搜档网
当前位置:搜档网 › GDPT-2000W二次压降测试仪

GDPT-2000W二次压降测试仪

GDPT-2000W二次压降测试仪
GDPT-2000W二次压降测试仪

目录

一、概述 (1)

二、功能特点 (2)

三、技术指标 (3)

四、结构外观 (5)

五、液晶界面 (8)

六、使用方法 (17)

七、注意事项 (22)

一、概述 (23)

二、功能特点 (24)

三、技术指标 (25)

四、结构外观 (27)

五、使用方法 (40)

六、常见故障分析 (44)

七、电池维护及充电 (47)

八、注意事项 (47)

GDPT-2000W二次压降测试仪

一、概述

电能计量综合误差过大是电能计量中普遍存在的一个关键问题。电压互感器二次回路压降引起的计量误差往往是影响电能计量综合误差的最大因素。所谓电压互感器二次压降引起的误差,就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。传统测试方法是一台设备用很长的测试线同时检测PT侧和表计侧的电压,由于测试线过长,就很容易造成PT二次的短路情况,这时很危险的故障。

无线二次压降/负荷测试仪是我公司精心设计研制而成的一种全新的自动测试电压互感器二次压降/负荷的智能化无线测试仪器。它完全取代了以往常规方式的二次压降/负荷测试仪,不用再铺设很长的电压测试电缆,在很大程度上避免了PT二次短路事故的发生。为变电站的安全运行创造了良好的条件。仪器采用非GPS的无线同步方式,无需寻星,测试速度快,不受地形影响。

该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简便易学等优点,接线简单,测试、记录方便,大大提高了工作效率。它以大屏幕真彩色图形式液晶作为显示窗口,图形式菜单操作并配有汉字提示,集多参量于一屏的显示界面,人机对话界面友好,使用简便、快捷,是各级电力用户的首选产品。

二、功能特点

1、通过无线的方式自动完成三相三线或三相四线制的电压互感器二次压降的测量,不需要普通方式中要在仪器到测试远端铺设一条很长的电

压测试线,这样可避免由于线路过长引起的不必要的短路故障;

2、非GPS同步方式,无需寻星,使用快捷、方便。

3、自动计算三相的比差、角差、综合误差。

4、能自动检测并存储在各种接线方式下由测试导线等引起的测量误差数据,并在以后的测试中自动修正。

5、特别设计了软件修正功能,不需硬件调整就能实现精度修正,在各级电力试验研究部门均可现场检定。

6、各种电参量同屏显示,电压、电流、相角、功率因数、有功功率、无功功率、视在功率均可测量;可显示各相参数的波形图。

7、具备谐波测量功能,可测量32次以下电压、电流的谐波含量。

8、内置大容量充电电池组,在室外无220V交流电情况下可由仪器内电池组供电,内置快速自动充电器,可对电池组快速充电。

9、电池剩余电量百分数指示功能,绝非简单的亏电报警。

10、大屏幕、高亮度的真彩色液晶显示屏,全汉字图形化菜单及操作提示实现友好的人机对话,导电硅胶按键使操作更简便,宽温液晶带自动对比度、亮度调节,可适应冬夏各季。

11、用户可随时将测试的数据通过微型打印机将结果打印出来。

12、测试结果存储功能,可存储200组测试数据。

13、配备了后台管理软件,可将存储记录上传到计算机进行统一管理。

三、技术指标

1、使用环境

(1)环境温度:-10℃~40℃

(2)相对湿度:≤80%

2、测量精度

本仪器的测量精度为1级。

比差:Δf =±(1%×f+1%×δ)±0.01(%)

角差:Δδ=±(1%×δ+1%×f) ±1(分)

电导:G=± (1%×G+1%×δ±0.01) mS

电纳:δ=± (1%×δ+1%×G±0.01)mS

负荷:S=± (1%×S±0.1)VA

电阻:R=± (1%×R+1%×X±0.1)Ω

电抗:X=± (1%×X+1%×R±0.1)Ω

3、充电电源:交流176V~264V,频率45-55Hz

4、仪器的测量范围和分辨率

5、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。

⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。

6、电池工作时间:充满后工作时间大于6小时。

7、体积:

主机:32cm×24cm×13cm

分机:32cm×24cm×13cm

8、重量:

主机:2.5Kg

分机:2Kg

四、结构外观

仪器由主机和配件箱两部分组成,其中主机是仪器的核心,所有的电气部分都在主机和分机内部,其主机和分机的外箱采用高强度进口防水注塑机箱,坚固耐用,配件箱用来放置测试导线及工具。

1、结构尺寸

图一、主分机与配件箱尺寸

2、面板布置

主机面板布置(图二)

图二、主机面板布置图

如图二所示:最上方从左到右依次为电压测试用端子(Ua、Ub、Uc、Un)、钳形电流互感器接口(钳Ia、钳Ib、钳Ic)、天线接口、同步信号接口、USB接口、接地端子、RS232通讯接口、采样脉冲接口(压降功能下无用)、充电电源插座、工作电源开关、打印机;注意在操作时一定要确保所接的端子正确,否则有可能会影响测试结果甚至损坏仪器;最好经常充电,以免电池过量放电影响其使用寿命。面板左下方为液晶显示屏;液晶右侧为键盘。

分机面板布置(图三)

如图三所示:面板上方从左到右分别为电压输入端子、天线接口、同

步信号接口、接地端子、RS232通讯接口、充电指示、充电插座及工作开关,下侧从左到右分别为液晶屏、操作键盘。

3、键盘说明

键盘共有30个键,分别为:存储、查询、设置、切换、↑、↓、←、→、、退出、自检、帮助、数字1、数字2(ABC)、数字3(DEF)、数字4(GHI)、数字5(JKL)、数字6(MNO)、数字7(PQRS)、数字8(TUV)、数字9(WXYZ)、数字0、小数点、#、辅助功能建F1、F2、F3、F4、F5。

各键功能如下:

↑、↓、←、→键:光标移动键;在主菜单中用来移动光标,使其指向某个功能菜单;在参数设置功能屏下上下键用来切换当前选项。

键:确认键:在主菜单下,按此键显示菜单子目录,在子目录下,按下此键即进入被选中的功能,另外,在输入某些参数时,开始输入和结束输入并使刚键入的数字有效。

退出键:返回键,按下此键均直接返回到主菜单。

存储键:用来将测试结果存储为记录的形式。

查询键:用来浏览已存储的记录内容。

设置键:按下此键直接进入“参数设置”功能屏。

切换键:保留功能,暂不用。

自检键:在压降测试功能中做为自校功能键,测试完成后按此键实现自校。

帮助键:用来显示帮助信息。

数字(字符)键:用来进行参数设置的输入(可输入数字)。

小数点键:用来在设置参数时输入小数点。

#键:保留功能,暂不用。

F1、F2、F3、F4、F5:辅助功能键(快捷键)。用来快速进入辅助功能界面或实现相应的功能。

F1键:在参量测试和谐波分析屏中用来锁定测量数据,停止刷新;

F2键:在参量测试和谐波分析屏中用来解锁测量数据,开始刷新;

F3键:保留功能,暂不用;

F4键:做为打印功能键用来进行数据打印;

F5键:在结果查询屏中用来删除全部记录内容。

五、液晶界面

㈠、主机液晶显示界面共十三屏,包括主菜单和十二个功能界面,下面分别加以详细介绍。

1、在开机界面下按确定键可进入主菜单,主菜单图四所示:

图四、主机主菜单

主菜单共有十二个可选项,分别为:参数设置、三线压降、四线压降、三线PT负荷、四线PT负荷、CT负荷、上传数据、结果查询、参量测试、谐波分析。当光标指向哪一个功能选项时,哪个选项的文字就变为反白显示,可见图五界面中选中项为‘卫星状态’功能,按上下键可改变光标指向的选项。此时,按‘确定’键进入选中的功能显示屏。

2、在选中‘参数设置’功能屏可用来对当前的日期和时钟时间进行设置,还可对同步方式进行设置,界面如图五所示:

图五、参数设置屏

图中可见:有3个选项需要进行设置,包括:同步方式、设置日期、设置时间;“同步方式”有无线通讯和有线通讯两种模式可选,设置日期和设置时间是用来对当前的时钟进行设置。

3、三线压降界面:

此界面有两个功能:一是进行三相三线装置测试前的自校,为了保证测试精度,在开始正常测试之前对仪器进行精度自动校准的界面,通过此界面可将仪器的温漂误差和零位漂移误差降至最低;二是进行正常的三相三线计量装置压降的测试。结果如图六所示

图六、三线压降

测试结果数据包括:PT侧AB相电压幅值(由分机传来),CB相电压幅值(由分机传来),Wh侧AB相电压幅值(由主机测得),CB相电压幅值(由主机测得),AB相PT侧和Wh侧之间的角差,CB相PT 侧和Wh侧之间的角差;AB相PT侧和Wh侧之间的比差,CB相PT侧和Wh侧之间的比差;AB相PT侧和Wh侧之间的综合误差及化整结果,CB相PT侧和Wh侧之间的综合误差及化整结果。测试过程自动计数,从0开始,当累计次数满40次会自动停止,显示出测试结果屏;在测试过程中如果发现有个别异常数据,那么仪器会自动屏蔽异常数据,当连续出现异常数据时,仪器将终止测试,再从0开始计数。如果进行的功能是自校,那么测试结束后按照提示应当按下“自检”键,完成自校;如果进行的是正常的三线压降测试,那么测试结束后,按照提示可按“确定”键重新进行测试,也可选择按“F4”键进行打印,或者按“存储”键进行数据的保存。

4、四线压降界面:

此界面有两个功能:一是进行三相四线装置测试前的自校,为了保证测试精度,在开始正常测试之前对仪器进行精度自动校准的界面,通过此界面可将仪器的温漂误差和零位漂移误差降至最低;二是进行正常的三相

四线计量装置压降的测试。结果如图七所示:

测试结果数据包括:PT侧A相电压幅值(由分机传来),B相电压幅值(由分机传来),C相电压幅值(由分机传来),Wh侧A相电压幅值(由主机测得),Wh侧B相电压幅值(由主机测得),Wh侧C相电压幅值(由主机测得),A相PT侧和Wh侧之间的角差,B相PT侧和Wh侧之间的角差,C相PT侧和Wh侧之间的角差;A相PT侧和Wh 侧之间的比差,B相PT侧和Wh侧之间的比差,C相PT侧和Wh侧之间的比差;A相PT侧和Wh侧之间的综合误差及化整结果,B相PT侧和Wh侧之间的综合误差及化整结果,C相PT侧和Wh侧之间的综合误差及化整结果。测试过程会自动计数,从0开始,当累计次数满40次会自动停止,显示出测试结果屏;在测试过程中如果发现有个别异常数据,那么仪器会自动屏蔽异常数据,当连续出现异常数据时,仪器将终止测试,再从0开始计数。如果进行的功能是自校,那么测试结束后按照提示应当按下“自检”键,完成自校;如果进行的是正常的四线压降测试,那么测试结束后,按照提示可按“确定”键重新进行测试,也可选择按“F4”键进行打印,或者按“存储”键进行数据的保存。

图七、四线压降

5、三线PT负荷测试界面:

此界面用来对三相三线制的计量装置的PT负荷进行测试,可同时对AB和CB相进行测试。结果如图八所示:

图中显示出如下的测试数据:

PT端口AB相、CB相的电压幅值,PT的A、C各相出线的电流幅值,PT的A、C各相有功功率值,各相的电压和电流之间的相角和功率因数,各相计算出的电导、电纳和负荷。

按照提示可按“确定”键重新进行测试,也可选择按“F4”键进行打印,或者按“存储”键进行数据的保存。

图八、三线PT负荷

6、四线PT负荷测试界面:

此界面用来对三相四线制的计量装置的PT负荷进行测试,可同时对A、B、C相进行测试。

结果如图九所示:

图九、四线PT负荷

图中显示出如下的测试数据:

PT端口A、B、C各相的电压幅值,

PT出口处A、B、C各相出线的电流幅值,

PT的A、B、C各相有功功率值,

各相的电压和电流之间的相角和功率因数,

各相计算出的电导、电纳和负荷。

按照提示可按“确定”键重新进行测试,也可选择按“F4”键进行打印,或者按“存储”键进行数据的保存。

7、CT负荷测试界面:

此界面用来对计量装置的CT负荷进行测试,可分别对A、B、C相逐一进行测试。

结果如图十所示:

图十、CT负荷

图中显示出如下的测试数据:

被测相CT的端口电压幅值,被测相CT的电流幅值,被测相CT的有功功率值,被测相的电压和电流之间的相角和功率因数,各相计算出的电阻、电抗和负荷。

按照提示可按“确定”键重新进行测试,也可选择按“F4”键进行打印,或者按“存储”键进行数据的保存。

8、联机通讯界面:

此界面用来将仪器内存中所保存的各项测试数据上传到计算机,进行后台统一管理。

如图十一所示:

图十一、上传数据

9、波形显示界面:

图十二、波形显示

在此屏中可显示出当前各个被测模拟量的实际波形,波形实时刷新,能直观的反映出被测信号的失真情况(是否畸变、是否截顶),本屏中显示当前显示为Ua、Ia的波形, 用【↑↓】键来切换不同的显示通道;可切换为B相电压、电流的波形,C相电压、电流的波形,A、B、C三相所有的电压的波形,A、B、C三相所有的电流的波形,A、B、C三相所有的电压和电流的波形;可以做为简单的示波器使用。屏幕下方显示出各相电压的有效值、最大峰值、最小峰值、各相电流的有效值、最大峰值、最小峰值。

10、频谱分析界面:

图十三、频谱分析

如图十三所示:此屏以柱状图的形式显示出各相电压、各相电流的谐波含量分布情况,还能显示出谐波失真度和各次谐波含量数值。通道

UA-UB-UC-IA-IB-IC提示当前通道(可通过←、→键来改变所选通道),1%-10%为各谐波分量百分比(当所有次数的谐波含量都小于10%时进行放大显示,即以10%做为满刻度;当有一项以上的谐波含量大于10%时,正常显示,即以100%做为满刻度),05-30指示的是谐波的次数,右侧数值显示总谐波畸变率THD、有效值和32 次谐波。无失真的信号应显示第一次谐波(基波)。

11、谐波测试界面:

此屏用来对被测装置的谐波含量进行测试;如图十四所示:

图十四、谐波测试

图中以柱状图的形式显示出某个参量的各次谐波含量(1-50次),同时还以数值的形式显示出来。

12、历史数据界面:

此界面用来查阅仪器内存中所保存的各项测试数据,可打印。

如图十五所示:

图十五、历史数据

此屏显示出已存储的压降测试结果,首先,显示当前记录在内存占的条数,记录保存时的日期、时间;然后就是具体的测试数据。

按“上下”键可以切换上一条或下一条记录。按“F5”键可将所有内存清空。按“F4”键可将当前记录打印出来。

㈡、分机界面共一屏,只有一个功能界面,下面加以详细介绍。

1、测试界面如图十六所示:

图十六、分机测试

图中显示出通过无线信号同步进行测试时PT侧各相或相间电压幅值、与基准的夹角、实际计数数值;下侧显示出各信号的状态。

六、使用方法

1、无线三线自校方法:

在测试之前,为了保证测量数据的准确性,最好每次都要进行仪器的自校,方法为:主机和分机的Ua、Un、Uc电压端子同时接到PT侧的A、B、C相电压线上;主分机的端子要一一对应,但请注意:B相电压要接到主机和分机黑色的Un端子。如图十七所示:

图十七、三线压降自校接线

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择“三线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动停止。

按“自检”键可将仪器根据目前的状态校准。

2、无线三线压降测试方法:

将分机放在PT侧,主机放在Wh侧,同时测量两侧的电压(主机、分机电压信号按照图十八所示接线)。

PT侧A、B、C相电压线分别接到分机的Ua、Un、Uc电压端子上;Wh侧A、B、C相电压线分别接到主机的Ua、Un、Uc电压端子上。

请注意:B相电压要接到黑色的Un端子。

图十八、三线压降测试接线

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择“三线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动结束。

可选择将测试结果打印出来,或保存在内存中。

3、四线压降自校方法:

按照图十九接线:

图十九、四线压降自校接线

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择“四线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动停止。

按“自检”键可将仪器根据目前的状态校准。

4、四线压降测试方法:

将分机放在PT侧,主机放在Wh侧,同时测量两侧的电压(主机、分机电压信号按照图二十所示接线)。

图二十、四线压降测试接线

PT侧A、B、C、N相电压线分别接到分机的Ua、Ub、Uc、Un电压端子上;

Wh侧A、B、C、N相电压线分别接到主机的Ua、Ub、Uc、Un电压端子上。

请注意:各相电压要按颜色接到相应的电压端子上。

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择“四线压降”项目,按“开始”键即自动测试,记数次数累计到60后,自动结束。

可选择将测试结果打印出来,或保存在内存中。

5、三线PT负荷测试方法:

用主机在PT侧进行测试。其中电压用PT侧通道测量,电流用钳形电流互感器测量,按图二十一接线:

HGQYFC二压降及负荷测试仪

HGQYF-C二次压降及负荷测试仪 第一章二次压降及负荷测试仪简介 电能计量装置存在的误差为电能计量综合误差,是由电能表的误差、电压互感器的合成误差、电流互感器的合成误差和电压互感器二次导线压降引起的计量误差所组成,可以用以下式子表示: ε=εw+εTA+εTV+εr 式中εw—电能表误差% εTA—电流互感器合成误差% εTV—电压互感器合成误差% εr—电压互感器二次导线压降引起的计量误差% 在电厂及变电站电能计量回路中,室外的电压互感器离装设于控制室配电盘上的电能表有较远的距离,一般在200~400 m左右,整个回路有接线端子排、开关、熔断器及导线,必然存在着接触电阻、导线电阻及分布参数,从而就存在着一定的回路阻抗,造成电压互感器与电能表间的二次回路上有电压降。电压互感器二次回路压降包括电缆、端子接触电阻、熔线、中间继电器接点、空气小开关等电压降之总和。电压互感器二次电压降引起的误差,就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。 《电能计量装置技术管理规程》DL/T448-2000的规定,电压互感器二次回路压降,对于I类计量装置,应不大于额定二次电压的0.2%(注:三相三线电路压降的允许值为0.2 V;三相四线电路压降允许值为0.2/3V);其它计量装置,应不大于额定二次电压的0.5%(注:三相三线电路压降的允许值为0.5 V;三相四线电路压降允许值为0.5/3V)。对运行中的电压互感器二次回路压降需进行周期测试,以便算出由此引起的电能计量误差,这对于进行技术改进,减小电能计量综合误差,降低计费损失有着重要意义 电压互感器二次回路压降测量方法通常有间接测量法和直接测量法两种(无线测量属于间接测量法),由于间接测量法准确度不太高,不能满足测量要求,一般不采用此种方法,而直接测量法(校验仪测量法)采用测差原理,准确度高,测量可靠,因此在实际测量中大

电压互感器二次回路压降测试作业指导书

电压互感器二次回路压降测试作业指导书 1适用范围 本作业指导书适用于电压互感器二次回路压降的现场测试。 2依据 DL/T 448-2000 电能计量装置技术管理规程 国家电网公司电力安全工作规程(发电厂和变电所电气部分)(国家电网安监[2005]83号) 国家电网公司电能计量装置现场检验作业指导书 3环境条件 环境温度:(0~35)℃ 相对湿度:≤85%; 4安全工作要求 4.1办理第二种工作票。 4.2至少有两人一起工作,其中一人进行监护。 4.3操作工具绝缘良好。 4.4测试仪和试验端子之间的连接导线应有良好的绝缘,中间不允许有接头。 4.5电压互感器二次回路严禁短路。 4.6现场检验应使用具有漏电及过流保护功能的电源插座。 4.7收放测试导线时,应确保导线处贴地状态,严禁导线架空。 5使用设备 5.1电压互感器二次回路压降测试仪(以下简称测试仪) 5.2数字万用表 6工作程序 6.1办理第二种工作票。 6.2检查电能计量装置(包括计量柜、电能表、试验接线盒、失压仪、电压互感器刀闸及二次回路等)的铅封情况,经在场人员确认完好无损后做好记录。 6.3用万用表检查各测试导线芯间、芯与屏蔽层之间的绝缘情况, 6.4打开试验接线盒罩壳,按图1(三相四线)、图2(三相三线)接线。

6.5打开测试仪电源开关,选择电能表端测量方式,进行自校。 6.6从电能表屏处放测试导线至电压互感器就地端子箱处。 6.7运行人员与测试人员在电压互感器就地端子箱处,共同确认计量用绕组对应的二次端子。 6.8用万用表检查就地端子箱内的熔断器或空气开关是否正常。

6.9将带相别标志的测试仪电压互感器侧线夹接至就地端子箱对应的二次端子上,并留专人监护。 6.10在电能表屏处将带相别标志的测试仪电能表侧线夹接到试验接线盒的对应电压端子上。 6.11测试并记录测试结果。安装压降补偿器的应分别测量补偿前后的压降。 6.12I、Ⅱ类用于贸易结算的电能计量装置中电压互感器二次回路电压降应不大于其额定二次电压的0.2%;其他电能计量装置中电压互感器二次回路电压降应不大于其额定二次电压的0.5%。 6.13测试结束后,通知就地端子箱处的测试人员拆除测试线。 6.14确认就地端子箱的测试线已拆除后,拆除电能表屏侧的测试线。 6.15恢复试验接线盒,施加铅封并经用户代表签字确认。 6.16关闭测试仪电源,清理工作现场。 6.17撤离工作现场后,办理工作终结手续。 7测试结果处理 二次压降若超差,应通知客户进行整改。 8原始记录 8.1原始记录必须用钢笔或签字笔填写,应有用户代表签字。 8.2原始记录至少应保存3个周期。 8.3原始记录的格式见附录A。

电容式电压互感器试验中介损值偏大原因分析

电容式电压互感器试验中介损值偏大原因分析 摘要:本文介绍了220kV电容式电压互感器预试中介损值偏大原因的排查过程,并以此情况展开关于电容式电压互感器介质损耗试验原理、试验方法、抗干扰方 法的简要论述。 关键词:电压互感器;介损;试验方法;抗干扰 前言: 徐州某电厂二期升压站2612出线电容式电压互感器(电容式电压互感器简称CVT,以下均称CVT)在2017年10月6日预防性试验时,发现C相下节C1介损 值为0.938%,电容量为87.11nF,根据规程标准及历史值对比,严重超标,介于 天气、环境干扰、试验方式方法等原因(试验时,信号线Cx、自激线没有悬空, 从地面草丛上走过,10月6号试验时为晴天,但10月5号还在下雨,连续下了 好多天)试验人员选择排查干扰、试验走线方式等方面再次进行试验,力求减小 干扰和误差,测出最真实的数据。 正文: 一.介质损耗试验原理及作用 1.原理 电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。如果介质损 耗很大,会使电介质温度升高,促使材料发生老化,如果介质温度不断上升,甚 至会把电介质融化、烧焦,丧失绝缘能力,导致热击穿,因此,电介质损耗的大 小是衡量绝缘介质电性能的一项重要指标。然而不同设备由于运行电压、结构尺 寸等不同,不能通过介质损耗的大小来衡量对比设备好坏。因此引入了介质损耗 因数tgδ(又称介质损失角正切值)的概念。 介质损耗因数的定义是: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 试验前把二次绕组线拆掉,最后一个绕组没有接线,是用连片短接起来的, 做试验时要把此连片拆掉,阻尼连片甩开,大N点甩开不让其接地即可(这时大 X点接地可以不动,只要把大N点单独脱开即可,因为正常运行时,大N点和大 X点是连在一起一块接地的)做上节时介损桥高压线接上面(只接芯线,屏蔽线 悬空),信号线(试品输入Cx线)接中间,(也只接芯线,屏蔽线要悬空,注意,在做上节的介损时,信号线的接线特别要注意,只接芯线即可,屏蔽线不要接,如果接上,介损会很大,是不接的10倍关系,而且是超标的,此处注意。) 2、2612出线CVT下节 对于电容式电压互感器的分压单元,由于C1和C2连接处是封闭的,不能直 接采用正接线测试,如果测量C1和C2的串联值。由于与中间变压器对地电容跟 C1和C2形成“T形网络”,如果中间变压器介损较大,可能出现负值。因此应采 用自激磁法进行测试。测量C1时,C2与标准电容CN串联,由于C2>>CN,串联后 标准臂电容≈CN,介损也取决于CN可看作零。通过二次绕组加压在中间变压器一次侧感应出高压施加于试品上进行测量。由于二次绕组容量及电容尾端绝缘水平 限制,施加电压不能超过2500V。一般采用2000V测量。由于C1较C2电容量要小,所以测量C2时,C1与Cn串联等效的误差就比较大。为了减小这种测量误差,

(完整版)电流互感器末屏的工作原理及试验方法

电流互感器末屏的工作原理及试验方法(故障攻关特色工作室) 朔黄铁路原平分公司

一、什么是电流互感器的电容屏及末屏? 电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。两两电容屏之间形成电容。 二、电流互感器内部为什么要设置电容屏? 电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。 绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大

的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。 三、电流互感器的末屏为什么一定要接地? 电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。 容抗X=1/(2πfC),可见频率相同的情况下,电容器的容值与容抗成反比,所以在这个电路中,这个串进来的对地小电容容抗要远大于流互内部电容器。而又由于串联电路,电流处处相等,所以电流互感器内各电容器的电量Q是相等的,Q=CU,所以对地小电容所分得的电压远远大于流互内部电容器。这个末屏高电压会使电流互感器内部绝缘的电场强度分布极度不均匀,在电场力的作用下,内部绝缘的电荷会朝末屏聚集,场强集中后,周围固体介质会烧坏或炭化,也会使绝缘油分解出大量特征气体,从而使绝缘油色谱分析结果超标,也会对地发生火花放电。 如果末屏接地,电流互感器只存在电容屏组成的电容,则每个电容器电压均分,且末屏接地,导致末屏这个最外极的电容屏电势为零,而由于电容器两极板之间电荷一定是数量相等,极性相反,且只会从负极板经外部电路流向正极板放电,所以末屏这个极板的电荷并不会导入进地,即Q不变。

电容式电压互感器电容、介损测试原理和注意事项

电容式电压互感器电容、介损测试原理和注意事项 前言 电容式电压互感器(capacitor voltagetransformer,CVT)与传统电磁式电压互感器相比具有体积小、冲击绝缘强度高、电场强度裕度大,可防止因电压互感器铁心饱和引起铁磁谐振,而且电容部分可兼作耦合电容器用于高频载波通信等诸多优点。目前,在CVT在110 kV及以上电力系统中得到广泛应用【1】。 CVT的电容和介损测试作为其预防性试验项目之一,可发现存在的缺陷故障,是判断CVT 的运行状况的重要方法。目前,我国大量使用的是无中间抽头的叠装式CVT,由于设备安装现场的限制和各节电容的电气位置不同,测量方法也不同。本文主要分析介绍了各节电容器测量原理,并提出了现场测试时的几点注意事项 1 CVT电气原理图 无中间抽压端子的叠装式CVT电气原理图如图1所示。其中,高压电容器C1由耦合电容C11、C12、C13串联组成,C2为分压电容器。T为中间变压器,F 为保护装置,L为补偿电抗器,Z为阻尼电抗器,N为电容分压电容器低压端子,X为电磁单元低压端子,1a、1n、2a、2n、3a、3n 为二次绕组,da~dn为剩余电压绕组。整套CVT由电容分压器和电磁单元两部分组成(以图中虚线为界),下节分压电容器C2和电磁单元在产品出厂时连为一体,并且C11与C2 中间无试验用连接线引出。在额定频率下,补偿电抗器L的感抗值近似等于分压器两部分电容并联(C1+C2)的容抗值。根据谐振原理使中压变压器高压端与母线电压的比值为C1/(C1+C2)。 图1 CVT 的电气原理图 Fig. 1 Electrical schematic diagram of CVT 2 各节电容的测量方法 2.1 上节耦合电容C13测量原理

电压互感器二次回路压降测试作业指导书

电压互感器二次回路压降测试 作业指导书

目录 1.概述………………………………………………………….() 2.应用范围…………………………………………………….() 3.引用标准、规程、规范…………………………………….() 4.使用仪器、仪表及准确度等级……………………….() 5.试验条件…………………………………………………….() 6.试验项目……………………………………………………() 7.试验方法……………………………………………………() 8.试验结果的处理…………………………………………….() 9.安全技术措施……………………………………………….()附录A.试验记录格式……………………………………….()

1 概述 本作业指导书针对的测试对象是发电厂和变电站计量用电压互感器二次回路导线所引起的电压降。试验目的是检验用于电能计量中电压互感器二次回路压降的误差。电能计量装置综合误是由电流互感器的误差、电压互感器的误差、电能表的误差及电压互感器二次导线压所引起计量综合误差所组成。因此电能计量综合误差的计算与修正,需要准确地检测出电压互感器二次回路压降的误差。现行规程规定压降的检测周期为2年。 2.应用范围 本作业指导书适用于对新装及运行中高供高计的电力用户和发、供电企业间用于电量交易的电能计量装置电压互感器二次回路压降的测试工作。 3.引用标准、规程、规范 (1)DL/T448-2000 《电能计量装置技术管理规程》 (2)JJG169-1993 《互感器校验仪检定规程》 (3)JJG1027-1991 《测量误差及数据处理》 (4)国家电网安监字[2005]83号《国家电网公司电力安全工作规程》4.使用仪器、仪表及准确度等级 表1电压互感器二次回路压降测试用标准仪器 5.试验条件 5.1压降测试仪: 5.1.1等级不应低于2级;基本误差应包含测试引线所带来的附加误差。

二次压降测试仪简介

https://www.sodocs.net/doc/fe4867397.html, 电能计量装置存在的误差为电能计量综合误差,是由电能表的误差、电压互感器的合成误差、电流互感器的合成误差和电压互感器二次导线压降引起的计量误差所组成,可以用以下式子表示: ε=εw+εTA+εTV+εr 式中εw—电能表误差% εTA—电流互感器合成误差% εTV—电压互感器合成误差% εr—电压互感器二次导线压降引起的计量误差% 在电厂及变电站电能计量回路中,室外的电压互感器离装设于控制室配电盘上的电能表有较远的距离,一般在200~400 m左右,整个回路有接线端子排、开关、熔断器及导线,必然存在着接触电阻、导线电阻及分布参数,从而就存在着一定的回路阻抗,造成电压互感器与电能表间的二次回路上有电压降。电压互感器二次回路压降包括电缆、端子接触电阻、熔线、中间继电器接点、空气小开关等电压降之总和。电压互感器二次电压降引起的误差,就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。 《电能计量装置技术管理规程》DL/T448-2000的规定,电压互感器二次回路压降,对于I类计量装置,应不大于额定二次电压的0.2%(注:三相三线电路压降的允许值为0.2 V;三相四线电路压降允许值为0.2/V);其它计量装置,应不大于额定二次电压的0.5%(注:三相三线电路压降的允许值为0.5 V;三相四线电路压降允许值为0.5/V)。对运行中的电压互感器二次回路压降需进行周期测试,以便算出由此引起的电能计量误差,这对于进行技术改进,减小电能计量综合误差,降低计费损失有着重要意义

https://www.sodocs.net/doc/fe4867397.html, 电压互感器二次回路压降测量方法通常有间接测量法和直接测量法两种(无线测量属于间接测量法),由于间接测量法准确度不太高,不能满足测量要求,一般不采用此种方法,而直接测量法(校验仪测量法)采用测差原理,准确度高,测量可靠,因此在实际测量中大量采用。 二次压降对互感器误差影响说明请参考下图。 1 =0.8 =1

4电容式电压互感器绝缘介损测试方法研究.

电容式电压互感器绝缘介损测试方法研究 四川广元电业局罗军川桂林电力电容器总厂宋守龙 摘要:本文介绍了降低测试误差的一些实用经验和措施,提出了现场电容式电压互感器分压电容器绝缘介质损耗测试方法建议。 关键词:电容分压器介质损耗电磁单元测量方法 1 引言 随着电容式电压互感器(Capacitor V oltage Transformers,以下简称CVT)在电力系统的广泛运用,其现场试验问题越来越突出。目前的CVT绝大多数为单柱式结构,分压器和电磁单元叠装为一个整体,现场试验时,不便将电容分压器与电磁单元分开,因此现场测试比较麻烦,容易引起测量误差,甚至不能进行正常测试。DL/T 596-1996《电力设备预防性试验规程》修订说明中推荐采用电磁单元本身作为试验电源的自激法进行测量,但受电磁单元本身和测试方法的影响,测量结果不能反映设备绝缘的真实情况。为有效监测CVT分压电容器的绝缘状况,CVT设备厂家在使用说明书中都提供了现场测试时的测试方法和判断标准,主要有正接法和自激法两种测量分析方法(也有单位为避免测量结果为负值,采用反接法测量CVT分压电容器整体总电容介损)。各运行单位在测试方法上主要依据设备厂家提供的试验方法,但由于设备状况的改变和现场测试环境复杂多变等因素的影响,试验中出现的问题较多,在现场试验中对中压变压器一二次绕组端部的处理上问题尤为突出,不能正确分析处理各种异常现象,测试值忽高忽低。由于CVT是大电容、小介损试品,对于膜纸复合绝缘结构,规程要求其tanδ不大于0.2%,如果测试方法不当产生偏大的测量误差,电容器tanδ很可能超过0.2%,出现设备误判和停电损失或者整体综合介损的测试结果为负值的情况,无法判定电容分压器的介损是否合格。 本文中笔者以现场试验为基础,通过对正接法、反接法和自激法试验测量值进行误差分析,表明现场测试值与真实值(CVT组装前分体试验测试值)之间的对应关系,更有利于客观、准确分析和评价设备的绝缘状况。针对现有试验方法存在的诸多问题进行分析和改进,提出具有指导意义的现场CVT电容分压器绝缘介损标准测试接线方法,对现场绝缘试验实施导则的修编和完善提供了重要的参考价值。 2 CVT 工作原理及主要结构 CVT是利用电容分压器将一次电压降低为几千至两万伏的中间电压,中间电压经中压变压器变换为所需的二次电压并实现一二次回路间的电气隔离。通过调整补偿电抗器的电感值使CVT回路的感抗与容抗1/ω(C +C)接近相等,从而大大减小了CVT的内阻抗,提高了CVT的带负载能力。整套CVT由电容分压器和电磁装置两部分叠装而成。电容分压器的中压端和低压端由最下部的一节电容器底板上的小套管引出,并分别与电磁单元内的中压变压器的高压端、出线板上的载波通讯端子N相连接。电磁装置和下节分压电容器在产品出厂时已连接为一体,电磁装置中的绝缘油系统与分压电容器的绝缘油系统完全隔离。二次出线端子及载波端子通过油箱侧壁的二次出线盒引出。其电气原理图如图1所示。

电压互感器二次回路压降超差原因和改进措施分析 栾洪利

电压互感器二次回路压降超差原因和改进措施分析栾洪利 发表时间:2019-03-29T15:55:39.747Z 来源:《电力设备》2018年第29期作者:栾洪利 [导读] 摘要:电压互感器是电力系统的主要组成部分之一,对电力系统的稳定运转具有重要意义,但是电压互感器会在电能表端子之间二次回路线路中产生二次压降,这一现象会导致电压计量与真实值之间出现一定偏差,为用户带来经济方面的损失。 (四川蜀能电力有限公司电网运维分公司四川省成都市 610000) 摘要:电压互感器是电力系统的主要组成部分之一,对电力系统的稳定运转具有重要意义,但是电压互感器会在电能表端子之间二次回路线路中产生二次压降,这一现象会导致电压计量与真实值之间出现一定偏差,为用户带来经济方面的损失。鉴于电压互感器二次回路压降具有普遍存在性,且对电力系统的运行以及电能的计量等具有重要影响,在实际应用中必须充分了解和掌握该造成该现象的原因,并针对这种现象做出必要的应对措施,以减小或消除二次压降对电力系统造成的影响,确保计量误差在合理范围内。基于此,本文对电压互感器二次回路压降超差原因和改进措施进行分析。 关键词:电压互感器;二次回路;压降超差原因;改进措施 电力系统电能计量装置综合误差由电压互感器误差、电流互感器误差、电能表误差以及电压互感器二次回路压降引起的误差四部分组成。随着社会科技进步以及生产技术的不断提高,电压互感器误差、电流互感器误差、电能表误差在电能计量综合误差中所占的比例越来越少,因此,电压互感器二次回路压降所引起的误差越来越明显。可见,分析电压互感器二次回路压降产生的原因以及寻求降低其误差的方法意义重大。 1电压互感器二次回路压降超差原因分析 1.1二次回路连接电缆。变电站及大用户电能表一般都装在主控室电能表屏上,与户外母线电压互感器距离较远,近则几十米,远则上百米,甚至更长。加之现场电压回路的电缆不是按照回路所接负载的大小及距离来计算确定电缆截面,导致电缆截面过小,使得电压互感器二次侧出线端钮处的电压大于二次回路末端电能表表头端钮处的电压。 1.2二次回路中所接快速开关、保险、继电器、辅助接点、试验端子等的接触电阻较大,35kV及以上电压等级的电压互感器,其端子箱、隔离刀闸辅助接点等大都在户外,由于室外环境污染,温湿度变化等导致这些接点氧化较为严重,使得接触电阻增大,二次回路电压损失也增大。 1.3保护、测量、计量共用一个电压互感器二次绕组,二次负载大,从而引起负载电流增大,使得二次回路的电压损失增加。 1.4中性点偏移。在三相四线电路中,当I1+I2+I3≠0或其他原因,中性点发生偏移,对电压互感器二次电压降影响很大,表现为二次压降三相极不对称,严重时某些相比差还将出现正值,严重影响计量准确性。以500kV橄榄变电站1号站用变319为例,以前为三相三线电能表,改为三相四线电能表后,由于电压互感器采用三相三线接入方式,电能表位置无电压中性线,电能表电压中性点临时接入电流公共点,使电压中性点发生偏移。 1.5二次负荷大小的影响 电压互感器二次回路压降过大的另一个主要原因是二次负载过多。500kV电压等级的变电站其220kV及以下电压线路电能表的计量电压一般取自母线电压互感器,而母线上连接的一般都有十几条以上的出线,电压互感器二次回路的负载较大。特别是220kV侧出线往往更多,而且很多出线装设了两块电能表,这些变电站220kV电压互感器二次压降超差比较明显。例如,某500kV变电站220kVI段母线有10多个出线间隔,现场测试其压降时发现其AB、CB相压降分别为0.61%和0.56%。为验证线路电能表负载过大是引起电压互感器二次压降超差的主要原因,将电压互感器二次回路上连接的电能表退出运行后再测量其二次压降,发现测量的压降将远远低于原来的值。 2电压互感器二次回路改进措施 2.1装设计量专用电压二次回路 采用计量专用电压二次回路,有以下几个优点:采用专用电压二次回路,通过专用电缆线中的电流I显著减小,从而可以减小二次回路电压降ΔU及由此带来的电能计量误差。采用专用二次回路,电能表与继电保护、测量指示仪表的电压回路彻底分开,消除了相互之间的影响,其回路电压降不受接于其他二次回路中的继电保护、测量仪表等负荷变化的影响,并且提高了电压回路的可靠性,可按各自回路的负荷大小,准确度等级以及回路的接线不同而采用不同的设计方案。 2.2降低计量电压回路控制电缆损耗 根据电压互感器二次回路所连接的负载的大小、距离,适当放大计量电压回路控制电缆的截面(建议采用2.5mm2或以上),可以降低电压互感器二次导线的阻抗,从而降低电压互感器二次压降。一次配电装置现场条件许可,比如为户内安装时,将计量表计下放配电装置现场,以此缩短电压二次回路控制电缆长度,不失为一种降低电压互感器二次压降的良方。 2.3减小回路电流 在实际应用中,电压互感器二次回路的负载通常为电能表等计量装置,其所需的负载电流非常小,通常小于200毫安,若实际检测中发现回路电流超过该阈值可以采用适当的端接方式和端接器材降低回路电流,进而降低回路中的压降。常用的减小回路电流的方法有:更换计量绕组,在实际应用中可以使保护绕组和计量绕组相互分离,这样可以降低回路中产生的电流;更换电压互感器,为减小回路电流可以选用精度更高的绕组作为电能计量使用的绕组降低压降;选用全电子多功能电能表对电能表进行更新换代,全电子电能表具有更高的输入阻抗,可以产生更低的负载电流,对于减小回路电流具有明显作用。 2.4增加补偿装置 首先,定值补偿主要是利用自耦变压器实现的,通过自耦变压器可以将二次回路中电能表端电压幅值与相位调至与电压互感器端相同的水平,这样既可实现对电压的补偿,消除压降的影响。 其次,电流跟踪式补偿器基本原理是利用电子线路通过对电压互感器二次回路电流的跟踪产生一个与二次回路阻抗大小相等的负阻抗,最终使二次回路总阻抗等效为零。这样,即使有PT二次回路电流的存在,由于回路阻抗为零,压降也为零。由于二次回路总阻抗等效为零,可以保持压降为零。但对于二次回路阻抗变化的情况,则不能自动跟踪,也就是说,如果熔体电阻或接点接触电阻发生改变,则回路等效阻抗不为零,这是该补偿器的局限性。 最后,电压跟踪式补偿器的原理是通过一取样电缆,将电压互感器二次端电压信号与电能表计端电压信号进行比较,以产生一个与二

PT二次压降及负荷测试方法及步骤

GDPT-2000C PT二次压降及负荷测试仪 一、产品简介 发电厂与变电站的高压电能计量装置,以及大量用户的电能计量装置,关系到发电、送电、供电及用户多方的利益。为保证计量准确,必须按照SD109《电能计量装置检验规程》和DL/T448-2000《电能计量装置技术管理规程》进行检验。 我公司的二次压降及负荷测试仪是以高端测试技术,大规模电子线路设计以及符合国家相关规程研制出来的。它解决了二次压降及二次负荷工作强度大、操作繁琐问题,同时该产品性能可靠、功能强大。 二、特点 1、二次压降及负荷测试仪同时具有电压互感器二次回路压降测试、互感器二次负荷功能于一身,方便现场开展计量装置现场检定工作。 2、内部具有大功率的锂电池作为仪器工作电源,纯净的电源带来更稳定、更精确的测量数据,同时方便开展现场检定工作。 3、采用640×480彩色液晶显示,具有人性化的界面及操作设计,使用触摸屏辅助操作,使操作变的更加方便、快捷。 4、采用精准的软件算法,测量数据的准确性进一步提高。 5、具有智能判断外接线状况,提示接线错误、变比、极性错误等。 6、自动对测试数据进行化整,并判断是否超差。

7、直接出具现场检定结论,合格或不合格。 8、大规模存贮器可存储现场测试数据多达300条。 9、采用工程塑料模具机箱防震、防压,保障现场操作人员的安全和设备安全。 三、主要性能技术指标 1 、整机通用技术指标 ①整机准确度:2级 基本误差:?X=± K(X×2%+Y×2%±DX) ?Y=± K(X×2%+Y×2%±DY) 式中:ΔX——同相分量基本误差允许值; ΔY——正交分量基本误差允许值; K——仪器常数,K=1; X——同相测量盘示值的绝对值; Y——正交测量盘示值的绝对值; DX,DY——测量盘最小分度值或量化值; ②工作电压、工作电流、百分表准确度:1.5级 ③工作电压范围:5V~120V ⑤ΔV测量范围:0.01V~200V(压降)0.1mV~200V(PT或阻抗) ⑥钳表电流测量范围:10 mA~6A ⑦频率测差范围:40 Hz~60 Hz 分辨率:0.1 Hz 2、二次压降测试

电压互感器绝缘试验技术研究

电压互感器绝缘试验技术研究 发表时间:2019-12-12T15:53:17.633Z 来源:《工程管理前沿》2019年22期作者:杜晓平李涛杨宁[导读] 对无中间抽压端子叠装式电容式电压互感器(CVT)分压电容及介损的测量方法进行了探讨摘要: 对无中间抽压端子叠装式电容式电压互感器(CVT)分压电容及介损的测量方法进行了探讨,介绍了用变频介损试验的方法及注意事项。对采用自激法进行测量的可行性和必要性进行分析,指出影响自激法测量的主要因素,总结了测量中的有关问题,并就如何提高数据正确程度提出一些建议,并根据现场实际情况进行误差校正分析。现场试验表明,该改进的自激法可消除现场干扰,所得数据完全满足试验要 求。 关键词: 电容式电压互感器(CVT);自激法;误差分析;分压电容;介损1引言 电容式电压互感器(CVT)由于防系统谐振的性能较好,并且可以兼做系统通信用的载波电容,在110kV以上的系统中正在逐步替换原有的线路电磁式电压互感器,成为系统中一种必不可少的设备。目前的电容式电压互感器(CVT)绝大多数为叠装式结构[1]。由于现场试验时叠装式CVT的电容分压器和电磁单元不能分开[2],给现场绝缘测量造成了一定的困难,现场测量时的问题较多。因此,有必要对电容式电压互感器自激法试验方法的适用性和准确性进行探讨,寻求既切实可行又简便的测量方法供广大试验人员使用,本文将对这一问题进行探讨。 2 CVT和变频介损仪的基本原理 2.1 CVT基本结构及工作原理 Fig·1 Circuit diagram of CVT CVT的原理结构见图1,电磁单元的中间变压器T的中压连线(图中B点)分有、无引出线两大类。T和补偿电抗器L、阻尼电阻Z都组装在低压分压电容器C2下面的油箱内共同组成一基本电容分压器单元(虚线框);C1为高压电容。 2.2变频介损仪的原理及分类 基于电子及微处理器技术、变频抗干扰技术、数字滤波技术的变频介损仪施加一定频率的电压于试品和标准电容器上,比较二者电流的大小、相位来确定试品电容量和介损。 图2中,R1和R2分别为数字介损电桥机内标准电容回路及被试品回路的采样电阻;CN为标准电容器的等值电容;Rx和Cx分别为被试品的等值电阻和等效电容。将采样电阻的电压与的波形进行分析计算后,即可求得与的相位差δx,同时可以计算被试品的介损系数及的阻性和容性分量。 由图2知: 式中j—复数因子,表示电流相位超前电压90°; f—介损电桥的电源输出频率; m—被试品电流的电容分量和标准电容回路电流的比例系数。 由图2所示的被试品等效电路可知其介质损耗系数:

二次压降及二次负荷测试仪通用技术规范

二次压降及二次负荷测试仪 通用技术规范 本规范对应的专用技术规范目录 二次压降及二次负荷测试仪采购标准技术规范使用说明 1. 本采购标准技术规范分为标准技术规范通用部分、标准技术规范专用部分以及本规范使用说明。 2. 采购标准技术规范通用部分原则上不需要设备招标人(项目单位)填写,更不允许随意更改。如对其条款内容确实需要改动,项目单位应填写《项目单位通用部分条款变更表》并加盖该网、省公司招投标管理中心公章及辅助说明文件随招标计划一起提交至招 标文件审查会。经标书审查同意后,对通用部分的修改形成《项目单位通用部分条款变更表》,放入专用部分,随招标文件同时发出并视为有效。 3. 采购标准技术规范专用部分分为标准技术参数、项目单位需求部分和投标人响应 部分。《标准技术参数表》中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动。项目单位对“标准参数值”栏的差异部分,应填写“项目单位技术差异表”,“投标人保证值”栏应由投标人认真逐项填写。项目单位需求部分由项目单位填写,包括招标设备的

工程概况和招标设备的使用条件。对扩建工程,可以提出与原工程相适应的一次、二次及土建的接口要求。投标人响应部分由投标人填写“投标人技术参数偏差表”,提供销售业绩、主要部件材料和其他要求提供的资料。 4. 投标人填写“技术参数和性能要求响应表”时,如与招标人要求有差异时,除填写“技术偏差表”外,必要时应提供相应试验报告。 5. 有关污秽、温度、海拔等需要修正的情况由项目单位提出并在专用部分的表3项 目单位技术差异表明确表示。 6?采购标准技术规范的页面、标题等均为统一格式,不得随意更改

互感器介损原理及测试方法总结(参考相关)

互感器介损测试方法总结 一、规程规定 9.0.2 测量绕组的绝缘电阻,应符合下列规定: 3 测量电容式电流互感器的末屏及电压互感器接地端(N)对外壳(地)的绝缘电阻,绝缘电阻值不宜小于1000 MΩ。若末屏对地绝缘电阻小于1000 M Ω时,应测量其tanδ; 9.0.3 电压等级35kV 及以上互感器的介质损耗角正切值tanδ测量应符合如下规定: 1 互感器的绕组tanδ测量电压应在10kV测量,tanδ不应大于表9.0.3中数据。当对绝缘有怀疑时,可采用高压法进行试验,在(0.5~1) U3范围内进行,tanδ变化量不应大于0.2% ,电容变化量不应大于0.5%; 2 末屏tanδ测量电压为2kV。 注:本条主要适用于油浸式互感器。SF6气体绝缘和环氧树脂绝缘结构互感器不适用,注硅脂等干式互感器可以参照执行。 表9.0.3 tanδ(%)限值 20~35kV 66~110kV 220kV 330~500kV 额定电 压 种类 油浸式电流互感器 2.5 0.8 0.6 0.5 0.5 0.5 0.5 ─ 充硅脂及其它干式电流互 感器 油浸式电压互感器绕组 3 2.5 ─ 串级式电压互感器支架─ 6 ─ 油浸式电流互感器末屏─ 2 注:电压互感器整体及支架介损受环境条件(特别是相对湿度)影响较大,测量时要加以考虑。 二、介损原理

δ U I () () (c ) () U I Uc Uc C S U R U I φ δI R I c U R I R I c 1、 并联等值电路(图a 、b ) 在交流电U 的作用下介质中的电流为I 。U 与I 之间的夹角为φ,即功率因数角;其余角为δ,即介质损耗角根据图a 可得: tan δ=R I Ic =1 wCpR 则介质损耗为: P=UIR=UIctanδ=2 U *w*C p*tanδ 2、 串联等值电路(图c 、d ) tan δ=U U R c =1i/wCs =w*C s*r P=2 i *r = 2 2tan wCs U δ 1+tan δ1 由于tan 2δ<<1,所以Cs ≈Cp=C,R>>r ,因此以上两种电路可以以一个共同的表达式表示: P=2 U wCtanδ 由此可见,介损与tanδ成正比,即可用tanδ表示介损的大小。同类试品绝缘的优劣,可直接由tanδ的大小来判断。

电压互感器二次回路压降误差的测试

1电压互感器二次回路压降的产生 在电厂及变电站电能计量回路中,室外的电压互感器离装设于控制室配电盘上的电能表有较远的间隔,一般在200~400 m左右,整个回路有接线端子排、开关、熔断器及导线,必然存在着接触电阻、导线电阻及分布参数,从而就存在着一定的回路阻抗,造成电压互感器与电能表间的二次回路上有电压降△ù,导致电压互感器二次端电压与电能表端电压不相等,其大小和相角都不同。 图1三相三线电路 在图1所示三相三线电路中,ab相及cb相二次回路压降分别为△ùab和△ùcb,电能表端电压ù′ab(或ù′cb)相对于PT二次端电压ùab(或cb)存在着比差fab(或fcb)和角差δab(或δcb )。 图2三相四线电路 在图2所示三相四线电路中,ao相、bo相及co相二次回路压降分别为△ùa、△ùb和△ùc,电能表端电压ù′a(或ù′b,ù′c)相对于PT二次端电压ùa(或ùb,ùc)存在着比差fa(或fb、fca(或δb、δc)。 2 电压互感器二次回路压降的丈量 在电力系统中主要采用互感器校验仪法或电压互感器二次回路压降校验仪法来测试PT二次压降。此方法是用互感器校验仪或电压互感器二次回路压降校验仪测出电能表端电压相对于电压互感器二次端电压的比差fab与fcb(或fa、fb、fc),角差δab与δcb(或δa、δb、δc),通过公式计算出电压互感器二次回路压降△ùab与△ùcb(或△ùab、△c)之值,进一步求得二次压降引起的计量误差之值。此方法的优点是基于直接测差法原理,丈量正确度高;通常在设备运行状况下带电进行测试,比设备停电后测试更符合实际运行情况;可以直接测出比差与角差;测试结果不受电源波动的影响;计算比较简单。不足之处是需要由控制室配电盘引出临时电缆到变电站的电压互感器二次回路端子箱侧。武汉中试高测电气有限公司采用互感器校验仪或二次回路电压降校验仪丈量比差和角差的原理是相同的。用互感器校验仪进行丈量,需外接高精度隔离标准电压互感器及转换开关箱等设备,现场工作时设备种类多,且不便携带,接线和操纵也很繁琐。随着对电能计量装置治理的加强,对电压互感器二次回路压降的丈量技术日趋成熟,近几年来国内研制出了好几种电子式电压互感器二次回路压降校验仪,它将隔离用标准PT装在测试仪内,还具有丈量电压与核相等功能,在使用上更加方便。为此,下面介绍运用电压互感器二次回路压降校验仪来测试电压互感器二次回路压降的线路和由压降引起的计量误差的计算方法。 2.1丈量线路 (1)三相三线计量方式 图3三相三线计量方式下户外侧测PT二次压降线路

互感器二次压降和负荷在线测试仪说明书

互感器二次压降及负荷在线测试仪 说明书 由于输入输出端子、测试柱等均有可能带电 压,在插拔测试线、电源插座时,会产生电火花, 小心电击,避免触电危险,注意人身安全! 安全要求 请阅读下列安全注意事项,以免人身伤害,为了避免可能发生的危险,只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用专用并且符合规格的电源线。 正确地连接和断开。当测试导线和带电端子连接时,请勿随意连接或断开测试导线。 注意所有终端的额定值。为了防止火灾或电击危险,请注意所有额定值和标记。在进行连接之前,请阅读使用说明书,以便进一步了解有关额定值的信息。 使用适当的保险丝。只可使用符合规定类型和额定值的保险丝。 避免接触裸露电路和带电金属。有电时,请勿触摸裸露的接点和部位。

请勿在潮湿环境下操作。 请勿在易爆环境中操作。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。 目录 一、二次压降及负荷测试仪简介 (5) 二、主要技术指标及功能特点 (9) 三、面板说明 (11) 四、测试注意事项 (12) 五、二次压降测试说明 (14) 六、 CT负荷测试说明 (18) 七、 PT负荷测试说明 (21) 八、检定方法 (23) 九、常见问题处理 (25) 第一章二次压降及负荷测试仪简介 电能计量装置存在的误差为电能计量综合误差,是由电能表的误差、电压互感器的合成误差、电流互感器的合成误差和电压互感器二次导线压降引起的计量误差所组成,可以用以下式子表示: ε=εw+εTA+εTV+εr 式中εw—电能表误差%

εTA—电流互感器合成误差% εTV—电压互感器合成误差% εr—电压互感器二次导线压降引起的计量误差% 在电厂及变电站电能计量回路中,室外的电压互感器离装设于控制室配电盘上的电能表有较远的距离,一般在200~400 m 左右,整个回路有接线端子排、开关、熔断器及导线,必然存在着接触电阻、导线电阻及分布参数,从而就存在着一定的回路阻抗,造成电压互感器和电能表间的二次回路上有电压降。电压互感器二次回路压降包括电缆、端子接触电阻、熔线、中间继电器接点、空气小开关等电压降之总和。电压互感器二次电压降引起的误差,就是指电压互感器二次端子和负载端子之间电压的幅值差相对于二次实际电压的百分数,以及两个电压之间的相位差的总称。 《电能计量装置技术管理规程》DL/T448-2000的规定,电压互感器二次回路压降,对于I类计量装置,应不大于额定二次电压的0.2%(注:三相三线电路压降的允许值为0.2 V;三相四线电路压降允许值为0.2/V);其它计量装置,应不大于额定二次电压的0.5%(注:三相三线电路压降的允许值为0.5 V;三相四线电路压降允许值为0.5/V)。对运行中的电压互感器二次回路压降需进行周期测试,以便算出由此引起的电能计量误差,这对于进行技术改进,减小电能计量综合误差,降低计费损失有着重要意义

电容式电压互感器CVT自激法测量介质损耗误差分析

CVT介质损耗负值的解决方法 介质损耗角正切值又称介质损耗因数或简称介损。测量介质损耗因数是一项灵敏度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。例如:某台变压器的套管,正常tg值为0.5%,而当受潮后tg值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电力设备交接和预防性试验中都得到了广泛的应用。变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。 电容式电压互感器(简称CVT)由电容分压器和电磁单元组成,从结构上讲,分为分装式和叠装式两种。前者的电容分压器和电磁单元由外部连线连接在一起(现场很少用);后者的电容分压器和电磁单元内部已通过分压器的抽压端子与电磁单元的高压端连接在一起。对于叠装式CVT,又有中间抽压端子和无中间抽压端子之分,有中间抽压端子的CVT在现场和工厂一样也可以采用常规法进行测量,无中间抽压端子的CVT在现场无法采用工厂的常规测量方法,而用户现场测量方法又不统一,有的方法测出的数据不能真实地反映CVT 的绝缘状况,出现负值就是其中一种状况。本次着重讨论负值的生成及解决方法。 CVT的电气原理如图1所示。电容分压器由高压电容器C1和中压电容器C2组成,其中对于110 kV CVT C1由一节耦合电容器、220 kV CVT C1由二节耦合电容器、500 kV CVT C1一般由三、四节耦合

电容器组成;电磁单元位于油箱内,由中间变压器、谐振电抗器、阻尼器和避雷器组成,二次绕组端子、电容分压器低压端、接地端及保护间隙等位于端子箱内。 图3接线是某厂家向用户推荐的测量方法,也是我们现场最常用测量方法,其本意是测量C1和C2的整体介损和电容量。实际上由于电磁单元的存在,使测量结果产生偏小的误差,有时甚至会出现负值。 我们知道一般介质损耗角出现负值的原因有下面几条:一是仪器接地不好;二是标准电容器的介损过大;三是高压引线和测量线没有

110kV电压互感器、避雷器试验

编号:DQ/011 XXX变电所110kV 电压互感器、避雷器 标准化作业指导书 编写人:年月日 审核人:年月日 批准人:年月日 作业负责人: 作业时间:年月日时分至年月日时分 大庆石化建设公司电气公司

目次 1.标准化作业流程图 2.范围 3.引用文件 4.准备阶段 5.设备试验流程图 6.作业程序及作业标准 7.验收 8.作业指导书执行情况评估

1. 标准化作业流程图 高压试验专业标准化作业流程图 →→→ →→ → →→→ →→→ →→→ →→→ 2. 范围 本作业指导书适用于高压专业的电压互感器、避雷器试验工作。 3. 引用文件(略,同范本1) 《国家电网公司安全生产规程规定》国家电网公司2003年颁 《电力安全工作规程》(变电站和发电厂电气部分) 《危险点分析及控制措施》辽宁省电力有限公司2002年颁《电力安全工器具预防性试验规程》国家电网公司2002年颁 《电气装置安装工程电气设备交接试验标准》国家技术监督局、建设部联合发布GB 50150—2006 《电力设备预防性试验规程》(DL/T596—1996)电力工业部发布 4. 准备阶段 4.1 准备工作安排 XXX 变电所110kV电压互感器、避雷器试验准备工作安排

4.2 作业人员要求 XXX 变电所110kV 电压互感器、避雷器试验作业人员要求 4.3 工器具及材料 XXX 变电所110kV 电压互感器、避雷器试验作业工器具及材料 √ 序号 名 称 规格/编号 单位 准备数量 实际收回数量 备注 1 试验围栏 2 标示牌 3 安全带 4 万用表 5 低压验电笔 6 电源线及电源板 7 绝缘拉杆 8 螺丝刀 9 手钳 10 线包(导线、接地线等) 11 放电棒

相关主题