搜档网
当前位置:搜档网 › linux内核网络子模块学习笔记

linux内核网络子模块学习笔记

linux内核网络子模块学习笔记
linux内核网络子模块学习笔记

一.网络设备的数据包处理。

如下

1.驱动装调用: net_dev_init

https://www.sodocs.net/doc/fe4777656.html,_dev_init中设定收包处理函数process_backlog

sd->backlog.poll = process_backlog;

3. process_backlog中调用__netif_receive_skb(skb);

4.__netif_receive_skb中找到对应的包处理函数,然后处理

type = skb->protocol;

list_for_each_entry_rcu(ptype,

&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {

if (ptype->type == type &&

(ptype->dev == null_or_dev || ptype->dev == skb->dev ||

ptype->dev == orig_dev)) {

if (pt_prev)

ret = deliver_skb(skb, pt_prev, orig_dev);

pt_prev = ptype;

}

}

ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);

以上就把数据包传到了上层了。

二.IP层的数据包处理。

1.向ptype_base数组注册处理函数.(调用dev_add_pack)

在数据inet_init中dev_add_pack(&ip_packet_type);

2. static struct packet_type ip_packet_type __read_mostly = {

.type = cpu_to_be16(ETH_P_IP),

.func = ip_rcv,

.gso_send_check = inet_gso_send_check,

.gso_segment = inet_gso_segment,

.gro_receive = inet_gro_receive,

.gro_complete = inet_gro_complete,

};

3. ip_rcv中做ip的正确性检查后,调用:

return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, dev, NULL,

ip_rcv_finish);

3.ip_recv_finish中

if (skb_dst(skb) == NULL) {

int err = ip_route_input_noref(skb, iph->daddr, iph->saddr,

iph->tos, skb->dev);

}

return dst_input(skb);

其中ip_route_input_noref是设置skb_dst(skb); 而dst_input(skb)是调用skb_dst(skb)->input(skb);

三. ip层路由处理.即是设定skb_dst(skb)->input函数的过程。

1.ip_route_input_noref调用ip_route_input_common

2. int ip_route_input_common(struct sk_buff *skb, __be32 daddr, __be32 saddr,

u8 tos, struct net_device *dev, bool noref)中

如果if (!rt_caching(net)) /* 路由加速缓冲*/

goto skip_cache;

慢速查找路由

res = ip_route_input_slow(skb, daddr, saddr, tos, dev);

以下是研究的重点了。

fl4.flowi4_oif = 0;

fl4.flowi4_iif = dev->ifindex;

fl4.flowi4_mark = skb->mark;

fl4.flowi4_tos = tos;

fl4.flowi4_scope = RT_SCOPE_UNIVERSE;

fl4.daddr = daddr;

fl4.saddr = saddr;

fib_lookup(net, &fl4, &res);

ip_mkroute_input(skb, &res, &fl4, in_dev, daddr, saddr, tos);

以上这二个函数,一个是查找,如果找到了就在rt_intern_hash里设定skb_dst(skb)->input

好。现在研究数据结构!

struct flowi4

1.意义:

2.作用:现在看是用来做匹配源的。

struct fib_result

1.意义:fib匹配结果

2.作用:保存匹配的fib结果

struct fib_table {

struct hlist_node tb_hlist;

u32 tb_id;

int tb_default;

int tb_num_default;

unsigned long tb_data[0]; --------------- 新内核中用的数据结构为struct tire的指针};

1.意义:fib table 转发信息表

2.作用:转发信息结构的总入口

3. 获取:struct fib_table table = fib_get_table(net, RT_TABLE_MAIN);

struct trie {

struct rt_trie_node __rcu *trie;

};

1.意义:字典树

2.作用:trie字典树头

3. 获取:struct trie *t = (struct trie *) tb->tb_data;

struct rt_trie_node {

unsigned long parent;

t_key key;

};

1.意义:路由表字典树结点

2.作用:路由表字黄树结点, 第一个结点是t->trie指针指向

3.获取:struct rt_trie_node n = rcu_dereference(t->trie);

struct tnode {

unsigned long parent;

t_key key;

unsigned char pos; /* 2log(KEYLENGTH) bits needed */

unsigned char bits; /* 2log(KEYLENGTH) bits needed */

unsigned int full_children; /* KEYLENGTH bits needed */

unsigned int empty_children; /* KEYLENGTH bits needed */

union {

struct rcu_head rcu;

struct work_struct work;

struct tnode *tnode_free;

};

struct rt_trie_node __rcu *child[0]; ------- 子结点。可由强制t_trie_node转换而来};

1.意义:????

2.作用:?????

3. 获取:struct tnode pn = (struct tnode *) n

如何查找字典数

1. t_key key = ntohl(flp->daddr); 用主机序目地IP做为KEY

2. cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), pos, bits); 根据K计算一个索引值。

3. n = tnode_get_child_rcu(pn, cindex); 根据索引于child[cindex];

4. if (IS_LEAF(n)) { //如果是叶子

ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags); //检查叶子

if (ret > 0) //不成功.回逆

goto backtrace;

goto found; //成功找到

}

check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);

参数:

tb fib_get_table(net, RT_TABLE_MAIN);

t (struct trie *) tb->tb_data;

n tnode_get_child_rcu(pn, cindex); // struct rt_trie_node *child[cindex];

key ntohl(flp->daddr)

学习资源

https://www.sodocs.net/doc/fe4777656.html,/link.php?url=https://www.sodocs.net/doc/fe4777656.html,%2Fdog250%2Farticle%2Fdetails%2F6 596046

https://www.sodocs.net/doc/fe4777656.html,/uid-23629988-id-2010885.html

https://www.sodocs.net/doc/fe4777656.html,/space.php?uid=23629988&do=blog&frmd=5372&classid=5377&view= me

https://www.sodocs.net/doc/fe4777656.html,/blog/static/185915602011819105114323/

Linux内核—文件系统模块的设计和开发

Linux内核—文件系统模块的设计和开发 郑小辉 摘要:目前,Linux技术已经成为IT技术发展的热点,投身于Linux技术研究的社区、研究机构和软件企业越来越多,支持Linux的软件、硬件制造商和解决方案提供商也迅速增加,Linux在信息化建设中的应用范围也越来越广,Linux产业链已初步形成,并正在得到持续的完善。随着整个Linux产业的发展,Linux技术也处在快速的发展过程中,形成了若干技术热点。 本文介绍了Linux的发展和特点,以及与其他文件系统的区别。文中主要是对Linux2.4.0内核文件系统源代码的分析,并参考其文件格式设计一个简洁的文件系统。源代码的分析主要介绍了VFS文件系统的结构,Linux自己的Ext2文件系统结构,以及文件系统中的主要函数操作。 在设计的简洁文件系统中,通过调用一些系统函数实现了用户的登录、浏览目录、创建目录、更改目录、创建文件以及退出系统功能。 关键字:Linux 源代码分析文件系统Ext2 Linux内核

Linux kernel -Design and development for the File System Module Zheng xiaohui Abstract: Currently, Linux IT technology has become a hot development technology. Participating in Linux technology research communities, research institutes and software enterprises are in support of Linux more and more, software and hardware manufacturers and solution providers have increased rapidly, In the development of the information industry the Linux application is also increasing, Linux industry chain has taken shape, and is sustained improvemently. With the entire industry in the development of Linux, and Linux is also at the rapid development process, formed a number of technical points. This paper presents the development of Linux and features, and with other file system differences. The main text of the document is Linux2.4.0 system kernel source code analysis, and I reference its file format to design a simple file system. The analysis of the source code mainly on the VFS file system structure, Linux Ext2 its own file system structures, file systems and the main function operation. In the design of the file simple system, some system function is used to achieve function such as: the user's login, browse catalogs, create directories, Change directory, create documents and withdraw from the system function and etc. Key words: Linux, the source code, file system, Ext2, Linux kernel

实验二 Linux基本网络配置

实验二Linux基本网络配置 一、实验内容 1.linux图形界面方式和命令方式下对网络的配置 2.网络配置文件的含义 二、实验目的及要求 1.掌握在图形界面方式配置网络 2.掌握在命令方式下配置网络 3.理解网络配置文件的含义 三、实验环境及条件 软件:PC 机+操作系统RHEL5 。 四、实验实施步骤 1.图形界面方式配置网络 对一个Linux系统进行网络配置,配置的主要参数如下: 网络IP地址:10.10.52.* 子网掩码:255.255.255.0 默认网关:10.10.52.1 DNS服务器地址:192.168.1.13,192.168.1.14,202.99.160.68 启动redhat-config-network管理工具,方法有以下两种: 1)依次单击面板上的“主菜单→系统设置→网络”,可打开如图对话框。 2)在终端的提示符下输入“redhat-config-network”命令,可打开如图对话框。

2、使用常用命令配置网络 (1)hostname # hostname “你自己的名字”(2)ifconfig (3)ifconfig eth0 10.10.52.*/24

(4)为一块网卡设置多个ip地址 Ifconfig eth0:1 *.*.*.*/24 Ifconfig eth0:2 *.*.*.*/24 (5)添加网关 route add default gw 10.10.52.1 (6)ifup和ifdonw

(7) ping 3、熟悉网络配置文件 (1)请修改网络设置文件/etc/sysconfig/network 中的主机名为linux (2)请修改网络配置文件/etc/sysconfig/network-scripts/ifcfg-eth0 ,将网络配置dhcp改成static配置,增加IPADDR为10.10.52.*,增加NETMASK为255.255.255.0,增加GATEWAY为10.10.52.1 (3)请修改配置DNS客户文件/etc/resolv.conf,DNS服务器为192.168.1.13,192.168.1.14,202.99.160.68 (4)将网络服务重新启动:service network restart 五、思考题 在局域网中有一台Linux主机,其通过网关连接到互联中,现在该Linux主机不能通过浏览器访问到互联网中的某个站点,通常如何查找故障?

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

简析linux内核的内核执行流程图

简析linux核的执行流程 ----从bootsect.s到main.c(核版本0.11)Linux启动的第一阶段(从开机到main.c) 3个任务: A、启动BIOS,准备实模式下的中断向量表和中断服务程序。 B、从启动盘加载操作系统程序到存。 C、为执行32的main函数做过渡准备。 存变化如下: ①、0xFE000到0xFFFFF是BIOS启动块,其中上电后第一条指令在0xFFFF0。 ②、而后0x00000到0x003FF总共1KB存放中断向量表,而接下去的地址到0x004FF共256B存放BIOS数据,从0x0E05B 开始的约8KB的存中存放中断服务程序。 ③、利用BIOS中断0x19h把硬盘的第一扇区bootsect.s的代码加载到存中,即0x07c00处,后转到该处执行。 ④、将bootsect.s的代码复制到0x90000处。 ⑤、利用中断0x13h将setup.s程序加载到存0x90200处。 ⑥、再将剩余的约240个扇区的容加载到0x10000~0x2EFFF 处。 ⑦、开始转到setup.s处执行,第一件事就利用BIOS提供的中断服务程序从设备上获取核运行的所需系统数据并存在0x90000的地址处,这时将原来bootsect.s的代码覆盖得只剩2Byte的空间。

⑧、关中断并将系统代码复制到0x00000处,将原来放在这里的中断向量表与BIOS数据区覆盖掉,地址围是 0x00000~0x1EFFF。同时制作两表与两寄存器。 ⑨开地址线A20,寻址空间达到4GB,后对8259重新编程,改变中断号。 ⑩、转到head.s(大小是25K+184B)执行,执行该程序完后是这样的: 0x00000~0x04FFF:页目录与4个页表,每一项是4KB,共20KB;0x05000~0x05400:共1KB的空间是软盘缓冲区; 0x05401~0x054b8:共184B没用; 0x054b9~0x05cb8:共2KB的空间存中断描述符表; 0x05cb9~0x064b8:共2KB的空间存全局描述符表; 之后就是main函数的代码了! 第二阶段、从main.c函数到系统准备完毕阶段。 第一步:创建进程0,并让进程0具备在32位保护模式下载主机中的运算能力。流程是: 复制根设备和硬盘参数表(main.c中的102、110、111行) 物理存规划格局(main.c的112行~126行,其中有 rd_init函数定义在kernel/ramdisk.c中,此函数用于虚拟盘初始化;而mem_init函数是用于存管理结构初始化,定义在mem/memory.c中,该函数页面使用

linux的网络接口以及详细配置

Linux 网络接口2012-06-21 10:29:45 分类:LINUX 在 Linux 中,所有的网络通讯都发生在软件接口与物理网络设备之间。与网络接口配置相关的文件,以及控制网络接口状态的脚本文件,全都位于 /etc/sysconfig/netwrok-scripts/ 目录下。虽然在不同的系统之间,这些文件的类型和数量并不一定相同,但大致来讲,都包含以下几类与网络相关的配置文件: 1.网络接口配置文件 2.网络接口控制脚本 3.与网络相关的函数库文件(function files) 各种的网络设备都需要用到这些文件保证设备的正常动作 本章将深入探讨这些文件的用途,以及使用它们的方式。 Linux 网络接口 网络接口配置文件 在 Linux 中,网络接口配置文件用于控制系统中的软件网络接口,并通过接口实现对网络设备的控制。当系统启动时,系统通过这些接口配置文件决定启动哪些接口,以及如此对这些接口进行配置。 在 Linux 中,网络接口配置文件用于控制系统中的软件网络接口,并通过这些接口实现对网络设备的控制。当系统启动时,系统通过这些接口配置文件决定启动哪些接口,以及如何对这些接口进行配置。接口配置文件的名称通常类似于 ifcfg-,其中 与配置文件所控制的设备的名称相关。 在所有的网络接口中,我们日常中最常用到的接口类型就是以太网接口。

以太网接口 在所有的网络配置文件中,最常用的就是 ifcfg-eth0,因为它是系统中第一块网卡的配置文件。如果系统中有多块网卡,ifcfg-eth 后面的数字就会依次递增。正因为每个设备都有对应的一个配置文件,因此管理员也能够单独地控制每一个设备。 以下是一个 ifcfg-eth0 配置文件的示例,在配置中已经为网卡设置好了 IP 地址。 DEVICE=eth0 BOOTPROTO=none ONBOOT=yes NETWORK=10.0.1.0 NETMASK=255.255.255.0 IPADDR=10.0.1.27 USERCTL=no // 是否允许非root用户控制网卡 在接口配置文件中,选项之间存在着一些关联,如果不像上例中那样使用固定 IP,使用 DHCP 获取 IP 地址的配置文件又会不一样。以下就是将网卡配置成通过 DHCP 获取 IP 地址的配置: DEVICE=eth0 BOOTPROTO=dhcp ONBOOT=yes 使用网络管理工具(system-config-network) 对网络接口文件进行更改是比较方便的一种方式,但通过学习手动更改配置文件,能够更好的在各种 Linux 发行版中执行网络配置的工作。 有关网络管理工具的使用方法,可以参考下一章翻译文档 - 《Fedora/Linux 网络配置工具》 下面是以太网接口配置文件中常用的一些选项:

Linux内核驱动模块编写概览-ioctl,class_create,device_create

如果你对内核驱动模块一无所知,请先学习内核驱动模块的基础知识。 如果你已经入门了内核驱动模块,但是仍感觉有些模糊,不能从整体来了解一个内核驱动模块的结构,请赏读一下这篇拙文。 如果你已经从事内核模块编程N年,并且道行高深,也请不吝赐教一下文中的疏漏错误。 本文中我将实现一个简单的Linux字符设备,旨在大致勾勒出linux内核模块的编写方法的轮廓。其中重点介绍ioctl的用途。 我把这个简单的Linux字符设备模块命名为hello_mod. 设备类型名为hello_cl ass 设备名为hello 该设备是一个虚拟设备,模块加载时会在/sys/class/中创建名为hello_class 的逻辑设备,在/dev/中创建hello的物理设备文件。模块名为hello_mod,可接受输入字符串数据(长度小于128),处理该输入字符串之后可向外输出字符串。并且可以接受ioctl()函数控制内部处理字符串的方式。 例如: a.通过write函数写入“Tom”,通过ioctl函数设置langtype=chinese,通过read函数读出的数据将会是“你好!Tom/n” b.通过write函数写入“Tom”,通过ioctl函数设置langtype=english,通过read函数读出的数据将会是“hello!Tom/n” c.通过write函数写入“Tom”,通过ioctl函数设置langtype=pinyin,通过read函数读出的数据将会是“ni hao!Tom/n” 一般的内核模块中不会负责设备类别和节点的创建,我们在编译完之后会得到.o或者.k o文件,然后insmod之后需要mk nod来创建相应文件,这个简单的例子 中我们让驱动模块加载时负责自动创建设备类别和设备文件。这个功能有两个步骤, 1)创建设备类别文件class_cr eate(); 2)创建设备文件dev ice_create(); 关于这两个函数的使用方法请参阅其他资料。 linux设备驱动的编写相对wi ndows编程来说更容易理解一点因为不需要处理IR P,应用层函数和内核函数的关联方式浅显易懂。 比如当应曾函数对我的设备调用了open()函数,而最终这个应用层函数会调用我的设备中的自定义open()函数,这个函数要怎么写呢, 我在我的设备中定义的函数名是hello_mod_open,注意函数名是可以随意定义,但是函数签名是要符合内核要求的,具体的定义是怎么样请看 static int hello_mod_open(struct inode *, struct file *); 这样就定义了内核中的open函数,这只是定义还需要与我们自己的模块关联起来,这就要用到一个结构 struct file_operations 这个结构里面的成员是对应于设备操作的各种函数的指针。 我在设备中用到了这些函数所以就如下定义,注意下面的写法不是标准ANSI C的语法,而是GNU扩展语法。 struct file_operations hello_mod_fops = { .owner = THIS_MODULE, .open = hello_mod_open,

Linux内核与跟文件系统的关系

Linux内核与根文件系统的关系 开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机:“尽管内核是Linux 的核心,但文件却是用户与操作系统交互所采用的主要工具。这对Linux 来说尤其如此,这是因为在UNIX 传统中,它使用文件I/O 机制管理硬件 设备和数据文件。” 一.什么是文件系统 文件系统指文件存在的物理空间,linux系统中每个分区都是一个文件系统,都有自己的目 录层次结构。 Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其 中。这种机制有利于用户和操作系统的交互。 每个实际文件系统从操作系统和系统服务中分离出来,它们之间通过一个接口层:虚拟文件系统或VFS来通讯。VFS使得Linux可以支持多个不同的文件系统,每个表示一个VFS 的通用接口。由于软件将Linux 文件系统的所有细节进行了转换,所以Linux核心的其它部分及系统中运行的程序将看到统一的文件系统。Linux 的虚拟文件系统允许用户同时能透明地安装 许多不同的文件系统。 在Linux文件系统中,EXT2文件系统、虚拟文件系统、/proc文件系统是三个具有代表性的 文件系统。 二.什么是根文件系统 根文件系统首先是一种文件系统,该文件系统不仅具有普通文件系统的存储数据文件的功能,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所挂载(mount)的第一个文件系统,内核代码的映像文件保存在根文件系统中,系统引导启动程序会在根文件系统挂载之后从中把一些初始化脚本(如rcS,inittab)和服务加载到内存中去运行。我们要明白文件系统和内核是完全独立的两个部分。在嵌入式中移植的内核下载到开发板上,是没有办法真正的启动Linux操作系统的,会出现无法加载文件系统的错误。 那么根文件系统在系统启动中到底是什么时候挂载的呢?先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.根文件系统执行完之后,也就是到了Start_kernel()函数的最后,执行init的进程,也就第一个用户进程。对系统进行各 种初始化的操作。 根文件系统之所以在前面加一个”根“,说明它是加载其它文件系统的”根“,既然是根的话,那么如果没有这个根,其它的文件系统也就没有办法进行加载的。它包含系统引导和使其他文件系统得以挂载(mount)所必要的文件。根文件系统包括Linux启动时所必须的目录和关键性的文件,例如Linux启动时都需要有init目录下的相关文件,在Linux挂载分区时Linux 一定会找/etc/fstab这个挂载文件等,根文件系统中还包括了许多的应用程序bin目录等,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。成功之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂载(mount)。使用mount 命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。根文件系统被挂载到根目录下“/”上后,在根目录下就有根文件系统的各个目录,文件:/bin /sbin /mnt等,再将其他分区挂接到/mnt 目录上,/mnt目录下就有这个分区的各个目录,文件。

LINUX内核模块编程指南

第1章Hello, World 如果第一个程序员是一个山顶洞人,它在山洞壁(第一台计算机)上凿出的第一个程序应该是用羚羊图案构成的一个字符串“Hello, Wo r l d”。罗马的编程教科书也应该是以程序“S a l u t, M u n d i”开始的。我不知道如果打破这个传统会带来什么后果,至少我还没有勇气去做第一个吃螃蟹的人。 内核模块至少必须有两个函数:i n i t_m o d u l e和c l e a n u p_m o d u l e。第一个函数是在把模块插入内核时调用的;第二个函数则在删除该模块时调用。一般来说,i n i t_m o d u l e可以为内核的某些东西注册一个处理程序,或者也可以用自身的代码来取代某个内核函数(通常是先干点别的什么事,然后再调用原来的函数)。函数c l e a n u p_m o d u l e的任务是清除掉i n i t_m o d u l e所做的一切,这样,这个模块就可以安全地卸载了。

1.1 内核模块的Makefiles 文件 内核模块并不是一个独立的可执行文件,而是一个对象文件,在运行时内核模块被链接到内核中。因此,应该使用- c 命令参数来编译它们。还有一点需要注意,在编译所有内核模块时,都将需要定义好某些特定的符号。 ? _ _KERNEL_ _—这个符号告诉头文件:这个程序代码将在内核模式下运行,而不要作为用户进程的一部分来执行。 ? MODULE —这个符号告诉头文件向内核模块提供正确的定义。 ? L I N U X —从技术的角度讲,这个符号不是必需的。然而,如果程序员想要编写一个重要的内核模块,而且这个内核模块需要在多个操作系统上编译,在这种情况下,程序员将会很高兴自己定义了L I N U X 这个符号。这样一来,在那些依赖于操作系统的部分,这个符号就可以提供条件编译了。 还有其它的一些符号,是否包含它们要取决于在编译内核时使用了哪些命令参数。如果用户不太清楚内核是怎样编译的,可以查看文件/ u s r /i n c l u d e /l i n u x /c o n f i g .h 。 ? _ _SMP_ _—对称多处理。如果编译内核的目的是为了支持对称多处理,在编译时就需要定义这个符号(即使内核只是在一个C P U 上运行也需要定义它)。当然,如果用户使用对称多处理,那么还需要完成其它一些任务(参见第1 2章)。 ? C O N F I G _M O D V E R S I O N S —如果C O N F I G _M O D V E R S I O N S 可用,那么在编译内核模块时就需要定义它,并且包含头文件/ u s r /i n c l u d e /l i n u x /m o d v e r s i o n s .h 。还可以用代码自身来完成这个任务。 完成了以上这些任务以后,剩下唯一要做的事就是切换到根用户下(你不是以r o o t 身份编译内核模块的吧?别玩什么惊险动作哟!),然后根据自己的需要插入或删除h e l l o 模块。在执行完i n s m o d 命令以后,可以看到新的内核模块在/ p r o c /m o d u l e s 中。 顺便提一下,M a k e f i l e 建议用户不要从X 执行i n s m o d 命令的原因在于,当内核有个消息需要使用p r i n t k 命令打印出来时,内核会把该消息发送给控制台。当用户没有使用X 时,该消息146第二部分Linux 内核模块编程指南

Linux内核与驱动开发实验教材

内核与驱动开发实验教材 中程在线 实验一嵌入式开发环境的建立 实验目的 掌握嵌入式开发环境的构建,熟悉课程实验的开发板 掌握安装交叉编译工具的安装方法 掌握的烧写方法 掌握的编译方法 实验内容 安装交叉编译工具 编译 烧写 生成映像 基础知识 交叉编译工具 嵌入式系统的开发中,开发环境被称为主机。因为嵌入式目标系统的资源局限性,不可能完成构建系统的任务,所以需要主机使用交叉编译工具来构建目标系统。 实验使用交叉编译器,与桌面系统采用的编译器是不同,因为实验开发板采用的是处理器。 编译器将使用下列工具 , 与通常在平台上使用的工具不同,交叉编译工具编译处理的执行文件只能够在平台上运行。 嵌入式系统构建 一个嵌入式系统从软件的角度看通常可以分为四个层次: .引导加载程序()。引导加载程序是系统加电后运行的第一段软件代码。 . 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 . 文件系统。包括根文件系统和建立于内存设备之上文件系统。通常用来作为。 .用户应用程序。特定于用户的应用程序。

主要的功能有: 初始化硬件,初始化, , , , 。 启动,这是最重要的功能,保存内核映像到中,并跳转到内核起始地址。 映像下载,下载内核映像和文件系统到,下载只能通过以太网进行。如命令完成文件下载。 内存控制,如命令可以烧写。 机中的引导加载程序由(其本质就是一段固件程序)和位于硬盘中的(比如,和等)一起组成。在完成硬件检测和资源分配后,将硬盘中的读到系统的中,然后将控制权交给。的主要运行任务就是将内核映象从硬盘上读到中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像那样的固件程序(注,有的嵌入式也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由来完成。在实验开发板(基于3C)的嵌入式系统中,系统在上电或复位时都从地址处开始执行,而在这个地址处安排的通常就是系统的程序。 简单地说,就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。 通常,是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的几乎是不可能的。尽管如此,我们仍然可以对归纳出一些通用的概念来,以指导用户特定的设计与实现。 内核是所有系统的中心软件组件。整个系统的能力完全受内核本身能力的限制。 由于内核支持多个架构,由于架构的差异性,每种架构都有不同的团队在维护,所以必须根据架构来选择供应内核的网站。见下表: 架构最合适的内核网站下载方式 等 内核源代码目录树结构说明如下: :包含和硬件体系结构相关的代码,每种平台占一个相应的目录。和位相关的代码存放在目录下,其中比较重要的包括(内核核心部分)、(内存管理)、(浮点单元仿真)、(硬件相关工具函数)、(引导程序)、(总线)和(相关状态)。 :常用加密和散列算法(如、等),还有一些压缩和校验算法。 :关于内核各部分的通用解释和注释。 :设备驱动程序,每个不同的驱动占用一个子目录。 :各种支持的文件系统,如、、等。 :头文件。其中,和系统相关的头文件被放置在子目录下。 :内核初始化代码(注意不是系统引导代码)。 :进程间通信的代码。 :内核的最核心部分,包括进程调度、定时器等,和平台相关的一部分代码放在*目录下。:库文件代码。 :内存管理代码,和平台相关的一部分代码放在*目录下。 :网络相关代码,实现了各种常见的网络协议。

【IT专家】突破Linux内核模块校验机制

突破Linux 内核模块校验机制 1、为什么要突破模块验证Linux 内核版本很多,升级很快,2 个小内核版本 中内核函数的定义可能都不一样,为了确保不一致的驱动程序导致kernel oops,开 发者加入了模块验证机制。它在加载内核模块的时候对模块进行校验,如果模块与 主机的一些环境不一致,就会加载不成功。看下面一个例子,它简单的输出当期 系统中的模块列表:[root@localhost list]# uname -a Linux localhost.localdomain 2.6.18-128.el5 #1 SMP Wed Jan 21 10:44:23 EST 2009 i686 i686 i386 GNU/Linux 然后拷贝到另一台主机centos5.1xen 上:[root@localhost ~]# uname -a Linux localhost.localdomain 2.6.18-53.el5xen #1 SMP Mon Nov 12 03:26:12 EST 2007 i686 i686 i386 GNU/Linux 用insmod 加载:[root@localhost ~]# insmod list.ko insmod: error inserting ‘list.ko’: -1 Invalid module format 报错了,在看下dmesg 的信息:[root@localhost ~]# dmesg|tail -n 1 list: disagrees about version of symbol struct_module 先不管这是什么,总之我们的模块在另一台2.6.18 的主机中加载失 败。通常的做法et 下来,install 即可。但是它也有很多缺点,比如很不稳定,而 且在2.6.x 后内核已经取消了kmem 这个设备,mem 文件也做了映射和读写的限 制。rk 开发者没法继续sk 的神话了。反过来,如果我们的lkm 后门不需要编译环 境,也可以达到直接insmod 的目的,这是件多么美好的事情,而且lkm 后门更加稳 定,还不用像sk 在内核中添加了很多自己的数据结构。2、内核是怎么实现的 我们去看看内核在加载模块的时候都干了什么,或许我们可以发现点bug,然后 做点手脚,欺骗过去:)grep 下dmesg 里的关键字,看看它在哪个文件中:[root@localhost linux-2.6.18]# grep -r -i ‘disagrees about’kernel/ kernel/module.c: printk(“%s: disagrees about version of symbol %s\n”, 2.6.18/kernel/module.c: insmod 调用了sys_init_module 这个系统调用, 然后进入load_module 这个主函数,它解析 elf 格式的ko 文件,然后加载到内核中:/* Allocate and load the module: note that size of section 0 is always zero, and we rely on this for optional sections. */ static struct module *load_module(void __user *umod, unsigned long len, const char __user

16.Linux基本网络配置

Linux基本网络配置: 查看及测试网络接口信息: 命令ifconfig:查看系统中处于活动状态的网络接口设备: [root@localhost ~]# ifconfig 查看指定网络接口的基本配置信息: 查看eth0网卡的基本配置信息: [root@localhost ~]# ifconfig eth0 查看所有网络接口配置信息: [root@localhost ~]# ifconfig –a 查看主机路由表信息: 查看linux主机中的路由表信息:(或[root@localhost ~]# netstat -nr) [root@localhost ~]# route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 192.168.20.0 * 255.255.255.0 U 1 0 0 eth0 default 192.168.20.1 0.0.0.0 UG 0 0 0 eth0 [root@localhost ~]# 其中default的行表示当前主机的默认网关记录。 查看linux主机中的路由信息,以数字形式显示地址: [root@localhost ~]# route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 192.168.20.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 0.0.0.0 192.168.20.1 0.0.0.0 UG 0 0 0 eth0 [root@localhost ~]# 使用这种方式,默认不会出现*,而是0.0.0.0。 跟踪数据包的路由途径: [root@localhost ~]# traceroute https://www.sodocs.net/doc/fe4777656.html, 查看主机名称: [root@localhost ~]# hostname localhost.localdomain [root@localhost ~]# 设置主机名称: (重启失效) [root@localhost ~]# hostname zhangserver

Linux下基本的网络配置

Linux下基本的网络配置 1、实验目的 (1)理解TCP/IP网络模型及其相关概念 (2)掌握Linux以太网接口配置 (3)掌握Linux下TCP/IP常用网络命令 (4)掌握Linux下网络配置常用到的文件 2、实验内容 (1)网络接口参数的设定 (2)网络侦错 (3)网络查询 (4)远程连接 (5)文本浏览器 3、理论知识 (1)TCP/IP网络协议栈 (2)常用到的网络协议 (3)TCP/IP常用到的配置文件及其功能 1)etc/sysconfig/network 包含了计算机最基本的网络信息,用于系统启动 文件如下: 2)etc/sysconfig/network-script 为网络接口信息的配置目录,该目录下的文件为网络接口的配置脚步。在Linux中,可以使用# ifconfig 命令来查看网络接口的配置信息。其中eth0,表示Linux中的第一块以太网卡,如果有多网卡的主机,则依次以eth1,eth2,······来表示。另外,在一个网卡上可以绑定多个IP 地址,每一个IP地址相当于以太网的一个子接口,例如在eth0上设置两个子接

口,可以用eth0:1,eth0:2来表示。相应地,每一个子接口也会产生一个脚本配置文件,这些文件也都是存放在network-script下的。 [root@azuo root]# ls /etc/sysconfig/network-scripts/ ifcfg-eth0 ifdown-ipv6 ifup ifup-isdn ifup-sit ifcfg-lo ifdown-isdn ifup-aliases ifup-plip ifup-sl ifdown ifdown-post ifup-cipcb ifup-plusb ifup-wireless ifdown-aliases ifdown-ppp ifup-ippp ifup-post init.ipv6-global ifdown-cipcb ifdown-sit ifup-ipv6 ifup-ppp network-functions ifdown-ippp ifdown-sl ifup-ipx ifup-routes network-functions-ipv6 在上图中,我们可以看到ifcfg-eth0文件,该文件就是eth0,也就是第一块网卡的脚本配置文件。 4、实验步骤 (1)网络接口参数的设置 设置网络接口参数,主要以下几种方法: 1)使用GUI工具配置,这个比较简单,如同windows的图形界面,这里就不再多说,只是给出简单的截图而已。

Linux内核源码分析方法

Linux内核源码分析方法 一、内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内。如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码。通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一般短期内无法了解到的信息。Linux内核由无数开源社区的“大神们”精心维护,这些人都可以称得上一顶一的代码高手。透过阅读Linux 内核代码的方式,我们学习到的不光是内核相关的知识,在我看来更具价值的是学习和体会它们的编程技巧以及对计算机的理解。 我也是通过一个项目接触了Linux内核源码的分析,从源码的分析工作中,我受益颇多。除了获取相关的内核知识外,也改变了我对内核代码的过往认知: 1.内核源码的分析并非“高不可攀”。内核源码分析的难度不在于源码本身,而在于如何使用更合适的分析代码的方式和手段。内核的庞大致使我们不能按照分析一般的demo程序那样从主函数开始按部就班的分析,我们需要一种从中间介入的手段对内核源码“各个击破”。这种“按需索取”的方式使得我们可以把握源码的主线,而非过度纠结于具体的细节。 2.内核的设计是优美的。内核的地位的特殊性决定着内核的执行效率必须足够高才可以响应目前计算机应用的实时性要求,为此Linux内核使用C语言和汇编的混合编程。但是我们都 知道软件执行效率和软件的可维护性很多情况下是背道而驰的。如何在保证内核高效的前提下提高内核的可维护性,这需要依赖于内核中那些“优美”的设计。 3.神奇的编程技巧。在一般的应用软件设计领域,编码的地位可能不被过度的重视,因为开发者更注重软件的良好设计,而编码仅仅是实现手段问题——就像拿斧子劈柴一样,不用太多的思考。但是这在内核中并不成立,好的编码设计带来的不光是可维护性的提高,甚至是代码性能的提升。 每个人对内核的了理解都会有所不同,随着我们对内核理解的不断加深,对其设计和实现的思想会有更多的思考和体会。因此本文更期望于引导更多徘徊在Linux内核大门之外的人进入Linux的世界,去亲自体会内核的神奇与伟大。而我也并非内核源码方面的专家,这么做也只是希望分享我自己的分析源码的经验和心得,为那些需要的人提供参考和帮助,说的“冠冕堂皇”一点,也算是为计算机这个行业,尤其是在操作系统内核方面贡献自己的一份绵薄之力。闲话少叙(已经罗嗦了很多了,囧~),下面我就来分享一下自己的Linix内核源码分析方法。 二、内核源码难不难? 从本质上讲,分析Linux内核代码和看别人的代码没有什么两样,因为摆在你面前的一般都不是你自己写出来的代码。我们先举一个简单的例子,一个陌生人随便给你一个程序,并要你看完源码后讲解一下程序的功能的设计,我想很多自我感觉编程能力还可以的人肯定觉得这没什么,只要我耐心的把他的代码从头到尾看完,肯定能找到答案,并且事实确实是如此。那么现在换一个假设,如果这个人是Linus,给你的就是Linux内核的一个模块的代码,你还会觉得依然那么 轻松吗?不少人可能会有所犹豫。同样是陌生人(Linus要是认识你的话当然不算,呵呵~)给 你的代码,为什么给我们的感觉大相径庭呢?我觉得有以下原因:

相关主题