搜档网
当前位置:搜档网 › 解-点差法公式在抛物线中点弦问题中的妙用

解-点差法公式在抛物线中点弦问题中的妙用

解-点差法公式在抛物线中点弦问题中的妙用
解-点差法公式在抛物线中点弦问题中的妙用

“点差法”公式在抛物线中点弦问题中的妙用

圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。

若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。

定理 在抛物线)0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0.

证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)

2(.2)

1(,2222121 mx y mx y

)2()1(-,得).(2212

221x x m y y -=-

.2)(121

212m y y x x y y =+?--∴

又0121

2122,y y y x x y y k MN =+--=

.

m y k MN =?∴0.

注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22

≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则

m x k MN

=?01.

注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且

不等于零.

例1.抛物线x y 42

=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22

-=x y C. 2

12

-

=x y

D. 122

-=x y

解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得:

21

=?-y x y ,

整理得:)1(22

-=x y .

∴所求的轨迹方程为)1(22

-=x y

.故选B.

例2.抛物线22x y =上一组斜率为2的平行弦中点的轨迹方程是( ) A. 2

1=

x (y >

2

1) B. 2

1=

y (x >

2

1) C. x y 2=(x >1) D. 12+=x y

解:由22x y =得y x 2

12=

,4

1=∴m ,焦点在y 轴上. 设平行弦的中点M 的坐标为),(y x .

由m x k MN

=?1得:4

12

1=?x ,

2

1=∴x .

在22x y =中,当2

1=

x 时,2

1=

y .

∴点M 的轨迹方程为2

1=x (y >2

1).

故答案选A.

例3.(03上海)直线1-=x y 被抛物线x y 42=截得的线段的中点坐标是___________.

解:2=m ,焦点)0,1(在x 轴上. 设弦MN 的中点P 的坐标为),(y x ,弦MN 所在的直线l 的斜率为MN k ,

则.1=MN k 由m y k MN =?0得:20=y ,

.120-=∴x 从而30=x .

∴所求的中点坐标是)2,3(.

例4.抛物线的顶点在原点,焦点在x 轴上,它和直线1-=x y 相交,所得的弦的中点在52

2=+y x 上,求抛物线的方程.

解:设抛物线的方程为)0(22

≠=m mx y ,直线与抛物线的两个交点为M 、N ,弦MN 的中点P 的坐标为),(00y x .

由m y k MN =?0得:m y =0,

.1100+=+=∴m y x

又 点),1(m m P +在圆52

2=+y x 上,

.5)1(2

2

=++∴m

m

解之得:,2-=m 或.1=m

由???=-=.

2,12mx y x y 得:.01)1(22=++-x m x 直线与抛物线有两个不同的交点,

4)1(42

-+=?∴m >0.

∴m <2-,或m >0. .1=∴m

故所求的抛物线方程为.22x y =

例5.已知抛物线x y 122=上永远有关于直线m x y l +=4:对称的相异两点,求实数m 的取值范围.

解:设抛物线上A 、B 两点关于直线l 对称,且弦AB 的中点为),(00y x P . 根据题意,点P 在直线l 上,l AB ⊥,∴

4

1-=AB k .

又x y 122=,mx y 22=,∴6=m . 由m y k AB =?0,得:64

10=?-

y ,∴240-=y .

又由m x y +=004,得:4

240+-

=m x .

点),(00y x P 在抛物线的开口内,

∴2

)24(-<)4

24(12+-

?m .

解之得:m <216-.

故实数m 的取值范围)216,(--∞.

例6. (05全国Ⅲ文22)设),(),,(2211y x B y x A 两点在抛物线2

2x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当3,121-==x x 时,求直线l 的方程. 解:(Ⅰ)y x 2

12

=

,∴)8

1

,0(,41

F p =

. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.

若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,k

k AB 1-

=.

p x k AB

=?01得:410=

-kx ,∴k

x 410-

=.

若直线l 经过焦点F ,则得:

0004

18

1y y kx +=+-=,4

10-=y ,与00≥y 相矛盾.

∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.

综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F.

(Ⅱ)当3,121-==x x 时,.102

,12

),18,3(),2,1(2

102

10=+=

-=+=

-y y y x x x B A

p x k AB

=?01得:4

1=

k .

∴所求的直线l 的方程为10)1(4

1++=x y ,即.0414=+-y x

例7.已知直线02=--y x 与抛物线x y 42=交于A 、B 两点,那么线段AB 的中点坐标是________. 解:x y 42=,mx y 22=,∴2=m . 直线的斜率为1. 由m y k MN =?0得:20=y . 代入0200=--y x 求得40=x .

∴线段AB 的中点坐标是)2,4(.

例8.直线2-=kx y 与抛物线x y 82

=交于不同的两点P 、Q ,若PQ 中点的横坐标是2,则

||PQ =____.

解:x y 82=,mx y

22

=,∴4=m .

在2-=kx y 中,20=x 时,220-=k y ,∴若PQ 中点的纵坐标是220-=k y .

由m y k AB =?0得:4)22(=-k k ,即022

=--k k .

解之得:2=k 或1-=k .

由???=-=.

8,22x y kx y 得:04)2(422=++-x k x k . 直线与抛物线交于不同的两点,

∴????

?-+=?≠.

016)2(16,

02

22 k k k

解之得:k >1-且0≠k . ∴2=k .

由???=-=.

8,222x y x y 得:041642=+-x x . 即0142=+-x x . 设),(),,(2211y x Q y x P ,则1,42121==+x x x x .

∴[

]

152)416(54)()1(||212

212

=-=

-++=

x x x x k PQ .

例9.已知抛物线C 的顶点在原点,焦点在x 轴的正半轴上,直线14:+-=x y l 被抛物线C 所截得的弦AB 的中点M 的纵坐标为2-,则抛物线C 的方程为____________. 解:x y 82=,mx y 22=,∴4=m . 由m y k AB =?0得:4=AB k .

∴AB 所在的直线方程为)4(41-=-x y ,即0154=--y x .

例10.设1P 2P 为抛物线y x =2的弦,如果这条弦的垂直平分线l 的方程为3+-=x y ,求弦1P 2P 所在的直线方程.

解:设抛物线的方程为mx y 22=(m >0). 在14+-=x y 中,斜率为4-,2-=y 时,4

3=x . ∴弦AB 的中点M 的坐标为)2,4

3(--

.

由m y k AB =?0得:m =-?-)2(4,∴8=m .

∴所求的抛物线的方程为x y

162

=.

例11.过点)1,4(Q 作抛物线x y 82

=的弦AB ,若弦AB 恰被Q 平分,则AB 所在的直线方程为_______.

解:y x =2,my x 22

=,∴21=

m . 弦1P 2P 所在直线的斜率为 1. 设弦1P 2P 的中点坐标为),(00y x .由

m x k P P =?02

11得:2

10=

x .

弦1P 2P 的中点也在直线3+-=x y 上,∴2

532

10=

+-

=y .弦1P 2P 的中点坐标为)2

5

,21(.

∴弦1P 2P 所在的直线方程为)2

1(12

5-

?=-

x y ,即02=+-y x .

例12.已知抛物线2

2x y =上有不同的两点A 、B 关于直线m x y l +=:对称,求实数m 的取值范围. 解:设弦AB 的中点为),(00y x P .

根据题意,l AB ⊥,∴1-=AB k . 又y x 2

12=

,my x 22

=,∴4

1=

m .

m x k AB

=?01,得:4110=

?-x ,∴4

10-

=x .

又由m x y +=00,得:m y +-

=4

10.

点),(00y x P 在抛物线的开口内,

∴2

)41(-

)4

1(2

1m +-?.

解之得:m >8

3.

故实数m 的取值范围),8

3

(+∞.

例13.(05全国Ⅲ理21)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论. (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上的截距的取值范围. 解:(Ⅰ)y x 2

12

=

,∴)8

1

,0(,41

F p m =

=. 设线段AB 的中点为),(00y x P ,直线l 的斜率为k ,则0212x x x =+.

若直线l 的斜率不存在,当且仅当021=+x x 时,AB 的垂直平分线l 为y 轴,经过抛物线的焦点F. 若直线l 的斜率存在,则其方程为00)(y x x k y +-=,k

k AB 1-=.

m x k AB

=?01得:410=

-kx ,∴k

x 410-

=.

若直线l 经过焦点F ,则得:

0004

18

1y y kx +=+-=,4

10-=y ,与00≥y 相矛盾.

∴当直线l 的斜率存在时,它不可能经过抛物线的焦点F.

综上所述,当且仅当021=+x x 时,直线l 经过抛物线的焦点F. (Ⅱ)当2=k 时,由(Ⅰ)知,8

10-

=x ,直线l 的方程为4

120+

+=y x y ,

∴它在y 轴上的截距4

10+

=y b ,4

10-

=b y .

直线AB 的方程为00)(2

1y x x y +--

=,即16

521-

+-

=b x y .

代入22x y =并整理得:08

5242=+

-+b x x .

直线AB 与抛物线有两个不同交点, ∴)8

52(161+--=?b >0,即932-b >0.

∴b >

32

9.

故l 在y 轴上的截距的取值范围是),329(

+∞.

例14.(08陕西文理20) 已知抛物线22x y C =:,直线2+=kx y 交C 于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N.

(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;

(Ⅱ)是否存在实数k 使0=?NB NA ,若存在,求k 的值;若不存在,请说明理由. 证明:(Ⅰ)4

1,2

12

=

==

p m y x ,设点M 的坐标为),(00y x .

当0=k 时,点M 在y 轴上,点N 与原点O 重合,抛物线C 在点N 处的切线为x 轴,与AB 平行. 当0≠k 时,由

p x k AB

=?01得:4

0k x =

.

∴8222

k

x y N ==. 得点N 的坐标为)8

,4(2

k

k . 设抛物线C 在点N 处的切线方程为)4

(82

k x m k

y -

=-

,即8

)4

(2

k

k x m y +

-

=.

代入22x y =,得:8

)4

(22

2

k

k x m x +

-

=,

整理得:08

4

22

2

=-

+

-k

km mx x .

0)(2)8

4

(

82

2

22

2

=-=+-=-

-=?k m k

km m k

km m ,

∴k m =,即抛物线C 在点N 处的切线的斜率等于直线AB 的斜率.

故抛物线C 在点N 处的切线与AB 平行.

(Ⅱ)解:若0=?NB NA ,则NB NA ⊥,即?=∠90ANB .

∴||2||2||2||MN BM AM AB ===.

4

822

00+=

+=k

kx y ,

∴8

168

4

8||2

2

2

0+=

-

+=

-=k

k

k

y y MN N .

由???=+=.

2,22

x y kx y 得0222=--kx x . 设),(),,(2211y x B y x A ,则1,2

2121-==

+x x k x x .

∴)16)(1(2

1)44

)(

1(]4))[(1(||2

2

2

2

212

212

++=

++=

-++=

k

k

k

k

x x x x k AB .

8

162)16)(1(2

12

2

2

+?

=++k k

k

. 即4

)16()16)(1(2

2

2

2+=

++k

k k .

化简,得:4

1612

2

+=

+k

k ,即42=k .

∴2±=k .

故存在实数2±=k ,使0=?NB NA .

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例(曹文红)

关于利用“点差法”求解中点弦所在直线斜率问题的教学案例 湖北省宜昌市夷陵中学 曹文红 [问题背景] 圆锥曲线的中点弦问题是解析几何中的一类常见问题。对于求解以定点为中点的弦所在直线方程问题,许多同学习惯于利用“点差法”先求直线斜率:即首先设弦的两端点坐标为),(),,(2211y x B y x A ,代入圆锥曲线方程得到两方程后再相减,从而得到弦中点坐标与所在直线的斜率的关系,使问题得以解决。此方法巧妙地将斜率公式和中点坐标公式结合起来,设而不求,代点作差,可以减少计算量,提高解题速度,优化解题过程,对解决此类问题确实具有很好的效果。但在具体应用时,由于“点差法”所必须具备的前提条件是符合条件的直线确实存在,否则就会产生增根。而学生由于认知方面的原因,对于此类问题往往只注意利用“点差法”先求直线斜率再求方程却常常忽略了检验符合条件的直线是否存在,从而走入“点差法”的误区,出现错误却无法察觉。为此,我专门设计了一节利用“点差法”求直线斜率的习题课,通过师生互动、合作探究的方式,使教学过程生动活泼,一波三折,使学生加深了对求解以定点为中点的弦所在的直线方程问题的认识,认清了产生增根的根源,找到了简便易行的检验方法,收到了较好的教学效果。 [案例实录] 1、 创设情景,提出问题 师:前面,我们已经学习了椭圆、双曲线和直线的位置关系,知道了解决这类问题的主要方法。下面请大家看问题1:已知点)2,4(M 是直线l 被椭圆19 362 2=+y x 所截得的线段的中点,求直线l 的方程。 问题提出后,犹如一石激起千层浪,学生的探究热情被激发起来,开始了对问题的探索。 2、 自主探索,暴露思维 学生求解的同时,教师在行间巡视,发现生1很快得出了结果,于是请生1上台板书: 生1:解:设直线l 与椭圆交点为),(),,(2211y x B y x A ,则有3642 121=+y x ,3642222=+y x ,

点差法

点差法(选做) 对点差法掌握不太熟练的同学建议阅读例题及变式,选做练习题,注意知二得一。 例题:过点M (1,1)作斜率为﹣1 2 的直线与椭圆C :22221(0)x y a b a b +=>>相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 . 分析:利用点差法,结合M 是线段AB 的中点,斜率为﹣ 1 2 ,即可求出椭圆C 的离心率. 解析:设A (x 1,y 1),B (x 2,y 2),则221122 1.x y a b +=,22 2222 1.x y a b +=, ∵过点M (1,1)作斜率为﹣1 2 的直线与椭圆C :22221(0)x y a b a b +=>>相交于A ,B 两点, M 是线段AB 的中点,∴两式相减可得 22212().02a b +-= ,a ∴= ∴c b ==, ∴2c e a = = .故答案为:2 . 点评:若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。一般用于已知斜率与中点坐标两者之一或两者都已知或未知,进而求解求解其它参数(离心率)的情况. 结论:在椭圆22 221(0)x y a b a b +=>>中,若直线l 与椭圆相交于M,N 两点,点P (x 0,y 0) 是弦MN 中点,弦MN 所在的直线l 的斜率是MN K ,则有:MN K .2 020y b x a =-. 变式一:已知直线与椭圆22 194 x y +=交于A ,B 两点,设线段AB 的中点为P ,若直线的斜率为k 1,直线OP 的斜率为k 2,则k 1k 2等于 分析:利用“平方差法”、线段中点坐标公式、斜率计算公式即可得出. 解析:设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).则 1202x x x +=,12 02 y y y +=,

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

点差法公式在椭圆中点弦问题中的妙用

点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--= .22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+ ,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

1.中点弦问题(点差法)

圆锥曲线常规题型方法归纳与总结 ①中点弦问题;②焦点三角形;③直线与圆锥位置关系问题:④圆锥曲线的相关最值(范围)问 题;⑤求曲线的方程问题:⑥存在两点关于直线对称问题;⑦两线段垂直问题 圆锥曲线的中点弦问题 ——点差法 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是: 联立直线和圆锥曲线的方程,借助于一元二次 方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 解题策 具有斜率的弦中点问题,常用设而不求法( 点差法):若设直线与圆锥曲线的交 点(弦的端点)坐标为 A(x i ,yj 、B(X 2,y 2),将这两点代入圆锥曲线的方程,然后两方程 相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论) 个参数。 (3)y 2=2px( p>0)与直线 I 相交于 A 、B 设弦 AB 中点为 M(x o ,y o ),则有 2y o k=2p,即 y o k=p. 经典例题讲解 一、求以定点为中点的弦所在直线的方程 2 2 例1、过椭圆x 匚 1内一点M(2,1)引一条弦,使弦被 M 点平分,求这条弦所在直线 16 4 的方程。 解:设直线与椭圆的交点为 A(x 1, y 1)、B(x 2,y 2) M (2,1)为 AB 的中点 x 1 x 2 4 y 1 y 2 2 2 2 2 2 ,消去四 如: 2 (1)笃 a 2 y b 2 1( a x o 2 阶 o 。 a b 2 2 (2)笃 y 2 1( a a b X o yo, o 2 a b 严 b 0)与直线相交于A 、B ,设弦AB 中点为M(x o ,y o ),则有 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为M(x o ,y o )则有

点差法弦长公式

点差法 1.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为 2 2的 椭圆C 相交于A 、B 两点,直线y =2 1x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 命题意图:本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强,属★★★★★级题目. 知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好本题的关键. 技巧与方法:本题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式.解法二,用韦达定理. 解法一:由 e =2 2 =a c ,得21 222=-a b a ,从而a 2=2b 2, c =b . 设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-y 22)=0, .) (2212 12121y y x x x x y y ++-=-- 设AB 中点为(x 0,y 0),则k AB =- 2y x ,又(x 0,y 0)在直线y =21 x 上,y 0=2 1x 0,

于是- 02y x = -1,k AB =-1,设l 的方程为y =-x +1. 右焦点(b ,0)关于l 的对称点设为(x ′,y ′), ?? ?-='='???????++'-='=-'' b y x b x y b x y 11 1 22 1解得则 由点(1,1-b )在椭圆上,得1+2(1-b )2=2b 2,b 2=8 9 ,1692=a . ∴所求椭圆C 的方程为2 29 1698y x + =1,l 的方程为y =-x +1. 解法二:由 e =21 ,22222=-=a b a a c 得,从而a 2=2b 2,c =b . 设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =k (x -1), 将l 的方程代入C 的方程,得(1+2k 2)x 2-4k 2x +2k 2-2b 2=0,则 x 1+x 2= 2 2 214k k +,y 1+y 2=k (x 1-1)+k (x 2-1)=k (x 1+x 2)-2k =- 2 212k k +. 直线 l :y =2 1x 过AB 的中点( 2 ,22 121y y x x ++),则 2 2 22122121k k k k +?=+-,解得 k =0,或k =-1. 若k =0,则l 的方程为y =0,焦点F (c ,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-(x -1),即y =-x +1,以下同解法一. 2.(★★★★★)已知圆C 1的方程为(x -2)2+(y -1) 2 =3 20,椭圆 C 2的方程为2 2 22b y a x +=1(a >b >0), C 2的离心率为 2 2 ,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为 圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.

抛物线点差法

抛物线点差法

————————————————————————————————作者: ————————————————————————————————日期:

点差法————抛物线中点弦问题中的妙用 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==) 2(.2) 1(,2222121 mx y mx y )2()1(-,得).(2212 221x x m y y -=- .2)(121 21 2m y y x x y y =+?--∴ 又0121 21 22,y y y x x y y k MN =+--= . m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22 ≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 m x k MN =?01. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 典题妙解 例1 抛物线x y 42 =的过焦点的弦的中点的轨迹方程是( ) A. 12 -=x y B. )1(22 -=x y C. 2 1 2- =x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21 =?-y x y , 整理得:)1(22 -=x y . ∴所求的轨迹方程为)1(22-=x y .故选B .

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

中点弦问题(基础知识)

圆锥曲线的中点弦问题 一:圆锥曲线的中点弦问题: 遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆中,以为中点的弦所在直线的斜率; ②在双曲线中,以为中点的弦所在直线的斜率; ③在抛物线中,以为中点的弦所在直线的斜率。 注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0! 1、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 2、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 例4、已知椭圆125 752 2=+x y ,求它的斜率为3的弦中点的轨迹方程。 3、 求与中点弦有关的圆锥曲线的方程 例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为 2 1,求椭圆的方程。 ∴所求椭圆的方程是125 752 2=+x y 4、圆锥曲线上两点关于某直线对称问题 例6、已知椭圆13 42 2=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。 五、注意的问题 (1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。 利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点弦问题中的妙用 广西南宁外国语学校 隆光诚(邮政编码530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在双曲线 12 22 2=- b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2 20 0a b x y k MN = ? . 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 2222 22 1 221 b y a x b y a x )2()1(-,得 .02 2 2 2 12 2 2 2 1=-- -b y y a x x .2 21 2121 212a b x x y y x x y y = ++? --∴ 又.22, 00 02 1211 212x y x y x x y y x x y y k MN = = ++--= .2 20 0a b x y k MN =? ∴ 同理可证,在双曲线 12 22 2=- b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点, 点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2 20 0b a x y k MN = ? . 典题妙解 例1 已知双曲线13 :2 2 =- x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.

点差法习题(有答案)

点差法习题 【学习目标】 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。 使用说明及学法指导】 1、通过证明定理,熟悉“点差法”的运用; 2、记住点差法推导出的公式,并熟练应用; 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、自主证明 1、定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 22 00a b x y k MN -=?. 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 22 00b a x y k MN -=?. 2、定理 在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 22 00b a x y k MN =?. 3、定理 在抛物线 )0(22≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为 MN k ,则m y k MN =?0.

点差法求椭圆中点弦

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 本文用这种方法作一些解题的探索。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)

六、点差法求轨迹方程(高中数学解题妙法)

六、点差法求轨迹方程 本内容主要研究点差法法求轨迹方程.圆锥曲线中与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为 2121 y y x x --,由此可求得弦AB 中点的轨迹方程. 先看例题: 例:已知椭圆2 212 x y +=,求斜率为2的平行弦中点的轨迹方程 . ①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有 ()()022 1212121=-+++x x y y y y x x 将③④代入得022 121=--+x x y y y x .⑤

将22 121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分) 已知椭圆2 212 x y +=,过()2,1A 引椭圆的割线,求截得的弦的重点的轨迹方程. (3)将 212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分) 整理: 圆锥曲线中与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+, 122y y y =+且直线AB 的斜率为 2121 y y x x --,由此可求得弦AB 中点的轨迹方程. 再看一个例题,加深印象 例:已知椭圆2 212 x y +=,过()2,1A 引椭圆的割线,求截得的弦的中点的轨迹方程. 解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则 221122221212222222x y x y x x x y y y ?+=?+=??+=??+=?,①,②, ③,④ ①-②得()()()()022*******=-++-+y y y y x x x x .

点差法求解中点弦问题

点差法求解中点弦问题 【定理1】 在椭圆(>>0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N 两点的坐标分别为、,则有,得又 【定理2】 在双曲线(>0,>0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又 【定理3】 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN 的中点,弦MN所在的直线的斜率为,则、证明:设M、N两点的坐标分别为、,则有,得又、、注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在、 一、椭圆 1、过椭圆+=1内一点P(2,1)作一条直线交椭圆于 A、B两点,使线段AB被P点平分,求此直线的方程. 【解】 法一:如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0,(*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x

1、x2是(*)方程的两个根,∴x1+x2=、∵P为弦AB的中点,∴2==、解得k=-,∴所求直线的方程为x+2y-4=0、 法二:设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB 的中点,∴x1+x2=4,y1+y2=2、又∵ A、B在椭圆上,∴x+4y=16,x+4y= 16、两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0、∴==-,即kAB=-、∴所求直线方程为y-1=-(x-2),即x+2y-4=0、 2、已知椭圆+=1,求它的斜率为3的弦中点的轨迹方程. 【解答】 解:设P(x,y),A(x1,y1),B(x2,y2).∵P为弦AB 的中点,∴x1+x2=2x,y1+y2=2y.则+=1,①+=1,②②﹣①得,=﹣.∴﹣=3,整理得:x+y=0.由,解得x=所求轨迹方程为: x+y=0.(﹣<x<)∴点P的轨迹方程为:x+y=0(﹣<x<); 3、(xx秋?启东市校级月考)中心在原点,焦点坐标为(0,5)的椭圆被直线3x﹣y﹣2=0截得的弦的中点的横坐标为,则椭圆方程为=1 . 【解答】 解:设椭圆=1(a>b>0),则a2﹣b2=50①又设直线3x﹣y ﹣2=0与椭圆交点为A(x1,y1),B(x2,y2),弦AB中点 (x0,y0)∵x0=,∴代入直线方程得y0=﹣2=﹣,由,得,∴AB

点差法求解中点弦问题

点差法求解中点弦问题 点差法就是在求解圆锥曲线并且题目中交代直线与圆锥曲线相交被截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。求出直线的斜率,然后利用中点求出直线方程。用点差法时计算量较少,解决直线与圆锥曲线的位置关系时非常有效,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,故有时要用到判别式加以检验。 【定理1】在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦 MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-, 得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴又.22,21211212x y x y x x y y x x y y k MN ==++--= .22a b x y k MN -=?∴ 【定理2】在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是 弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN =?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 222222 1221 b y a x b y a x )2()1(-,得.02 2 2 2 122 22 1=---b y y a x x .2212121212a b x x y y x x y y =++?--∴ 又.22,000021211212x y x y x x y y x x y y k MN ==++--= .2 2 00a b x y k MN =?∴ 【定理3】 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k M N =?0.

高中数学解题方法系列:解析几何中的点差法解中点弦问题

高中数学解题方法系列:点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11y x A 、) ,(22y x B )1,2(M 为AB 的中点∴4 21=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,16 42222=+y x 两式相减得0 )(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、) ,(22y x B 则221=+x x ,221=+y y

解-点差法公式在抛物线中点弦问题中的妙用教案资料

“点差法”公式在抛物线中点弦问题中的妙用 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就抛物线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在抛物线)0(22 ≠=m mx y 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m y k MN =?0. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有?????==)2(.2)1(,2222121ΛΛΛΛmx y mx y )2()1(-,得).(2212 221x x m y y -=- .2)(121 212m y y x x y y =+?--∴ 又01212122,y y y x x y y k MN =+--= Θ. m y k MN =?∴0. 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在. 同理可证,在抛物线)0(22≠=m my x 中,若直线l 与抛物线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则m x k MN =?01 . 注意:能用这个公式的条件:(1)直线与抛物线有两个不同的交点;(2)直线的斜率存在,且不等于零. 例1.抛物线x y 42=的过焦点的弦的中点的轨迹方程是( ) A. 12-=x y B. )1(22-=x y C. 2 12-=x y D. 122-=x y 解:2=m ,焦点)0,1(在x 轴上. 设弦的中点M 的坐标为),(y x . 由m y k MN =?得: 21=?-y x y , 整理得:)1(22-=x y .

第7讲 点差法公式在椭圆中点弦问题中的妙用

第7讲 点差法公式在椭圆中点弦问题中的妙用 定理 在椭圆122 22=+b y a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00a b x y k MN -=?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x , 则有???????=+=+)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=-+-b y y a x x .22 12121212a b x x y y x x y y -=++?--∴ 又.22,21211212x y x y x x y y x x y y k MN ==++--= .22 a b x y k MN -=?∴ 同理可证,在椭圆122 22=+a y b x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点) ,(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则22 00b a x y k MN -=?. 典题妙解 例1 设椭圆方程为14 2 2 =+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足 1()2OP OA OB =+,点N 的坐标为?? ? ??21,21.当l 绕点 M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最大值和最小值. 解:(1)设动点P 的坐标为),(y x .由平行四边形法则可知:点P 是弦AB 的中点 .

点差法公式在双曲线中点弦问题中的妙用

点差法公式在双曲线中点 弦问题中的妙用 Prepared on 22 November 2020

点差法公式在双曲线中点弦问题中的妙用 广西南宁外国语学校 隆光诚(邮政编码530007) 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。 定理 在双曲线122 22=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两 点,点 ),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2 2 00a b x y k MN = ?. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有???????=-=-)2(.1)1(,122 22 2222 1221 b y a x b y a x )2()1(-,得.022 22 122 22 1=---b y y a x x 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--=

同理可证,在双曲线122 22=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于 M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则 22 00b a x y k MN =?. 典题妙解 例1 已知双曲线13 :2 2 =-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹; (2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上. 设点M 的坐标为),(y x ,由22b a x y k AB =?得:3 1 21=?--x y x y , 整理得:.032322=+--y x y x ∴所求的轨迹方程为.032322=+--y x y x (2) P 恰为弦AB 的中点, ∴由2200b a x y k AB =?得:,3121=?AB k 即.32 =AB k ∴直线l 的方程为)2(3 2 1-= -x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P (1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P (3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=

相关主题