搜档网
当前位置:搜档网 › 高一 任意角的三角函数定义及其应用(含答案)

高一 任意角的三角函数定义及其应用(含答案)

高一  任意角的三角函数定义及其应用(含答案)
高一  任意角的三角函数定义及其应用(含答案)

任意角的三角函数定义及其应用

知识梳理

教学重、难点

作业完成情况

典题探究

例1、已知点P (-3,4)在角α的终边上,则sin α+cos α

3sin α+2cos α

的值为( )

A .-16

B.16

C.718 D .-1

例2、已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m >0)是角α终边上一点,则2sin α+cos α=________.

例3、已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上的一点,且sin θ=-25

5,则y =________.

例4、如图所示,角α的终边与单位圆(圆心在原点,半径为1的圆)交于第二象限的点

3

(cos ,)5

A ,则cos α-sin α=________.

演练方阵

A 档(巩固专练)

1.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )

A.12 B .-12 C .-32 D .-33

2.函数y =|sin x |sin x +cos x |cos x |+|tan x |

tan x

的值域是( )

A .{-1,1,3}

B .{1,3}

C .{-1,3}

D .R 3.若sin α<0且tan α>0,则α是( )

A .第一象限角

B .第二象限角

C .第三象限角

D .第四象限角 4.若sin θ

A .第一象限

B .第二象限

C .第三象限

D .第四象限

5.α是第二象限角,P (x ,5)为其终边上一点,且cos α=2

4

x ,则sin α的值为( )

A.104

B.64

C.24 D .-104

6.设a <0,角α的终边经过点P (-3a,4a ),那么sin α+2cos α的值等于( )

A.25 B .-25 C.15 D .-15 7. sin1,cos1,tan1的大小关系为( )

A .sin1>cos1>tan1

B .sin1>tan1>cos1

C .tan1>sin1>cos1

D .tan1>cos1>sin1

8.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ

2

的终边在( )

A .第二、四象限

B .第一、三象限

C .第一、三象限或x 轴上

D .第二、四象限或x 轴上

9.y =sin x +lgcos x

tan x

的定义域为( )

A .2k π≤x ≤2k π+π2

B .2k π

2

C .2k π

D .2k π-π2

2

(以上k ∈Z)

10.10.设0≤θ<2π,如果sin θ>0且cos2θ>0,则θ的取值范围是( )

A .0<θ<3π4

B .0<θ<π4或3π

4

<θ<π

C.3π4<θ<π

D.3π4<θ<5π4

1.使得lg(cos θ·tan θ)有意义的角θ是第______象限角. 2.若750°角的终边上有一点(-4,a ),则a 的值是________.

3.已知角α的终边在直线y =x 上,则sin α+cos α的值为________. 4.判断符号,填“>”或“<”: sin3·cos4·tan5________0.

5.已知P (-2,y )是角α终边上一点,且sin α=-5

5

,求cos α的值.

6.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求角α的取值范围.

7.设θ是第三象限角,且满足????sin θ2=-sin θ2,试判断θ

2

所在象限.

8.设cos θ=m -n

m +n

(m >n >0),求θ的其他三角函数值.

9.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.

10.已知1|sin α|=-1

sin α

,且lgcos α有意义.

(1)试判断角α所在的象限;

(2)若角α的终边上一点是M (3

5

,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.

1.若sin α<0且tan α>0,则α的终边在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

2.若角α的终边过点(-3,-2),则( )

A .sin αtan α>0

B .cos αtan α>0

C .sin αcos α>0

D .sin αcos α<0 3.cos1110°的值为( )

A.1

2 B.32

C .-12

D .-

32

4.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( )

A.32

B.2

3 C .-32

D .-23

5.cos 2201.2°可化为( )

A .cos201.2°

B .-cos201.2°

C .sin201.2°

D .tan201.2° 6.已知角α的终边经过点P (m ,-3),且cos α=-4

5

,则m 等于( )

A .-114

B.114 C .-4

D .4

7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

8.α是第二象限角,P (x ,5)为其终边上一点,且cos α=

2

4

x ,则sin α的值为( ) A.104 B.64

C.24

D .-

104

9.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )

A.1

2 B .-1

2

C .-

3

2

D .-

33

10.已知角θ的终边上有一点P (-3,m ),且sin θ=2

4

m ,求cos θ与tan θ的值.

成长足迹

课后检测

学习(课程)顾问签字: 负责人签字:

教学主管签字: 主管签字时间:

任意角的三角函数定义及其应用

典题探究

例1.[答案] B

[解析] 由条件知tan α=-4

3,

sin α+cos α3sin α+2cos α=tan α+13tan α+2=1

6

.

例2.[答案] 2

5

[解析] 由条件知x =-4m ,y =3m ,r =x 2+y 2=5|m |=5m ,∴sin α=y r =35,cos α=

x

r =-4

5

∴2sin α+cos α=2

5.

例3.[答案] -8

[解析] |OP |=42+y 2,根据任意角三角函数的定义得,y 42

+y

2=-25

5,解得y =±8,

又∵sin θ=-25

5<0及P (4,y )是角θ终边上一点,

可知θ为第四象限角,∴y =-8. 例4.[答案] -7

5

[解析] 由条件知,sin α=3

5,

∴cos α=-45,∴cos α-sin α=-7

5.

演练方阵

A 档(巩固专练)

1.[答案] C

[解析] ∵P (1,-3),∴r =12+(-3)2=2,∴sin α=-3

2

. 2.[答案] C

[解析] ∵该函数的定义域是{x |x ∈R 且x ≠k π

2

,k ∈Z },∴当x 是第一象限角时,y =3;

当x 是第二象限角时,y =1-1-1=-1; 当x 是第三象限角时,y =-1-1+1=-1; 当x 是第四象限角时,y =-1+1-1=-1. 综上,函数的值域是{-1,3}. 3.[答案] C

4.[答案] D..

[解析] 由条件可知:cos θ>0>sin θ,则θ为第四象限角, 5.[答案] A

[解析] ∵|OP |=x 2+5,∴cos α=x x 2+5=2

4x ,又因为α是第二象限角,

∴x <0,得x =- 3 ∴sin α=5x 2+5

=10

4,

6.[答案] A

[解析] ∵a <0,角α终边经过点P (-3a,4a ),∴r =-5a ,sin α=-45,cos α=3

5

∴sin α+2cos α=2

5

7.[答案] C

[解析] 设1rad 角的终边与单位圆交点为P (x ,y ),∵π4<1<π

2

,∴0

从而cos1

[解析] ∵|cos θ|=cos θ,∴cos θ≥0,又|tan θ|=-tan θ,∴tan θ≤0,∴2k π+3π

2

<θ≤2k π+2π,

∴k π+3π4<θ

2

≤k π+π,k ∈Z .

9.[答案] B

[解析] ∵???

sin x ≥0

cos x >0

tan x ≠0

x ≠k π+π2

,k ∈Z ,∴2k π

2

,k ∈Z .

10.[答案] B

[解析] ∵0≤θ<2π,且sin θ>0,∴0<θ<π.. 又由cos2θ>0得,2k π-π2<2θ<2k π+π

2

即k π-π4<θ

4

<θ<π.

B 档(提升精练)

1.[解析] 要使原式有意义,必须cos θ·tan θ>0,即需cos θ、tan θ同号,∴θ是第一或第二象限角.

2.[解析] ∵tan750°=tan(360°×2+30°)=tan30°=33=a -4. ∴a =3

3×(-4)=-433

.

3.[答案] ±2

[解析] 在角α终边上任取一点P (x ,y ),则y =x ,当x >0时,r =x 2+y 2=2x , sin α+

cos α=y r +x r =22+22=2,当x <0时,r =x 2+y 2=-2x , sin α+cos α=y r +x r =-22-

22=- 2.

4.[答案] >

[解析] π2<3<π,π<4<3π2,3π

2

<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3cos4tan5>0.

5. [解析] ∵r =4+y 2, ∴sin α=y r =y y 2+4

=-5

5,∵y <0,∴y =-1,r =5,∴

cos α=x r =-255.

6.[解析] ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上,

∵α终边过(3a -9,a +2), ∴?

????

3a -9≤0

a +2>0,∴-2

7.[解析] ∵θ是第三象限角,∴2k π+π<θ<2k π+32π,k ∈Z . ∴k π+π2<θ2

4

π,k ∈Z .

∴θ2在第二、四象限内.又∵????sin θ2=-sin θ2,∴sin θ2≤0. ∴θ

2

为第四象限角.

8.解:∵m >n >0,∴cos θ=m -n

m +n

>0

∴θ是第一象限角或第四象限角. 当θ是第一象限角时:

sin θ=222

)()(1cos 1n m n m +--=-θ=mn n m n m n m n m +=+--+2

)

()()(2

22 tan θ=

mn n

m -=2

cos sin θθ 当θ是第四象限角时: sin θ=-mn n

m +-=-2

cos 12

θ

tan θ=

mn n

m --=2

cos sin θθ

9.[解析] ∵cos α≤0,sin α>0,

∴角α的终边在第二象限或y 轴非负半轴上, ∵α终边过(3a -9,a +2),

∴?

????

3a -9≤0a +2>0,∴-2

可知sin α<0,

∴α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,

∴α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角. (2)∵|OM |=1,

∴(35)2+m 2=1,解得m =±4

5

.

又α是第四象限角,故m <0, 从而m =-4

5

.

由正弦函数的定义可知 sin α=y r =m |OM |=-451=-4

5.

C 档(跨越导练)

1.[答案] C

[解析] 由于sin α<0,则α的终边在第三或四象限,又tan α>0,则α的终边在第一或三象限,所以α的终边在第三象限.

2.[答案] C

[解析] ∵角α的终边过点(-3,-2), ∴sin α<0,cos α<0,tan α>0, ∴sin αcos α>0,故选C.

3.[答案] B

[解析] cos1110°=cos(3×360°+30°)=cos30°=3

2

.

4.[答案] C

[解析] tan(2π+θ)=tan θ=-32=-32

. 5.[答案] B

[解析] ∵201.2°是第三象限角,∴cos201.2°<0, ∴cos 2201.2°=|cos201.2°|=-cos201.2°. 6.[答案] C

[解析] 由题意得cos α=

m m 2+9=-45,解得m =±4.又cos α=-4

5<0,则α的终边在第

二或三象限,则点P 在第二或三象限,所以m <0,则m =-4. 7.[答案] C

[解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则?

????

sin θ+cos θ<0,

sin θcos θ>0,所以有

sin θ<0,cos θ<0,所以θ是第三象限角. 8.[答案] A

[解析]∵|OP|=x2+5,∴cosα=

x

x2+5

2

4x

又因为α是第二象限角,∴x<0,得x=- 3

∴sinα=

5

x2+5

10

4,故选A.

9.[答案] C

[解析]∵P(1,-3),∴r=12+ -3 2=2,

∴sinα=-

3 2.

10.[解析](1)当m=0时,cosθ=-1,tanθ=0;

(2)当m=5时,cosθ=-

6

4,tanθ=-

15

3;

(3)当m=-5时,cosθ=-

6

4,tanθ=

15

3

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

任意角的三角函数定义

任意角的三角函数定义 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

教材:任意角的三角函数(定义) 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k+(kZ)的同 名三角函数值相等的道理。 过程:一、提出课题:讲解定义: 1.设是一个任意角,在的终边上任取(异于原点的)一点P (x,y ) 则P 与原点的距离0222 2>+=+=y x y x r (图示见P13略) 2.比值 r y 叫做的正弦 记作: r y =αsin 比值r x 叫做的余弦 记作: r x = αcos 比值x y 叫做的正切 记作: x y = αtan 比值 y x 叫做的余切 记作: y x =αcot 比值x r 叫做的正割 记作: x r =αsec 比值 y r 叫做的余割 记作: y r =αcsc 注意突出几个问题: ①角是“任意角”,当=2k+(kZ)时,与的同名 三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。 ②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例 子说明) ③三角函数是以“比值”为函数值的函数

④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号 应由象限确定(今后将专题研究) ⑤定义域: αααtan cos sin ===y y y )(2 Z k k R R ∈+≠π πα αααcsc sec cot ===y y y ) ()(2) (Z k k Z k k Z k k ∈≠∈+≠∈≠παπ παπα 二、例一 已知的终边经过点P(2,3),求的六个三角函数值 解:13)3(2,3,22 2=-+=-==r y x ∴sin=13133 cos=1313 2 23 cot=32 213 csc=3 13 例二 求下列各角的六个三角函数值 ⑴ 0 ⑵ ⑶ 2 3π ⑷ 2 π 解:⑴ ⑵ ⑶的解答见P16-17 ⑷ 当=2 π 时 r y x ==,0 ∴sin 2π=1 cos 2π=0 tan 2π不存在 cot 2π=0 sec 2π不存在 csc 2 π =1 例三 《教学与测试》P103 例一 求函数x x x x y tan tan cos cos + =的值域 解: 定义域:cosx0 ∴x 的终边不在x 轴上

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

高一数学三角函数公式大全

高一数学三角函数公式大全 sinα=∠α的对边/斜边 cosα=∠α的邻边/斜边 tanα=∠α的对边/∠α的邻边 cotα=∠α的邻边/∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1 tan2A=(2tanA)/(1-tanA2) (注:SinA2是sinA的平方sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a=tana·tan(π/3+a)·tan(π/3-a) 三倍角公式推导 sin3a=sin(2a+a)=sin2acosa+cos2asina 三角函数辅助角公式 Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中sint=B/(A2+B2)’(1/2) cost=A/(A2+B2)’(1/2) tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B 降幂公式 sin2(α)=(1-cos(2α))/2=versin(2α)/2 cos2(α)=(1+cos(2α))/2=covers(2α)/2 tan2(α)=(1-cos(2α))/(1+cos(2α)) 三角函数推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos2α 1-cos2α=2sin2α 1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1- 2sin2a)sina=3sina-4sin3a cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2- sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°- a)/2]cos[(60°-a)/2]=4s inasin(60°+a)sin(60°-a) cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a- (√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{- 2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=- 4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

最新三角函数-高中数学诱导公式大全

常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα

cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。(符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”.

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数公式总结

高中数学三角函数公式整理下面是高中数学三角函数公式大全: 1.两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 2.倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 3.三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 4.半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

5.和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 6.积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 7.诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 8.万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

任意角的三角函数及同角三角函数的基本关系式同步测试(含答案)

任意角的三角函数及同角三角函数的基本关系式同步测试 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知的正弦线与余弦线相等,且符号相同,那么的值 为() A. B. C. D. 2.若为第二象限角,那么的值() A.正值 B.负值C.零 D.不能确定 3.已知的值() A.-2 B.2 C. D.- 4.函数的值域是() A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1} 5.已知锐角终边上一点的坐标为(则= ()

A. B.3 C.3- D.-3 6.已知角的终边在函数的图象上,则的值为()A. B.- C.或- D. 7.若那么2的终边所在象限为() A.第一象限 B.第二象限 C.第三象 限 D.第四象限 8.、、的大小关系为() A. B. C. D. 9.已知是三角形的一个内角,且,那么这个三角形的形状 为() A.锐角三角形B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形

10.若是第一象限角,则中能确定为正值有() A.0个 B.1个 C.2 个 D.2个以上 11.化简(是第三象限角)的值等于() A.0 B.- 1 C. 2 D.-2 12.已知,那么的值为() A. B.- C.或- D.以上全错 二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知则 . 14.函数的定义域是_________. 15.已知,则=______. 16.化简 .

三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知 求证:. 18.若, 求角的取值范围. 19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求 的值. 20.已知是恒等式. 求a、b、c 的值.

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

相关主题