机做好准备。 d.检查计量设备是否准备完整,计量人员是否到位,并做好记录。 6.2.2进铝作业 a.引导抬包车准确到指定地点称重计量。 b.由倒包工将抬包扶至混合炉注铝口位置,打开限位卡子,向混合炉内注铝。 c.注铝结束后,将抬包调正,指挥天车将抬包放到抬包车上。 d.注完最后一包铝后,将倒铝口清理干净,盖好盖板。 6.3向混合炉中操作时的注意事项及维护 a.避免炉顶溅上铝液。 b.要及时扒渣和清炉。 c.要避免混合炉作熔炉用。 d.避免用电热混合炉作为燃油或燃气的炉子。

冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本

内部编号:AN-QP-HT570 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本

冲压热处理安全检查表/气体渗碳氮化炉安全检查表通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 气体渗碳氮化炉安全检查表 说明 1)井式气体渗碳氮化炉由于安装在地坑中,地坑的干燥中保证安全的重要条件,因此地坑不得有积水,渗水现象。 2)氨气有毒,抽风装置及净化装置是防止急性中毒的关键条件之一。 1 设备检查 1.1 井式气体渗碳氮化炉上方应设有抽风罩口,以备抽风。 1.2 井式气体渗碳氮化炉安装在地坑中,

LF精炼炉工艺技术操作规程

L F精炼炉工艺技术操 作规程 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

LF 精炼炉工艺技术操作规程

一、原辅材料技术(质量)要求 1.石墨电极材质要求 1)电极直径:?350mm或?400mm 2)电极长度:1800mm 3)体积密度:cm3 4)单重:301Kg或393Kg 5)电阻率: 2.埋弧渣 1)主要理化指标 2)使用方法: a.质量要求较高的钢种应采用无渣工艺,或扒去初 炼炉渣重新造精炼渣。 b.出钢过程中应向钢包内加入脱氧剂,使钢中溶解 氧含量≤10ppm,TfeO<%。 c.到LF工位,加精炼渣料后给电,加热熔化再加入 埋弧渣。按3—5Kg/t钢(直流钢包炉)加入,具 体根据发泡高度确定。 d.加入埋弧渣后,要有氩气搅拌,氩气流量控制在 3—5NL/min. 3)、合金包芯线 1)钙铁包芯线主要理化指标(使用量—t港)

2)铝线和金属钙线等主要技术条件 3)硅钙线成份要求: 4、预熔型精炼合成渣的作用及主要理化指标 1)主要理化指标 3)使用方法:加入量为5—7Kg/t钢左右,出钢前全部加入钢包底部。也可分两次加入,先包底加入50%, 剩余部分随钢流加入,LF炉视情况进行少量调整, 具体加入量根据现场工艺条件决定。 二、LF炉主体设备 1.变压器及二次回路 2.电极、电极提升 3.炉盖及抽气罩 4.吹氩搅拌系统

5.钢包及钢包运输车 6.渣料、合金加入及称量系统 三、LF炉工艺流程 80吨顶底转炉→扫渣出钢(全程吹氩)→吹氩站→吹氩测温、定氧、取样→喂铝线→测温、定氧、取样→钢包吊运到LF炉精炼站钢包车上→进准备位→测温→预吹氩钢包加热位→加热、造渣→调成份→取样、测温定氧喂线、软吹氩(喂钙铁线或硅钙线)→加保温计→连铸 四、白渣精炼工艺要点 1.主要化学反应 石墨电极与渣中氧化物反应 C+(feO)=[Fe]+{CO} C+(MnO)=[Mn]+{CO} 上述反应,不仅提高了熔渣的还原性,而且还提高合金吸 收率,生成CO使LF炉内气氛更具有还原性。 脱流反应式为: 【FeS】+【CaO】+【FeO】 脱流能力用分配系数Ls表示: Ls=(S)%【S】% 当溶解氧不变时,留得分配系数随(CaO)的增大而增大, 随【FeO】、(SiO2)的增加而减少。 2、白渣精炼工艺要点

测定三氮的基本原理和方法

实验四水体自净程度的指标 前言 各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨 (NH3)或铵 (NH4+)、亚硝酸盐 (NO2-)、硝酸盐 (NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。 一实验目的 1.掌握测定三氮的基本原理和方法。 2.了解测定三氮对环境化学研究的作用和意义。 二仪器器材 (1) 玻璃蒸馏装置。 (2) pH 计。 (3) 恒温水浴。 (4) 分光光度计。 (5) 电炉:220V/1KW。 (6) 比色管:50 mL。 (7) 陶瓷蒸发皿:100或200 mL。 (8) 移液管:1 mL、2 mL、5 mL。容量瓶:250 mL。 三实验步骤 1. 氨氮的测定——纳氏试剂比色法 (1) 原理 氨与纳氏试剂反应可生成黄色的络合物,其色度与氨的含量成正比,可在425 nm波长下比色测定,检出限为0.02 μg/mL。如水样污染严重,需在pH为7.4的磷酸盐缓冲溶液中预蒸馏分离。 (2) 试剂 ①不含氨的蒸馏水:水样稀释及试剂配制均用无氨蒸馏水。配制方法包括蒸馏法(每升蒸馏水中加入0.1 mL浓硫酸,进行重蒸馏,流出物接受于玻璃容器

工艺操作规程编写要求

生产工艺操作规程编写要求 3.1本岗位生产任务 3.1.1应明确本岗位所生产的产品。 3.1.2应明确产品的去向及用途。 3.2生产工艺流程 3.2.1工艺原理 3.2.1.1应用文字简述工艺原理。 3.2.1.2有化学反应的应写出热化学反应方程式(包括副反应)。 3.2.2工艺流程简述 3.2.2.1应明确各个生产过程的物料流向。 3.2.2.2应明确各个过程的物料名称及状态。 3.2.2.3应明确主要生产过程及设备的名称及作用。 3.2.3工艺流程方框图 3.2.3.1每个生产过程都应用方框来表示,方框内应标明过程和设备名称。 3.2.3.2按照物料流向将各方框用箭头线连接起来,并在箭头线处标明物料名称。 3.2.3.3应附主要设备一览表。 3.3生产过程工艺控制指标 3.3.1应明确原料的各项质量指标及外观要求。 3.3.2应明确产品质量指标要求。 3.3.3应明确投料配比和投料量的要求。 3.3.4应对生产过程中的各种工艺参数进行识别。 3.4.生产操作步骤 3.4.1开车前的准备 3.4.1.1应明确对操作人员资格及劳动保护的要求。 3.4.1.2对生产过程的各种电器、设备、管道、仪表、阀门等进行确认。 3.4.1.3对生产过程所用的各种原料进行确认,并对水、电、汽、冷及气系统进行确认。 3.4.1.4对工作现场环境进行确认。 3.4.1.5对消防器材进行确认。 3.4.2正常开车运行 3.4.2.1应明确各种原料的备料和计量操作过程。 3.4.2.2应明确投料先后顺序和投料所用时间及投料方法。 3.4.2.3应明确各电器及设备运行开启顺序的操作过程。 3.4.2.4在生产操作过程中,应明确温度、压力、速度、时间等各项工艺指标的控制过程。 3.4.2.5应明确物料流向的各个操作过程。 3.4.2.6应明确工艺参数的记录次数、每次间隔时间以及记录规范的要求。

氮化处理工艺守则

氮化处理工艺 QB/ZFFG04.46.56-2005 Rev.01 1、适用范围 本标准规定我厂使用的抗蚀氮化处理的工艺守则。 2、名词术语 2.1氮化 将钢铁工件置于渗氮介质中,在一定温度下加热保温,从而在工件表面形成一层以氮化物为主的渗层组织的化学热处理工艺过程。 2.2抗蚀氮化 使碳钢、一般低合金钢工件表面形成一层0.0150.060mm厚致密的、化学稳定性高的ε相组织或ε+ξ相组织,从而提高工件在一定介质中的抗腐蚀能力的气体氮化过程。 2.3有效加热区 炉膛内炉温均匀性符合热处理工艺要求的装料区域。有效加热区的确定按GB9452-88《热处理炉有效加热区测定方法》进行。 2.4炉温均匀性 在正常工作条件和额定温度下,在热稳定状态时,同一时刻在规定的测温区域内,炉温的最高值与最低值之间的偏差。 2.5热处理变形 由热处理引起的工件形状变化或尺寸的偏差。垂直于长度方向的变形叫做弯曲。 3、待氮化件 3.1待氮化件的材料 待氮化件的材料,其化学成分应符合有关国家标准、部标准或厂标准的规定。 3.2待氮化件的原始状态数据 对于待氮化件,应注明的原始状态数据包括: (1)材质代号或化学成分 (2)待氮化件的供货状态(铸件、锻件、棒料、半成品或成品件) (3)待氮化件的预先热处理状态(正火、退火、淬火+回火) 3.3待氮化件的外观、形状及尺寸 3.3.1工件的外观不允许有裂纹和影响热处理质量的锈蚀、氧化皮及碰伤。 3.3.2工件的简图或任务书,应注明主要尺寸,能准确地反映工件的形状。主要尺寸也可以通过实测获得。 4、热处理设备

4.1氮化加热设备 氮化加热设备必须满足下列要求: 4.1.1在加热设备正常装炉量的情况下,有效加热区内的允许温度偏差不得超过±15℃,且温度可以调节和控制。 4.1.2氮化炉内的气体成分要保证抗蚀氮化的要求,而且可经调节。炉子要密封,炉气要循环。所用液氨的化学成分要稳定,有害杂质少。 4.2温度测定及温度控制设备 4.2.1氮化所使用的各种加热设备都应配有温度测定及温度控制装置,加热设备中的每个加热区都应配备跟踪处理温度与时间关系的记录装置。 4.2.2热电温度测定设备的指示器经校正后,其指示器上温度读数的总误差在预定温度≤400℃时≤±4℃,在预定温度>400℃时≤±T/100℃,T为预定温度。 4.3设备的保养 为了保证设备的精度和使用性能,应遵守热处理设备的操作规程和维修制度,并保存有关记录。其中温度测定及温度控制设备应遵守质量处仪表室的有关规定。 5、作业 5.1氮化前的准备工作 5.1.1对待氮化的工件进行检查和了解,并查阅有关工艺文件 (1)了解待氮化件的质量要求 (2)了解非氮化部位的防渗措施 (3)了解钢材的牌号或化学成分、预先热处理等情况。 5.1.2检查待氮化件的外表质量 (1)氮化前工件的表面粗糙度最好在0.8μm以下。 (2)检查工件表面是否有氧化皮、锈斑、油污。有锈斑者应先进行打磨,然后用汽油清洗;无锈斑者则可直接清洗。清洗后用洁净棉纱或布擦干,在1~~2hr内就应当装炉进行氮化处理。中间停留时间越短越好。 (3)检查工件表面,不允许有碰伤、裂纹、尖角及毛刺。必要时要进行探伤检验。 5.1.3清理氮化罐,并对液氨瓶、四通阀、流量计、氨分解测定器、干燥箱、加热炉及温度测控仪表等设备的状态作严格的检查,保证设备良好、管路畅通。 5.1.4根据工件的形状及技术要求,准备好必要的工夹具。 5.2装炉 5.2.1对工件进行绑扎。绑扎工件的铁丝和工夹具必须洁净。 5.2.2非氮化部位可用镀铜或镀锡保护,也可涂敷涂料(常用水玻璃+10~~20%石墨粉,涂层1~~1.5μm)。

LF炉基本操作规程

精炼炉工艺技术操作规程 一、精炼处理前准备工作: 1.检查各系统运行是否正常。 2.检查事故坑内是否有积水或潮湿残渣,如有,须处理后方许接收钢水精炼。3.检查各种原材料、操作工具的准备情况,确认各高位料仓品种及各类铁合金成份。 4.如电极不够长,电极缝≥3mm,须松长或更换电极。更换电极时应用压缩空气吹干净电极夹头、电极接头处,注意防止松错电极夹头。 5.了解钢包使用情况,确认包号、包龄。 6.确认电炉出钢量、终点成份、炉后合金化所加合金、渣料、增碳剂品种及数量。 二、基本工艺流程: (一)送电前操作: 1.钢包入精炼位,确认氩气管接好,钢包工已下车后,吹氩,氩气按流量300-400l/min,压力0.2-0.3MPa控制,吹破渣层进行钢渣搅拌,搅拌时间不大于半分钟。 2.如发现钢包不透气或透气不良,可打开事故阀,氩气开直通;如不透气,将钢水温度升至≥1570℃,观察透气情况,如仍不能满足冶炼要求,将钢包车开至吊包位联系调度换包。 3.如须加热处理另一包钢水而导致不能及时入加热位,吹通后将氩气流量调至100-200 l/min,随时观察透气情况,钢包在吊包位停留时间不得大于20分编制:审核:批准:

钟,以防止因温度低透气砖堵塞。 4.如炉渣冷冻结盖,氩气不能冲开时,用压渣砣压开;若压不开,则在包中放入500kg左右冷料,铺平后撒上电石(或用氧气将渣盖吹开),手动起弧加热,电流从5000A左右逐步增加,以防止折断电极。 5.钢包开至加热位,锁紧钢包车定位装置,降包盖。在保证包盖水平的情况下,尽量降低,以其中一边贴钢包沿为准。 (二)加热及调整成份: 1.根据脱氧情况加入0.2-0.4kg/t硅粉(或其它扩散脱氧剂),关上炉门,采 用一档功率供电,每炉补加活性石灰150-300kg,萤石50-100kg,铝矾土50-100kg,保证炉渣碱度大于3.0,厚度50-80mm。 2.送电过程氩气流量按150-200 l/min控制,以电极有轻微窜动,电流曲线呈 微正弦线为准,不许关闭氩气。 3.加热4-7分钟后,停电,抬起电极,调整氩气流量为200-300 l/min,搅拌 1分钟后测温,温度须大于1530℃时取样①。 4.继续送电提温,根据钢种吊包温度、钢水量、钢包状况、生产节奏调整供电 曲线。 5.样回,停电。根据①样分析结果并对照炉后合金化计算值(如成份波动较大, 须重新取样),调加合金或增碳剂,将成份调至钢种规格下限,并根据炉渣脱氧情况、硫含量调加渣料及脱氧剂,保证白渣及炉渣流动性。 6.送电,根据加入合金数量及钢水温度选择合适的供电曲线及送电时间。 7.停电,适当提高氩气流量搅拌1分钟后测温、取样②,根据温度决定送电曲 线。

氮化基本原理及操作指南

氮化基本原理及操作指 南 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

氮化基本原理及操作指南(仅供参考) 一、概论: 1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。 2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的 活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。3 、氮化过程:氮化共有三个过程: ( 1 )氨的分解 随着温度的升高,氨的分解程度加大,生成活性氮原子。 2NH3 →6H + 2 [ N 〕 ( 2 )吸收过程 钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。 2mFe + 2 [ N 〕→2FemN ( 3 )扩散过程 氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。 二、工件如何进行氮化 1 、组织准备 氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。 2 、气密性检查 氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。 3 、工件工作面的抛光清洁 要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。 4 、防止工件局部氮化 有些工件某些部位不需要氮化,可以用以下几种方法加以防止。 ( 1 )镀金属法a , b (略) ( 2 )涂料法a , b , c , d (略) 5 、通入氨气前应注意事项 ( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。 ( 3 )进行设备的漏气检查 氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。 ( 4 )检查漏气

工艺安全操作规程

工艺安全操作规程 1

工艺安全操作规程 1.目的 为使污水、污泥处理工艺在受控的条件下得以有效控制和管理,保证生产过程的有效性,特制订本工艺规程。 2.适用范围 2.1 本规程适用于徐州创源污水处理有限公司睢宁污水处理厂的污水、污泥处理的工艺控制。 2.2 当进水水质COD cr≤150mg/l、BOD5≤60mg/l、SS≤150mg/l时,将导致工艺负荷过低,使工艺流程在低于正常负荷状态下运行,后续处理过程失去负荷基础,本规程规定的工艺过程控制不再适用,不能完全按本规程控制相应过程指标,仅需控制最终出水相应指标的处理质量达标。 1.职责 1.1生产部负责实施及现场的操作、记录。 1.2化验室负责化验分析各项项目、指标。 2.工作程序 4.1 工艺规程基本要求 1. 在工艺过程和结果的监控中,所要求的进水、曝气池、出水、脱水前污泥、脱水后污泥化验分析项目、指标及结论由化验室记录在<徐州 1

创源污水处理有限公司水质监测记录表>。 2. 在工艺过程和结果的监控中,所要求的仪表指示值由运行人员在本规程规定时间从现场仪表读取瞬时值并记录在相应工艺记录表格中。 3. 在工艺过程和结果的监控中,本规程所要求的其它项目由相应人员按要求记录在指定表格中。 4.2 工艺调整 当出现以下情况时,应进行工艺调整: (1) 工艺过程和结果中出现了不合格品时; (2) 关键工艺设备出现故障超过本规程允许限度,影响工艺有效性时; (3) 有特殊要求时; (4) 工艺过程出现明显异常时; (5) 停电时。 4.3 工艺调整应填报<工艺调整单>,按要求调整并作好记录。工艺设备的启停、工况调整、备用设备更换等操作由运行人员按<设备操作规程>执行。 4.4 工艺规程工艺概述 A2/O处理工艺主要包括预处理系统、生物处理系统和污泥处理系统三个部分。 预处理系统是借助物理法作用原理,采用机械阻隔及重力沉降方式来去除污水中大块漂浮物和可沉固体物。相应构筑物及处理设备有粗、细格栅及其设备、原水泵房及原水泵、曝气沉砂池及其设备。 生物处理系统是活性污泥法处理系统。由曝气池及其设备、污泥回 2

氮化处理

氮化处理 氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。 目录 1简介 2技术流程 1. 2.1 渗氮前的零件表面清洗 2. 2.2 渗氮炉的排除空气 3. 2.3 氨的分解率 4. 2.4 冷却 3气体氮化 4液体氮化 5离子氮化 6相关标准 1简介 传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。 一般常用的渗氮钢有六种如下: (1)含铝元素的低合金钢(标准渗氮钢) (2)含铬元素的中碳低合金钢SAE 4100,4300,5100,6100,8600,8700,9800系。 (3)热作模具钢(含约5%之铬)SAE H11 (SKD – 61)H12,H13 (4)铁素体及马氏体系不锈钢SAE 400系 (5)奥氏体系不锈钢SAE 300系

(6)析出硬化型不锈钢17 - 4PH,17 – 7PH,A – 286等 含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。 2技术流程 渗氮前的零件表面清洗 大部分零件,可以使用气体去油法去油后立刻渗氮。部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。此时宜采用下列二种方法之一去除表面层。第一种方法在渗氮前首先以气体去油。然后使用氧化铝粉将表面作abrasive cleaning 。第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。 渗氮炉的排除空气 将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。 排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。其所使用的气体即有氨气及氮气二种。 排除炉内空气的要领如下: ①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。 ②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。 ③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。 氨的分解率 渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。 虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。

LF钢包精炼炉工艺技术操作规程

LF钢包精炼炉工艺技术操作规程 编号:5-JA-LG-233 一、工艺流程 精炼前的准备→转炉出钢加料→行车吊运→坐入钢包车→连接吹氩管→钢包开至精炼工位→下降炉盖→降电极加热→测温取样→加第一批脱氧剂及补充渣料→合金微调加第二批脱氧剂(渣白)→测温调整供电制定→精炼控制温度→喂丝→软吹氩→加保温剂→吊包至连铸 二、精炼操作程序 1、精炼前的准备 (1)、按设备操作规程认真检查相关设备是否正常; (2)、检查各种渣料合金、脱氧剂的数量及质量是否符合要求(炼优质及合金钢时合金应烘烤干燥); (3)、检查测温及取样系统仪器工具是否正常; (4)、检查喂丝机是否正常,各包芯线数量是否满足要求; (5)、检查水冷炉盖内部溅渣情况及是否漏水,炉盖升降是否正常,各气动阀门动作正常; (6)、检查电极的长度及侵蚀情况,升降是否正常; (7)、各种生产工具器具是否准备完备; (8)、氩气系统及各种能源介质系统的检查; (9)、加料系统的检查; (10)、各种仪表显示是否正常指示信号是否正常; (11)、了解当班的生产计划及品种安排; (12)、了解转炉的生产情况(包括出钢温度及成份、下渣情况);(13)、了解钢包情况; (14)、了解连铸生产情况; 2、出钢加渣料及合金 为缩短精炼时间,转炉出钢时可加入部分合金及渣料,锰按中下线控制,硅按下线控制; 3、行车吊运坐入LF炉钢包车,连接吹氩管; 4、钢水精炼 (1)、确认炉盖下降所具备的条件,降下炉盖; (2)、中高档电压送电2-5分钟后,测温取样及时送检; (3)、加第一批脱氧剂及部分渣料;

(4)、化验结果报回成份微调,加入第二批脱氧剂; (5)、根据测温结果调整供电制度(过程温度控制按高于处理目标温度10℃左右控制,需深度脱硫的炉次可适当提高温度10-20℃);(6)、渣量配比及造渣制度 ①.渣料配比:石灰:萤石=5-6:1(或加入专用精炼渣); ②.造渣制度:一般钢,渣料加入量:10-15千克/吨钢,深脱硫钢渣料加入量15-20千克/吨钢(全部渣量不超过25千克/吨钢,包括转炉下渣量); (7)、白渣操作 ①.加料3-5分钟第一批融化良好,加入第一批脱氧剂(加入总量的三分之二),当加料成分微调后此时钢渣应变黄白色,同时泡沫渣已形成接着加入第二批脱氧剂(加入总量的三分之一)约3-5分钟后,钢渣应全部变为白渣(有些低碳钢种渣呈黄白色); ②.精炼期至渣料变白的时间约为10-15分钟,保持白渣时间应大于10分钟; (8)、合金调整 ①.合金成分调整应在黄白渣或白渣条件下进行; ②.合金加入顺序应按元素活泼程度的先后顺序加入; ③.合金加入量计算 加入量=钢水量*(目标值-实际值)/合金元素含量*收得率; ④.合金元素含量控制遵守以下原则: 合金元素调整按规格中线控制,连浇炉次钢水成份要考虑上、下炉次间成份偏差,〔C〕≤0.02%,〔Mn〕≤0.10%,〔Si〕≤0.05%;(9)、在加入合金及增碳剂后要适当加大吹氩量(但钢渣不要破顶)。 5、温度控制 (1)、精炼期的温度控制应按照前期加热补偿后期缓慢降温(保温)的方法进行温度控制; (2)、精炼终点温度按以下公式计算: T终点=T液相线+△T 中包过热度+△T 中包温降+△T软吹氩+△T喂丝+△T 镇静降温 其中:T液相线——精炼钢种的液相线温度 △T 中包过热度——中间包浇注时的过热度(按25-30℃控制) △T 中包温降——大包到中间包的温降(第一炉取50℃,连浇炉取30-35℃) △T软吹氩——软吹氩时的钢水温降(一般按5-10℃控制)

氮化基本原理及操作指南

氮化基本原理及操作指南(仅供参考) 一、概论: 1 、氮化就是把氮渗入钢件表面,形成富氮硬化层的化学热处理过程。 2 、氮化处理:氮化处理是利用氨在一定温度下(500 一600 ℃),所分解的活性氮原子向钢的表面层渗透扩散而形成铁氮合金,从而改变钢件表面机械性能(增强耐磨性,增加硬度,提高耐蚀性等)和物理、化学性质。 3 、氮化过程:氮化共有三个过程: ( 1 )氨的分解 随着温度的升高,氨的分解程度加大,生成活性氮原子。 2NH3 →6H + 2 [ N 〕 ( 2 )吸收过程 钢表面吸收氮原子,先溶解形成氮在Q 一Fe 中的饱和固溶体,然后再形成氮化物。 2mFe + 2 [ N 〕→2FemN ( 3 )扩散过程 氮从表面饱和层向钢内层深处进行扩散,形成一定深度的氮化层。 二、工件如何进行氮化 1 、组织准备 氮化工件在氮化前,必须具有均匀一致的组织,否则氮化层质量不高,通常都是采用调质、(淬火)处理来作为预备热处理。 2 、气密性检查 氮化前应对加热炉、氮化罐和整个氮化系统的管道接头处进行气密性检查,保证氨气不漏和在管路中的畅通无阻。 3 、工件工作面的抛光清洁 要求氮化的表面要经过认真的打磨抛光(像镜面一样)及仔细的检查,氮化表面应无油迹、锈蚀、尖角、毛刺、碰伤和洗涤不掉的脏物,对于非氮化面要检查防护镀层是否完整。要氮化前清洗零件≤2 小时,先用干净棉纱擦净油污,再用汽油、酒精或四氯化碳等清洗,也可用稀盐酸或10 %碳酸钠(N 今C03 )沸腾的溶液中去油,一般在溶液中煮沸8 一10 分钟,然后用清水反复洗涤。另外组织吹干、擦千。装炉时,对于易变形零件,如杆件,最好垂直吊挂在罐中。 4 、防止工件局部氮化 有些工件某些部位不需要氮化,可以用以下几种方法加以防止。 ( 1 )镀金属法a , b (略) ( 2 )涂料法a , b , c , d (略) 5 、通入氨气前应注意事项 ( 1 )氨气(液氨):要求水、油总含量≤0 . 2 % ,氨(NH3 )含量≥99 . 8 %。( 2 )保证氨的充足供应量,以利氮化(每公斤液氨每小时可使工件表面积氮化15平方米)。 ( 3 )进行设备的漏气检查 氨气混合在空气中对人的健康有极大的危害,同时氨在空气中分布过多时(空气中混有10 一25%) ,一遇到火便会引起燃烧。故氮化房内严禁吸烟。 ( 4 )检查漏气 ①用酚酞试纸浸湿后放在怀疑的漏气处,试纸变为红色就证明漏气现象。

相关主题