搜档网
当前位置:搜档网 › 物质结构元素周期表知识点总结

物质结构元素周期表知识点总结

物质结构元素周期表知识点总结
物质结构元素周期表知识点总结

第一章物质结构元素周期律

1.原子结构(C)

(代表一个质量数为A,质子数为Z的原子)

⑴原子的组成

核外电子 e = Z

原子核质子 Z

中子 N(A—Z)

核电荷数(Z) == 核内质子数(Z) == 核外电子数 == 原子序数

质量数(A)== 质子数(Z)+中子数(N)

阴离子的核外电子数 == 质子数+电荷数(—)

阳离子的核外电子数 == 质子数 - 电荷数(+)

⑵区别概念:元素、核素、同位素

元素:具有相同核电荷数(即质子数)的同一类原子的总称

核素:具有一定数目的质子和一定数目的中子的一种原子

同位素:质子数相同而中子数不同的同一元素的不同原子的

互称;

也就是说同一元素的不同核素之间互称为同位素。

⑶元素的相对原子质量

①同位素的相对原子质量:该同位素质量与12C质量的1/12的比值。

②元素的相对原子质量等于各种同位素相对原子质量与它们在元素中原子所占百分数(丰度)乘积之和。即:元素的相对原子质量A r == A r1·a%+A r2·b% +…

⑷核外电子的电子排布(了解)

①核外电子运动状态的描述

电子云(运动特征):电子在原子核外空间的一定范围内高速、无规则的运动,不能测定或计算出它在任何一个时刻所处的位置和速度,但是电子在核外空间一定范围内出现的几率(机会)有一定的规律,可以形象地看成带负电荷的云雾笼罩在原子核周围,我们把它称为电子云。

电子层:在多个电子的原子里,根据电子能量的差异和通常运动的区域离核远近不同,

电子层符号K L M N O P Q

电子层序数n1234567

离核远近近——→远

能量高低低——→高

②原子核外电子排布规律

每一层电子数最多不超过2n2;

最外层电子数最多不超过8个,次外层电子数最多不超过18个,倒数第三层不超过32个;

核外电子总是先占有能量最低的电子层,当能量最低的电子层排满后,电子才依次进入能量较高的电子层。

电子的排布是先排K层,K层排满再排L层,L层排满再排M层,M层不一定排满了再排N 层,后面的也一样不一定排满了再排下一层。(只有前3层)

⑸ 原子结构示意图的书写 2. 元素周期表(B )

⑴ 元素周期表见课本封页 ⑵ 元素周期表的结构分解

⑴ 定义:元素的性质随着元素原子序数递增而呈现周期性变化的规律叫元素周期律。 ⑵ 实质:元素性质的周期性变化是元素原子核外电子数排布的周期性变化的必然结果。这就是元素周期律的实质。 ⑶ 内容

现周期性变化; ⑷ 元素周期表中元素性质的递变规律

非金属性逐渐增强逐渐减弱

主要化合价

最高正价(+1 →+7)

非金属负价 == ―(8―族序数)

最高正价 == 族序数

非金属负价 == ―(8―族序数)

最高氧化物的酸性酸性逐渐增强酸性逐渐减弱对应水化物的碱性碱性逐渐减弱碱性逐渐增强

非金属气态氢化物的形成难易、稳定性形成由难→易

稳定性逐渐增强

形成由易→难

稳定性逐渐减弱碱金属、卤素的性质递变

⑸几个规律

1、元素金属性强弱的判断:

①金属单质与水(或酸)反应置换出H2的难易程度(越易置换出氢气,说明金属性越强)

②最高价氧化物的水化物——氢氧化物的碱性强弱(碱性越强,则金属性越强)

③金属活动性顺序表(位置越靠前,说明金属性越强)

④金属单质之间的置换(金属性强的置换金属性弱的)

⑤金属阳离子氧化性的强弱(对应金属阳离子氧化性越弱,金属性越强)

2、元素非金属性强弱的判断:

①单质与H2化合的难易程度(与H2化合越容易,说明非金属性越强)

②形成的气态氢化物的稳定性(形成的气态氢化物越稳定,则非金属性越强)

③最高价氧化物的水化物——最高价含氧酸酸性的强弱(酸性越强,说明非金属性越强)回忆金属性的比较,置换反应:金属性强的置换金属性弱的,同样

④非金属单质之间的置换(非金属性强的置换非金属性弱的)

回忆金属性的比较,金属阳离子氧化性的强弱(对应金属阳离子氧化性越弱,金属性越强)同样

⑤非金属阴离子还原性的强弱(对应非金属阴离子还原性越弱,非金属性越强)

3、半径比较三规律:

(1)同一种元素的微粒看核外电子数。核外电子数越多,微粒半径越大。(核电荷数相同,对核外电子吸引相同,核外电子数越多,所占区域越大)

如r(Cl-)>r(Cl),r(Na+)<r(Na);

(2)电子层结构相同时,比核电荷数。核电荷数越大(对核外电子吸引越大,体积缩小),微粒半径越小。

如: r(F- )>r Na+)>r(Mg2+)>r(Al3+);

(3)同周期元素原子(电子层数不变,核电荷数增加,吸引变大)半径随原子序

数递增逐渐减小。同主族元素(增加电子层)原子和离子半径随原子序数递增逐渐增大。

4、元素化合价规律

最高正价 == 最外层电子数,非金属的负化合价 == 最外层电子数-8,最高正价数和负化合价绝对值之和为8;其代数和分别为:0、2、4、6。

F无正价,O无最高正价(+6),OF

2

(O +2价);金属元素只有正价;

三、化学键

离子键共价键

概念阴、阳离子间通过静电作用所形成

的化学键原子间通过共用电子对(电子云重叠)所形成的化学键

成键微粒离子(存在阴阳离子间和离子晶体

内)

原子(存在分子内、原子间、原子晶体内)

作用本质

阴、阳离子间的静性作用共用电子对(电子云重叠)对两原子核产生的电性作用

形成条件活泼金属和活泼非金属化合时形成

离子键

非金属元素形成的单质或化合物形成共价键

决定键能大小因素①离子电荷数越大,键能越大;②

离子半径越小,键能越大

①原子半径越小,键能越大;②键长越短,

键能越大

影响性质离子化合物的熔沸点、硬度等分子的稳定性,原子晶体的熔沸点、硬度等实例

②极性共价键与非极性共价键的比较

共价键极性共价键非极性共价键

定义不同元素的原子形成的共价键,

共用电子对(电子云重叠)发生

偏移的共价键

同种元素的原子形成共价键,共用

电子对(电子云重叠)不发生偏移

原子吸引电子

能力

不相同相同

成键原子电性显电性电中性

影响性质极性分子或非极性分子非极性分子实例H—Cl H—H、Cl—Cl

存在范围作用

本质

作用

强弱

决定键能大小因素影响性质

范德华力分子间和分子晶

体内

电性

引力

结构相似的分子,其式

量越大,分子间作用力

越大。

分子晶体的

熔沸点、硬度

氢键分子间和分子晶

体内

电性

引力

(稍

强)

分子晶体的

熔沸点

一个化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程。

元素周期表规律总结(同一主族_对角线规则)1

知识网络 中子N (不带电荷) 同位素 原子核 → 质量数(A=N+Z ) 近似相对原子质量 质子Z (带正电荷) → 核电荷数 元素 → 元素符号 原子结构 : 最外层电子数决定主族元素的 电子数(Z 个): 化学性质及最高正价和族序数 核外电子 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化 ①、原子最外层电子的周期性变化(元素周期律的本质) 元素周期律 ②、原子半径的周期性变化 ③、元素主要化合价的周期性变化 ④、元素的金属性与非金属性的周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核外电子排布 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 决定原子呈电中性 编排依据 X)(A Z 七 主七副零 和八 三长三短一不全 决定元素种类

最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外) 如:Na>Mg>Al>Si>P>S >Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如: Li Na +>Mg 2+>Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如 Fe>Fe 2+>Fe 3+ ①与水反应置换氢的难易 ②最高价氧化物的水化物碱性强弱 金属性强弱 ③单质的还原性 ④互相置换反应 ①与H 2化合的难易及氢化物的稳定性 非金属性强弱 ②最高价氧化物的水化物酸性强弱 ③单质的氧化性 元素周期表有7个周期,有16个族和4个区。 关键词:同一主族 对角线规则 一、同一主族元素性质的递变规律 同一主族元素结构和性质具有一定的相似性和递变性:从上到下原子半径逐渐增大, ④互相置换反应 元素的金属性或非金属性强弱的判断依据

物质结构元素周期律知识点总结

物质结构 元素周期律 中子N (不带电荷) 同位素 (核素) 原子核 → 质量数(A=N+Z ) 近似相对原子质量 质子Z (带正电荷) → 核电荷数 元素 → 元素符号 原子结构 : 最外层电子数决定主族元素的 决定原子呈电中性 电子数(Z 个): 化学性质及最高正价和族序数 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 随着原子序数(核电荷数)的递增:元素的性质呈现周期性变化: ① 、 原子最外层电子数呈周期性变化 元素周期律 ②、原子半径呈周期性变化 ③、元素主要化合价呈周期性变化 ④、元素的金属性与非金属性呈周期性变化 ①、按原子序数递增的顺序从左到右排列; 元素周期律和 排列原则 ②、将电子层数相同的元素排成一个横行; 元素周期表 ③、把最外层电子数相同的元素(个别除外)排成一个纵行。 ①、短周期(一、二、三周期) 周期(7个横行) ②、长周期(四、五、六周期) 周期表结构 ③、不完全周期(第七周期) ①、主族(ⅠA ~ⅦA 共7个) 元素周期表 族(18个纵行) ②、副族(ⅠB ~ⅦB 共7个) ③、Ⅷ族(8、9、10纵行) ④、零族(稀有气体) 同周期同主族元素性质的递变规律 ①、核电荷数,电子层结构,最外层电子数 ②、原子半径 性质递变 ③、主要化合价 ④、金属性与非金属性 ⑤、气态氢化物的稳定性 ⑥、最高价氧化物的水化物酸碱性 电子层数: 相同条件下,电子层越多,半径越大。 判断的依据 核电荷数 相同条件下,核电荷数越多,半径越小。 最外层电子数 相同条件下,最外层电子数越多,半径越大。 微粒半径的比较 1、同周期元素的原子半径随核电荷数的增大而减小(稀有气体除外)如:Na>Mg>Al>Si>P>S>Cl. 2、同主族元素的原子半径随核电荷数的增大而增大。如:Li Na + >Mg 2+ >Al 3+ 5、同一元素不同价态的微粒半径,价态越高离子半径越小。如Fe>Fe 2+ >Fe 3+ 决定 编排依据 具 体 表 现 形式 X) (A Z 七 主 七 副零和八 三长三短一不全

元素周期表38个知识点归纳

人教版化学必修2第一章第一节元素周期表38个知识点归纳1、元素定义:核电荷数相同的同一类原子的总称,一种元素可能有多种形式的原子存在 形式,如:氢元素的几种形式:H、D(2 1H)、T(3 1 H)、H+、H-。 2、元素符号:在元素周期表中每个小格分四层,元素符号在第一层,黑色字体,用拉丁文大写字母表示,当大写字母相同时,加一个小写字母予以区别。 例如:H(氢)、He(氦);C(碳)、Cl(氯)、Ca(钙);N(氮)、Ne(氖)、Na (钠);Al(铝)、Ar(氩)。 3、元素名称:在元素周期表中每个小格分四层,元素名称在第二层,黑色字体,大多数元素的名称是由形声字构成,气态非金属的名称有气字头,固态非金属的名称有石头旁,液态非金属用三点水旁(溴),液态金属用水字底(汞),金属的名称都有金字旁,个别的元素的名称不是形声字,例如:氮不读“炎”音。 4、元素分类: (1)按元素所在的周期分类:同周期元素和不同周期元素 同周期元素共同点:电子层数相同,在元素周期表中处于同一行中,处于左右关系。 不同周期元素不同点:电子层数不相同,在元素周期表中不处于同一行中。 (2)根据元素的原子序数分类:前20号元素或第n号元素 (3)按元素所在的族分类:主族元素、副族元素、第VIII族元素、0族元素 (4)按元素周期表(新课标人教版化学必修2)分类:金属、非金属、过渡元素 其中金属元素专指主族元素的金属元素,非金属包括主族非金属和稀有气体,过渡元素是指所有副族金属元素和Ⅷ族金属元素,。 5、元素的特有数值:元素的原子序数和元素的相对原子质量。 (1)原子序数=核电荷数=质子数,原子序数在核组成符号中处于元素符号的左下角位置,在元素周期表中每个小格内的第一层,位于元素符号的左下角,数字呈鲜红色。 (2)元素的相对原子质量就是按照元素各核素原子的相对原子质量所占的一定百分比计算出的平均值(见课本P10),元素的相对原子质量在元素周期表中每个小格内的第四层,通常保留有效数字4位,数字呈黑色。 6、元素周期表 (1)将化学元素依照某种特有数值从小到大顺序依次排成一行,并将化学性质相似的元素依照某种特有数值从小到大排成一列所形成的表格叫元素周期表。 (2)元素周期表中特有数值:原子序数和相对原子质量。 (3)门捷列夫的元素周期表依照的特有数值是相对原子质量,现行的元素周期表依照的特有数值是原子序数。 7、元素周期表的结构:由七行和十八列构成,其中每一行为一个周期,从左到右第8、9、10列合起来为VIII族,其余每一列为一族,所以元素周期表由7个周期和16个族构成。

元素周期表与元素周期律知识点归纳完美版

元素周期表与元素周期律知识点归纳 1、元素周期表共有横行,个周期。其中短周期为、、。所含元素种类为、、。长周期包括、、。所含元素种类为、、。 第七周期为不完全周期,如果排满的话有种元素。 2元素周期表有个纵行个族。包括个主族,个副族,一个族,一个第Ⅷ族(包括个纵行)按从左到右的顺序把16个族排列 。过度元素共包括个纵行(第纵行到第纵行)。包括哪些族。过渡元素全为元素。又称为。 3、写出七个主族和0族元素的名称和元素符号 ⅠA族 ⅡA族 ⅢA族 ⅣA族 ⅤA族 ⅥA族 ⅦA族 0族 4.同一周期第ⅡA族和第ⅢA族原子序数之间的关系 若元素位于第二、三周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 若元素位于第四、五周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 若元素位于第六周期,第ⅡA族的原子序数为a,则第ⅢA族的原子序数为 5、同一主族上下相邻两个周期原子序数之间的关系 若A在B的上一周期,设A的原子序数为a ⑴若A、B位于第ⅠA族或ⅡA族(过度元素的左边)则B的原子序数为。 ⑵若A、B位于第ⅢA族——ⅦA族(过度元素的右边)则B的原子序数为。 。 6、微粒半径大小判断的方法 。 。 。 7 与He原子电子层结构相同的简单离子。 与Ne原子电子层结构相同的简单离子。 与Ar原子电子层结构相同的简单离子。 阳离子与周期稀有气体原子的电子层结构相同。阴离子与周期稀有气体原子的电子层结构相同。 8、阴上阳下规律 9原子得电子能力强弱判断的方法 ⑴、原子得电子能力越强——单质的氧化性——元素的非金属性——阴离子的还原性——单

质与氢气化和的能力——生成的气态氢化物越——最高价氧化物对应水化物的酸性。 ⑵、另外可以通过单质间的置换反应判断得电子能力的强弱 如Cl2+Na2S=2NaCl+S得电子能力ClS 10、原子失电子能力强弱判断的方法 ⑴、原子失电子能力越强——单质的还原性——元素的金属性——阳离子的氧化性——单质与水或酸反应置换出氢的能力——最高价氧化物对应水化物的碱性。 ⑵、另外可以通过单质间的置换反应判断失电子能力的强弱 如Fe+CuSO4=FeSO4+Cu失电子能力FeCu 11、同一主族元素及其化合物性质的递变性: 同主族元素的原子,最外层电子数,决定同主族元素具有的化学性质。从上到下原子的核电荷数依次,原子的电子层数依次,原了半径逐渐;原子失电子能力逐渐,元素的金属性逐渐,单质的还原性逐渐,对应阳粒子的氧化性逐渐,单质与水或酸反应置换出氢气的能力逐渐,最高价氧化物对应水化物的碱性逐渐;原子得电子能力逐渐,元素的非金属性逐渐,单质的氧化性逐渐,对应阴离子的还原逐渐,单质与氢气化合的能力逐渐,最高价氧化物对应水化物的酸性逐渐。气态氢化物的稳定性逐渐。 12、同一周期元素及其化合物性质的递变性: 在同一周期中,各元素原子的核外电子层数,但从左到右核电荷数依次,最外层电子数依次,原子半径逐渐(稀有气体元素除外)。原子失电子能力逐渐,元素的金属性逐渐,单质的还原性逐渐,对应阳粒子的氧化性逐渐,单质与水或酸反应置换出氢气的能力逐渐,最高价氧化物对应水化物的碱性逐渐。 原子得电子能力逐渐,元素的非金属性逐渐,单质的氧化性逐渐,对应阴离子的还原逐渐,单质与氢气化合的能力逐渐,最高价氧化物对应水化物的酸性逐渐,气态氢化物的稳定性逐渐。 1.位、构、性的关系 根据原子结构、元素周期表的知识及相关条件可推算原子序数,判断元素在周期表中的位置等。 2.周期表中数字与性质的关系 (1)由原子序数确定元素位置的规律:只要记住稀有气体元素的原子序数就可以确定主族元素的位置。 He:2、Ne:10、Ar:18、Kr:36、Xe:54、Rn:86 ①若比相应的稀有气体元素的原子序数多1或2,则应处在下一周期的ⅠA或ⅡA,如88号元素,88-86=2,则应在第7周期第ⅡA。 ②若比相应的稀有气体元素的原子序数少1~5时,则应在第ⅦA~ⅢA,如84号元素在第6周

物质结构与性质知识点总结78465

物质结构与性质知识点总结 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.

(2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,

元素周期表知识点总结教学提纲

元素周期表知识点总 结

第一章 物质结构 元素周期律 第一节 元素周期表 一、原子结构 1. 原子核的构成 核电荷数(Z) == 核内质子数 == 核外电子数 == 原子序数 2、质量数 将原子核内所有的质子和中子的相对质量取近似整数值加起来,所得的数值,叫质量数。 质量数(A )= 质子数(Z )+ 中子数(N )==近似原子量 原子 A Z X 3、阳离子 aW m+ :核电荷数=质子数>核外电子数,核外电子数=a -m 阴离子 b Y n-:核电荷数=质子数<核外电子数,核外电子数=b +n 二、核素、同位素 1、定义 核素:人们把具有一定数目质子和一定数目中子的一种原子称为核素。 同位素:质子数相同而中子数不同的同一元素的不同核素互为同位素。 3、元素的相对原子质量 2、同位素的特点 ① 化学性质几乎完全相同 ②天然存在的某种元素,不论是游离态还是化合态,其各种同位素所占的原子个数百分比(即丰度)一般是不变的。 三、核外电子排布 1、电子云:我们只能指出它在原子核外空间某处出现的机会大小——几率 电子云密度大小反映电子在该区域(单位体积)出现的机会(几率)大小 2、核外电子排布的规律: 1.电子是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布; 2.每层最多容纳的电子数为2n 2(n 代表电子层数); 3.电子一般总是尽先排在能量最低的电子层里,即最先排第一层,当第一层排满后,再排第二层,等等。 4.最外层电子数则不超过8个(第一层为最外层时,电子数不超过2个)。

3、元素性质与元素的原子核外电子排布的关系 ①稀有气体的不活泼性:稀有气体元素的原子最外层有8个电子(He为2)处于稳定结构,因此化学性质稳定,一般不跟其它物质发生化学反应。 ②非金属性与金属性(一般规律) 电外层电子数得失电子趋势元素性质 金属元素<4 易失金属性 非金属元素>4 易得非金属性 一、元素周期表的结构 1.周期:周期序数=电子层数 七个周期(1、2、3短周期;4、5、6长周期;7不完全周期) 2.族: 主族元素的族序数=元素原子的最外层电子数(或:主族序数=最外层电子数) 18个纵行(7个主族;7个副族;一个零族;一个Ⅷ族(8、9、10三个纵行)) 二、元素性质与原子结构 1、碱金属元素 (1) 在结构上: 结构异同:异:核电荷数:由小→大; 电子层数:由少→多; 同:最外层电子数均为1个。 最外层都有1个电子,化学性质相似;随着核电荷数的增加,原子的电子层数递增,原子核对最外层电子的引力逐渐减弱,金属性逐渐增强。 (2) 碱金属元素在化学性质上的规律: ○1相似性:均能与氧气、与水反应,表现出金属性(还原性); 4Li + O2 ==== 2Li2O(白色、氧化锂) 2Na + O2 ==== Na2O2(淡黄色、过氧化钠) 2Na + 2H2O === 2NaOH + H2↑ 2K + 2H2O === 2KOH + H2↑ ○2递变性:与氧气、与水反应的剧烈程度有所不同;在同一族中,自上而下反应的剧烈程度逐渐增大; (3) 元素金属性判断标准

元素周期表的规律总结

元素周期表的规律 一、原子半径 同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减; 同一族中,从上到下,随着原子序数的递增,元素原子半径递增。 二、主要化合价(最高正化合价和最低负化合价) 同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1价到+7价),第一周期除外,第二周期的O、F元素除外最低负化合价递增(从-4价到-1价)第一周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。元素最高价的绝对值与最低价的绝对值的和为8 三、元素的金属性和非金属性 同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增;同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减; 四、单质及简单离子的氧化性与还原性 同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。 五、最高价氧化物所对应的水化物的酸碱性 同一周期中,从左到右,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱); 同一族中,从上到下,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。 元素的最高价氢氧化物的碱性越强,元素金属性就越强;最高价氢氧化物的酸性越强,元素非金属性就越强。 六、单质与氢气化合的难易程度 同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易; 同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。 七、气态氢化物的稳定性 同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强; 同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。 此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充: 随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。元素的气态氢化物越稳定,非金属性越强。 同一族的元素性质相近。 以上规律不适用于稀有气体。 八、位置规律判断元素在周期表中位置应牢记的规律: (1)元素周期数等于核外电子层数; (2)主族元素的族数等于最外层电子数。 九、阴阳离子的半径大小辨别规律 三看: 一看电子层数,电子层数越多,半径越大, 二看原子序数,当电子层数相同时,原子序数越大半径反而越小 三看最外层电子数,当电子层数和原子序数相同时最外层电子书越多半径越小 r(Na)>r(Mg)>r(Al)>r(S)>r(Cl)、r(Na+ ) >r(Mg2+ )>r(Al3+ )、r(O2- ) >r(F-) r(S2—)>r(Cl—)>r(Ar) >r(K+)>r(Ca2+)、r(O2—)> r(F—)> r(Na+)> r(Mg2+)> r(Al3+) r(Na+ )r(Cl)

高中元素周期表知识点

高中元素周期表知识点 高中元素周期表知识点 元素周期表共分18纵行: 其中 第1、2、13、14、15、16、17七个纵行依次为ⅠA族、ⅡA族、ⅢA族、ⅣA族、ⅤA族、ⅥA族、ⅦA族(纵行序号的'个位数与主族序数相等); 第3、4、5、6、7、11、12七个纵行依次为ⅢB族、ⅣB族、ⅤB 族、ⅥB族、ⅦB族、ⅠB族、ⅡB族(纵行序号个位数与副族序数相等); 第8、9、10三个纵行为合称为Ⅷ族;第18纵行称为0族。 ⅠA族称为碱金属元素(氢除外); ⅡA族称为碱土金属元素; ⅢA族称为铝族元素; ⅣA族称为碳族元素; ⅤA族称为氮族元素; ⅥA族称为氧族元素; ⅦA族称为卤族元素。 元素周期表共有七个横行,称为七个周期, 其中第一(2种元素) 二(8种元素)

三(8种元素)周期为短周期(只有主族元素) 第四(18种元素) 五(18种元素) 六(32种元素)周期为长周期(既有主族元素,又有过渡元素); 第七周期(目前已排26种元素)为不完全周期。 在元素周期表中,越在左下部的元素,其金属性越强;越在右上 部的元素(惰性气体除外),其非金属性越强。金属性最强的稳定性 元素是铯,非金属性最强的元素是氟。 在元素周期表中位于金属与非金属分界处的金属元素,其氧化物或氢氧化物通常具有两性,如Be、Al等。 主族元素的价电子是指其最外层电子;过渡元素的价电子是指其 最外层电子和次外层的部分电子;镧系、锕系元素的价电子是指其最 外层电子和倒数第三层的部分电子。 在目前的112种元素中,只有二十二种非金属元素(包括6种稀 有气体元素),其余九十种都是金属元素;过渡元素全部是金属元素。 在元素周期表中,位置靠近的元素性质相近。通常在周期表的右上部的元素用于合成新农药;金属与非金属分界处的元素用于制造半 导体材料;过渡元素用于制造催化剂和耐高温、耐腐蚀的合金材料等等。 从原子序数为104号往后的元素,其原子序数的个位数与其所在的副族序数、Ⅷ族(包括108、109、110三号元素)、主族序数分别 相等。第七周期若排满,最后0族元素的原子序数为118号。 同周期第ⅡA族和第ⅢA族元素的原子序数之差可能为1(第二、 三两周期)或11(第四、五两周期)或25(第六周期)。 若主族元素xA所在的第n周期有a种元素,同主族的yB元素所在的第n+1周期有b种元素,当xA、yB位于第IA族、ⅡA族时, 则有:y=x+a;当xA、yB位于第ⅢA~ⅦA族时,则有:y=x+b。

最新物质结构与性质知识点总结(1)

物质结构与性质知识点总结 专题一了解测定物质组成和结构的常用仪器(常识性了解)。 专题二第一单元 1.认识卢瑟福和玻尔的原子结构模型。 2.了解原子核外电子的运动状态,了解电子云的概念。 3.了解电子层、原子轨道的概念。 4.知道原子核外电子排布的轨道能级顺序。知道原子核外电子在一定条件下会发生跃迁。 5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。 第二单元 1.理解元素周期律,了解元素周期律的应用。 2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。 3.了解元素第一电离能、电负性的概念及其周期性变化规律。(不要求用电负性差值判断共价键还是离子键) 4.了解第一电离能和电负性的简单应用。 专题三第一单元 1.了解金属晶体模型和金属键的本质。 2.能用金属键理论解释金属的有关物理性质。了解金属原子化热的概念。 3.知道影响金属键强弱的主要因素。认识金属物理性质的共性。 4.认识合金的性质及应用。 注:金属晶体晶胞及三种堆积方式不作要求。 第二单元 1.认识氯化钠、氯化铯晶体。 2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。 3.知道影响晶格能大小的主要因素。 4.离子晶体中离子的配位数不作要求。 第三单元 1.认识共价键的本质,了解共价键的方向性和饱和性。 2.能用电子式表示共价分子及其形成过程。认识共价键形成时,原子轨道重叠程度与共价键键能的关系。 3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。注:大π键不作要求 4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。 5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。 第四单元 1.知道范德华力和氢键是两种最常见的分子间作用力。 2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。 3.了解氢键的概念和成因,了解氢键对物质性质的影响。能分析氢键的强弱。

元素周期表知识点总结

第一章 物质结构 元素周期律 第一节 元素周期表 一、原子结构 1. 原子核的构成 核电荷数(Z) == 核内质子数 == 核外电子数 == 原子序数 2、质量数 将原子核内所有的质子与中子的相对质量取近似整数值加起来,所得的数值,叫质量数。 质量数(A)= 质子数(Z)+ 中子数(N)==近似原子量 原子 A Z X 3、阳离子 aW m+ :核电荷数=质子数>核外电子数,核外电子数=a -m 阴离子 b Y n-:核电荷数=质子数<核外电子数,核外电子数=b +n 二、核素、同位素 1、定义 核素:人们把具有一定数目质子与一定数目中子的一种原子称为核素。 同位素:质子数相同而中子数不同的同一元素的不同核素互为同位素。 3、元素的相对原子质量 2、同位素的特点 ① 化学性质几乎完全相同 ②天然存在的某种元素,不论就是游离态还就是化合态,其各种同位素所占的原子个数百分比(即丰度)一般就是不变的。 三、核外电子排布 1、电子云:我们只能指出它在原子核外空间某处出现的机会大小——几率 电子云密度大小反映电子在该区域(单位体积)出现的机会(几率)大小 2、核外电子排布的规律: 1、电子就是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布; 2、每层最多容纳的电子数为2n 2(n 代表电子层数); 3、电子一般总就是尽先排在能量最低的电子层里,即最先排第一层,当第一层排满后,再排第二层,等等。 4.最外层电子数则不超过8个(第一层为最外层时,电子数不超过2个)。 3、元素性质与元素的原子核外电子排布的关系

①稀有气体的不活泼性:稀有气体元素的原子最外层有8个电子(He为2)处于稳定结构,因此化学性质稳定,一般不跟其它物质发生化学反应。 ②非金属性与金属性(一般规律) 电外层电子数得失电子趋势元素性质 金属元素<4 易失金属性 非金属元素>4 易得非金属性 一、元素周期表的结构 1、周期:周期序数=电子层数 七个周期(1、2、3短周期;4、5、6长周期;7不完全周期) 2、族: 主族元素的族序数=元素原子的最外层电子数(或:主族序数=最外层电子数) 18个纵行(7个主族;7个副族;一个零族;一个Ⅷ族(8、9、10三个纵行)) 二、元素性质与原子结构 1、碱金属元素 (1) 在结构上: 结构异同:异:核电荷数:由小→大; 电子层数:由少→多; 同:最外层电子数均为1个。 最外层都有1个电子,化学性质相似;随着核电荷数的增加,原子的电子层数递增,原子核对最外层电子的引力逐渐减弱,金属性逐渐增强。 (2) 碱金属元素在化学性质上的规律: ○1相似性:均能与氧气、与水反应,表现出金属性(还原性); 4Li + O2 ==== 2Li2O(白色、氧化锂) 2Na + O2 ==== Na2O2(淡黄色、过氧化钠) 2Na + 2H2O === 2NaOH + H2↑ 2K + 2H2O === 2KOH + H2↑ ○2递变性:与氧气、与水反应的剧烈程度有所不同;在同一族中,自上而下反应的剧烈程度逐渐增大; (3) 元素金属性判断标准 ○1、根据金属单质与水或者与酸反应置换出氢的难易程度。置换出氢越容易,则金属性越强。

元素周期表的九大规律

第七讲元素周期表和元素周期律 一、分析热点把握命题趋向 热点内容主要集中在以下几个方面:一是元素周期律的迁移应用,该类题目的特点是:给出一种不常见的主族元素,分析推测该元素及其化合物可能或不可能具有的性质。解该类题目的方法思路是:先确定该元素所在主族位置,然后根据该族元素性质递变规律进行推测判断。二是确定“指定的几种元素形成的化合物”的形式,该类题目的特点是:给出几种元素的原子结构或性质特征,判断它们形成的化合物的形式。解此类题的方法思路是:定元素,推价态,想可能,得化学式。三是由“位构性”关系推断元素,该类题目综合性强,难度较大,一般出现在第Ⅱ卷笔答题中,所占分值较高。 二.学法指导:1、抓牢两条知识链 (1)金属元素链:元素在周期表中的位置→最外层电子数及原子半径→原子失去电子的能力→元素的金属性→最高价氧化物对应水化物的碱性→单质置换水(或酸)中氢的能力→单质的还原性→离子的氧化性。 (2)非金属元素链:元素在周期表中的位置→最外层电子数及原子半径→原子获得电子的能力→元素的非金属性→最高价氧化物对应水化物的酸性→气态氢化物形成难易及稳定性→单质的氧化性→离子的还原性。

2、理解判断元素金属性或非金属性强弱的实验依据 (1)金属性强弱的实验标志 ①单质与水(或酸)反应置换氢越容易,元素的金属性越强。②最高价氧化物对应的水化物的碱性越强,元素的金属性越强。③相互间的置换反应,金属性强的置换弱的。④原电池中用作负极材料的金属性比用作正极材料的金属性强。⑤电离能 (2)非金属性强弱的实验标志 ①与氢气化合越容易(条件简单、现象明显),元素的非金属性越强。②气态氢化物越稳定,元素的非金属性越强。③最高价氧化物对应的水化物的酸性越强,元素的非金属性越强。④相互间置换反应,非金属性强的置换弱的。⑤电负性 三.规律总结: 1、同周期元素“四增四减”规律 同周期元素从左至右:①原子最外层电子数逐渐增多,原子半径逐渐减小;②非金属性逐渐增强,金属性逐渐减弱;③最高价氧化物对应的水化物的酸性逐渐增强,碱性逐渐减弱;④非金属气态氢化物的稳定性逐渐增强,还原性逐渐减弱。 2、同主族元素“四增四减四相同”规律 同主族元素从上到下:①电子层数逐渐增多,核对外层电子的引

高中化学选修3 物质结构与性质 全册知识点总结

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

知识讲解_元素周期表(学生)

元素周期表 【要点梳理】 要点一、元素周期表的编排 1.门捷列夫制作第一张元素周期表的依据 (1)将元素按照相对原子质量由小到大依次排列。 (2)将化学性质相似的元素放在一个纵行。 要点诠释: ①门捷列夫(1834—1907,俄国化学家)是元素周期表的创始人。它所制作的元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。 ②随着科学发展,人们逐渐认识到门捷列夫给周期表中元素排序的依据存在缺陷,真正科学的依据是元素原子的核电荷数(即质子数)。 2.原子序数 按照元素在周期表中的顺序给元素所编的序号为原子序数。 原子序数=核电荷数=核内质子数=核外电子数(原子中) 要点诠释: 存在上述关系的是原子而不是离子,因为离子是原子失去或得到电子而形成的,所以在离子中:核外电子数=质子数加上或减去离子的电荷数。 3.现在的元素周期表的科学编排原则 (1)将电子层数相同的元素按原子序数递增的顺序从左到右排成一横行,称为周期; (2)把最外层电子数相同(氦除外)的元素按电子层数递增的顺序从上到下排成纵行,称为族。 要点二、元素周期表的结构 要点诠释: (1)周期:元素周期表有7个横行,也就是7个周期。前三周期叫短周期,后四个周期叫长周期。 (2)族:常见的元素周期表共有18个纵行,从左到右分别叫第1纵行、第2纵行……第18个纵行。把其中的第8、9、10三个纵行称为Ⅷ族,其余每一个纵行各称为一族,分为七个主族、七个副族和一个0族,共16个族。 族序数用罗马数字表示,主族用A、副族用B,并标在族序数的后边。如ⅠA、ⅡA、ⅢA……ⅠB、ⅡB、

高考化学物质结构与性质常考点总结

2015高考化学物质结构与性质常考点总 结 2015高考化学物质结构与性质常考点总结 1.核外电子排布表示法 (1)注意涉及洪特规则特例元素的电子排布式 如Cr:1s22s22p63s23p63d54s1,可简化为[Ar]3d54s1 (2)价层电子排布式,如Fe:3d64s2 (3)电子排布图,如O 2.第一电离能的周期性变化规律 (1)同一周期,随着原子序数的增加,元素的第一电离能呈现增大的趋势,但ⅡA、ⅤA族部分元素例外,比同周期相邻族的元素的第一电离能都高。 (2)同一主族,随电子层数的增加,元素的第一电离能逐渐减小。 3.σ键和π键的数目共价单键:σ键共价双键:1个σ键,1个π键共价三键:1个σ键,2个π键 4.常见分子的空间构型及杂化轨道类型归纳 价层电子对数成键对数孤电子对数VSEPR 模型 名称分子空间构型名称中心原子 杂化类型实例

220直线形直线形spBeCl2 330平面 三角形平面三角形sp2BF3 21V形SO2 440正四 面体形正四 面体形sp3CH4 31三角 锥形NH3 22V形H2O 5.键角大小的判断——价层电子对互斥理论的应用 孤电子对之间斥力孤电子对与σ键电子对斥力σ键电子对斥力,如H2O分子键角NH3分子键角CH4分子键角。6.等电子原理 (1)基本观点:原子总数相同,价电子总数相同的分子具有相似的化学键特征,且具有许多相近的性质。 (2)实例:如SO2-4、PO3-4为等电子体,其中心原子 均采用sp3杂化,离子构型均为正四面体形;O3和SO2 均为V形。 7.氢键 氢键是与电负性很强的原子(如N、O、F等)形成共价键 的H原子和另外一个电负性很强的原子之间的静电作用。

元素周期表知识复习总结及习题答案讲解

学员编号:年级:高一课时数: 2 学员姓名:辅导科目:化学学科教师: 授课类型T 元素周期表 C 元素的性质和结构T 核素授课日期及时段 教学内容 引导回顾 在元素周期表中涉及到了哪些知识点呢?我们一起来回顾一下吧! 本周知识点本周解题方法 1.元素周期表的结构 1. 熟悉元素周期表的结构 2.常见族的特别名称 2. 熟记各族名称 3.元素的结构和性质 3. 元素结构与性质随周期的变化 4.核素 4. 辨析核素和同位素 5.元素周期律 5. 熟悉元素周期表及其变化规律 同步讲解 本章主要内容及其相互关系如下所示

●重点难点 本章的学习重点是元素周期表的结构和元素周期律的实质,元素的性质、原子结构和元素在周期表中的位置三者之间关系以及离子键和共价键等知识。 本章的学习难点是同周期、同主族元素性质的递变规律,“位、构、性”三者之间的关系和离子键、共价键的本质。 1、元素周期表的结构 2、常见族的特别名称

第ⅠA族________元素,第ⅦA族________元素,O族______元素,第______族和________族称为过渡元素。 答案:碱金属卤族稀有气体第Ⅷ族所有副 ●问题探究 1.元素周期表提供了每种元素的哪些信息? 提示:在元素周期表中,每一种元素均占据一格。对于每一格,均包含元素的原子序数,元素符号,元素名称,外围电子排布,相对原子质量(或质量数)等内容。 此外,在周期表中,还用不同的颜色来表示金属,非金属或过渡元素等。若元素符号呈红色表明该元素是放射性元素。 2.第一个元素周期表是谁排成的?跟现在的元素周期表排列方式一样吗? 提示:历史上第一个元素周期表是1869年,俄国化学家门捷列夫排成的;他是将元素按照相对原子质量由小到大依次排列,将化学性质相似的元素放在一个纵行。通过分类、归纳,制成了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系。 第一个元素周期表跟现在使用的元素周期表排列方式不一样。主要区别是元素周期表中元素的排序依据由相对原子质量改为原子的核电荷数。即现在我们使用的元素周期表是按元素原子的核电荷数由小到大的顺序排列而成的。 1.原子序数 按照元素在周期表中的顺序给元素编号,得到原子序数。原子序数与原子结构之间存在着如下关系:原子序数=核电荷数=质子数=核外电子数 温馨提示:存在上述等式关系的粒子是电中性原子,而非单核离子。单核离子是在电中性原子的基础上得到或失去电子而形成的。

元素周期表规律总结

元素周期表规律总结 一。主族元素的判断方法:符合下列情况的均是主族元素 1. 有1~3个电子层的元素(除去He、Ne、Ar); 2。次外层有2个或8个电子的元素(除去惰性气体); 3. 最外层电子多于2个的元素(除去惰性气体); 二。电子层结构相同的离子或原子(指核外电子数与某种惰性元素的电子数相同而且电子层排布也相同的单核离子或原子) (1)2个电子的He型结构的是:H-、He、Li+、Be2+; (2)10个电子的Ne型结构的是:N3—、O2-、F—、Ne、Na+、Mg2+、Al3+ (3)18个电子的Ar型结构的是:S2—、Cl-、Ar、K+、Ca2+ 三。电子数相同的微粒(包括单核离子、原子、也包括多原子分子、离子) 1。2e—的有:H-、H2、He、Li+、Be2+; 2. 10e-的有:N3-、O2-、F—;Na+、Mg2+、Al3+;Ne、HF、H2O、NH3、CH4(与Ne同周期的非金属的气态氢化物)NH4-、NH2-、H3O+、OH—; 3. 18e-的有:S2—、CL-、Ar、K+、CA2+;SiH4、PH3、H2S、HCl(与Ar同周期的非金属的气态氢化物);HS—、PH4+及、H2O2、F2、CH3-OH、CH3—CH3、CH3-F、CH3-NH2、NH2—NH2、NH2-、OH—等. 四. 离子半径的比较: 1. 电子层结构相同的离子,随原子序数的递增,离子半径减小. 2。同一主族的元素,无论是阴离子还是阳离子,电子层数越多,半径越大。即从上到下,离子半径增大. 3。元素的阳离子半径比其原子半径小,元素的阴离子半径比其原子半径大。 五。同一主族的相邻两元素的原子序数之差,有下列规律: 1。同为IA、IIA的元素,则两元素原子序数之差等于上边那种元素所在周期的元素种类数。

必修二第一章物质结构元素周期律知识点总结

第一章物质结构元素周期律 元素周期表 知识概要: 一、元素周期表 1.元素周期表的发现与发展: 1869年,俄国化学家门捷列夫将元素按照相对原子质量由小到大依次排列,并将化学性质相似的元素放在一个纵行,制出了第一张元素周期表。当原子结构的奥秘被发现以后,元素周期表中的元素排序依据由相对原子质量改为原子的核电荷数,周期表也逐渐演变成我们常用的这种形式。按照元素在周期表中的顺序给元素编号,得到原子序数。人们发现,原子序数与元素的原子结构之间存在着如下关系: 原子序数=核电荷数=质子数=核外电子数 2.元素周期表的结构: (1)元素周期表的排列原则 横行:电子层数相同的元素,按原子序数递增的顺序从左到右排列。 纵行:最外层电子数相同的元素,按电子层数递增的顺序自上而下排列。 (2)周期 (3)族 按电子层数递增的顺序,把不同横行中最外层电子数相同的元素由上而下排成纵行,元素周期表共有18个纵行,它们又被划分为16个族。 (4)元素周期表的结构 周期序数=核外电子层数主族序数=最外层电子数 原子序数=核电荷数=质子数=核外电子数

短周期(第1、2、3周期)周期:7个(共七个横行) 周期表长周期(第4、5、6、7周期) 主族7个:ⅠA-ⅦA 族:16个(共18个纵行)副族7个:IB-ⅦB 第Ⅷ族1个(3个纵行) 零族(1个)稀有气体元素 (5)认识周期表中元素相关信息 随堂检测(一) 1.已知某主族元素的原子结构示意图如下,判断其位于第几周期第几族 2.主族元素在周期表中的位置取决于该元素的( ) A.相对原子质量和核外电子数 B.电子层数和最外层电子数 C.相对原子质量和最外层电子数 D.电子层数和次外层电子数 3.下列各表为周期表的一部分(表中为原子序数),其中正确的是( ) A. 234 11 19 B. 2 1011 1819 C. 6 111213 24 D. 67 14 3132 26 Fe 铁 3d6 4s2

高一化学元素周期表知识点归纳

高一化学元素周期表知识点归纳 想学好化学知识就必须学好元素周期表的知识。下面就是我给大家带来的高一元素周期表知识点总结,希望能帮助到大家! 高一元素周期表知识点总结1 单质及简单离子的氧化性与还原性 同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。 同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。 元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。 最高价氧化物所对应的水化物的酸碱性 同一周期中,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱); 同一族中,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。 单质与氢气化合的难易程度 同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易; 同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。 高一元素周期表知识点总结2 高一元素周期表知识点总结3 原子核外电子排布规律 1.在含有多个电子的原子里,电子依能量的不同是分层排布的,其主要规律是:

核外电子总是尽先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层。 2.原子核外各电子层最多容纳2n2个电子。 3.原子最外层电子数目不超过8个(K层为最外层时不能超过2个电子)。 4.次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。 注意:以上规律既相互联系,又互相制约,不能孤立片面的理解。如M层为最外层的时候,最多为8个,而不是18个。 高一元素周期表知识点总结4 原子半径 (1)除第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小; (2)同一族的元素从上到下,随电子层数增多,原子半径增大。 2元素化合价 (1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外); (2)同一主族的元素的最高正价、负价均相同 3单质的熔点 (1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减; (2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增

相关主题