搜档网
当前位置:搜档网 › bs期权定价与二叉树期权定价

bs期权定价与二叉树期权定价

bs期权定价与二叉树期权定价
bs期权定价与二叉树期权定价

第三节Black-Scholes期权定价模型

一与期权定价有关的基本假设:

(一).关于金融市场的基本假设

假设一:市场不存在摩擦.这就是说金融市场没有交易成本(包括佣金费用,买卖价差,税赋,市场冲击等),没有保证金要求,也没有买空的限制.提出市场无摩擦的假设在于简化金融资产定价的分析过程,其主要理由有以下两点:第一,对于大的金融机构来说,这一假设是一个较好的近似,因为他们的交易成本很低,他们在保证金要求和卖空方面受的约束很少,他们能够以买卖差的中间价进行交易等.由于金融机构是市场价格的制定者,所以从描述性角度出发,上述假设是一个较为现实的假设.第二,对于小的市场参与者来说,他们首先需要了解的是无摩擦条件下金融市场将如何运作.在此基础上,才能对复杂场合下的市场规律进行进一步深入分析.因此,从规范性角度出发,上述假设也是绝对必要的.

假设二:市场参与者不承担对家风险.这就是说,对于市场参与者所涉及的任何一个金融合同交易,合同对家不存在违约的可能.

假设三:市场是完全竞争的这就是说,金融市场上任何一位参与者都是价格的承受者,而不是价格的制定者.此假设被现代财务金融学普遍采纳,相当于一条标准的公理.任何参与者都可以根据自己的愿望买入和卖出任何数量的证券,而不至于影响该证券的市场价格.显然市场规模越大,竞争性市场假设就越接近于现实.

假设四:市场参与者厌恶风险,而且希望财富越多越好.

假设五:市场不存在套利机会.如果市场上存在套利的机会,价格会迅速准确的进行调整,使得这种套利机会很快消失.

(二).关于股利的假设

股利是影响期权价值的一个重要因素.不过,在研究期权定价问题时,股利是一个广义概念.首先,这一概念包含了通常意义上的股利,即发行标的股票公司向其股东定期支付的现金股利,我们称之为离散股利对于标的资产为股票的合同其大小一般用D 表示.一般来说,离散股利的支付发生在期权有效期内某些特定的时刻,它们往往是可以预先知道的.例如,公司将在每个季度末或每隔半年发放一定的股利.另一方面,对于标的资产为货币,股票指数,期货等的非股票期权来讲,所谓的的股利是指标的资产所有者在一段时间内,按一定的收益率所得到的报酬,如利息收入,因此它是一种连续的支付,我们称之为连续股利,其大小通常用股利支付率

二 模型假设与概述

(一)模型假设

Black 和Scholes 在推导B-S 模型时做了以下假设:

(1)无风险利率r 已知,且为一个常数,不随时间变化.

(2)标的资产为股票,其价格t s 的变化为一几何布朗运动,即

t t t t ds s dt s dz μσ=+

或者说, t s 服从正态分布

21/20exp{(0.5)},0t t s s t t e t T μσσ=-+<<……… 由(18)式容易得到

其中t e 为标准正态分布N(0,1),且不同时刻的t e 相互独立.

(3)标的股票不支付股利.

(4)期权为欧式期权

(5)对于股票市场,期权市场和资金借贷市场来说,不存在交易费用,且没有印花税.

(6)投资者可以自由借入或贷出资金,借入利率与贷出的利率相等,均为无风险利率.而且,所有证券交易可以无限制细分,即投资者可以购买任意数量的标的股票.

(7)对卖空没有任何限制(如不设保证金),卖空所得资金可由投资者自由使用.

(二)模型的概述

在上述假设下,若记t s 为定价日标的股票的价格,X 为看涨期权合同的执行价格,r 是按连续复利计算的无风险利率,T 为到期日,t 为当前定价日,T t -是定价日距到期日的时间(单位为年),σ是标的股票价格的波动率,则可得到B-S 模型如下:

(1) 在定价日t (t T <),欧式看涨期权的价值t c 为

()12()()r T t t t c s N d Xe N d --=- (22)

式中:

21/21[ln(/)(/2)()]/[()]t d s X r T t T t σσ=++-- (23)

1/221()d d T t σ=-- (24)

而()N x 是标准正态变量的累积分布函数,即

()N x {}p X x =<

其中X 服从(0,1)N .

(2) 由看涨期权-看跌期权平价公式:()r T t t t t p c s Xe --=-+,且注意到()N x 的

性质

()N x +()N x -1=,

欧式看跌期权在定价日t 的价值t p 为

t p ()12()()r T t t s N d Xe N d --=--+- (25)

三 模型的推导与推广

(一) Black 和Scholes 的推导

假设期权当前时刻的价值为t F ,显然t F 是标的股票当前市场价格t s 的函数. Black 和Scholes 首先构造了如下套期组合:即在当前t 时刻,以t s 买入标的股票/t t F s ??股,同时以t F 卖空一份期权.显然,该组合的构造成

本(/)t t t t t A F s s F =??-.当时间变化一个微小区间t (即从t 到t t + ),/t t F s ??可近似看成是一个常数,则该组合价值t A 的变动t dA 为:

t t t t

F dA ds dF s ?=-?…………………………(26) 注意到,由B-S 模型的假设

t t t t ds s dt s dz μσ=+

又由伊藤引理(11)式,期权价值t F 作为t s 的函数,应满足以下公式

2222(0.5)t t t t t t t t t t t t

F F F F dF s s dt s dz t s s s μσσ????=+++???? 将上述两式代入(26)式得

2222[0.5]t t t t t

F F dA s dt t s σ??=-+?? (27)

在(27)式中随机项t dz 已经不存在,这说明在[,]t t t + 这段时间上,该套期组合价值的变动是确定的,不存在风险.因此,根据无套利定价原则,不考虑交易成本等因素,在该时间段组合的收益应当是无风险利率r ,即

()t t t t t t

F dA rA dt r s F dt s ?==-?…………………(28) 将(27),(28)结合化简得:

22220.5t t t t t t t t

F F F rs s rF t s s σ???++=???………………(29) 此式就是著名的B-S 微分方程,它构成的包括期权在内的任何一种衍生工定价模型的基础.这就是说,B-S 方程可以用于任何一种衍生工具的定价,只要该衍生工具的标的资产价格变化服从几何布朗运动.对于不同类型的衍生工具来说,其价值t F 有不同的边界条件.给定这些特定

的边界条件,就可以通过求解上述偏微分方程,得到该衍生工具的定价模型.

对于欧式看涨期权来说,其价值t F t c =在到期日T 的边界条件为: max(0,)T T T F c s X ==-

而对于欧式看跌期权来说,其价值

max(0,)T T T F p X s ==-

根据上述边界条件,Black 和Scholes 得到了B-S 方程的解,它们就是B-S 期权定价模型。

(二)Black-scholes 期权定价公式的拓展

(1)无收益资产的欧式看跌期权的定价公式

Black-Scholes 期权定价模型给出的是无收益资产的欧式看涨期

权的定价公式根据欧式看涨期权和看跌期权之间的评价关系,可以得到无收益资产的欧式看跌期权的定价公式:

()()21()()r T t r T t t t t p c Xe S Xe N d S N d ----=+-=--- (30)

(2)无收益资产的美式期权的定价公式

在标的资产无收益的情况下,由于t t C c =,所以式(22)也给出

了无收益资产的美式看涨期权的价值。

美式看跌期权与看涨期权之间不存在严密的平价关系,因此美式看跌期权的定价还没有一个精确的解析公式,但可以用数值的方法以及解析近似方法求出。

(3)有收益资产的期权的定价公式

到现在为止,我们一直假设期权的标的资产没有现金收益。那么,对于有收益资产,其期权定价公式是什么呢?实际上,如果收益可以准确的预测到,或者说是已知的,那么有收益资产的欧式期权定价并不复杂。

在收益已知的情况下,我们可以把标的证券价格分解成两部分:期权有效期内已知现金手一点现值部分和一个有风险部分。当期权到期时,这部分现值将由于标的资产支付现金收益而消失。因此,我们只要用t S 表示有风险部分的证券价格,σ表示风险部分遵循随机过程

的波动率,就可以直接套用公式(22)和(30)分别计算出有收益资产的欧式看涨期权和看跌期权的价值。

当标的证券已知收益的现值为I 时,我们只要用(t S I -)代替式

(22)和式(30)中的t S 即可求出固定收益证券欧式看涨期权和看跌

期权的价格。

当标的证券的收益为按连续复利计算的固定收益率q(单位:年)时,我们只要将()

q T t

S e--代替式(22)和式(30)中的t S就可

t

以求出支付连续复利收益率证券的欧式看涨期权和看跌期权的价格,在各种期权中,股票指数期权,外汇期权,和期货期权的标的资产可以看做是支付连续红利率的,因而它们适用于这一定价公式。

另外对于有收益资产的美式期权,由于有提前执行的可能,我们无法得到精确的解析解,仍然需要用数值方法以及解析近似方法求出。

(三)Black-Scholes期权定价公式的计算

(1)Black-Scholes期权定价模型的参数

我们已经知道,Black-Scholes期权定价模型中的期权价格取决于下列五个参数:标的资产市场价格、执行价格、到期期限、无风险利率和标的资产价格波动率(即标的资产收益率的标准差)。在这些参数当中,前三个都是很容易获得的确定数值,但是无风险利率和标的资产价格波动率则需要通过一定的计算求得估计值。

①估计无风险利率

在发达的金融市场上,很容易获得无风险利率的估计值,但是在实际应用的时候仍然需要注意几个问题。首先,我们需要选择正确的利率。一般来说,在美国,人们大多选择美国国库券利率作为无风险利率的估计值。美国国库券所报出的利率通常为贴现率(即利率占票面价值的比例),因此需要转化为通常的利率,并且用连续复利的方式表达出来,才可以在Black-Scholes公式

中应用。其次,要小心的选择国库券的到期日。如果利率期限结构曲线倾斜严重,那么不同的到期日的收益率很可能相差很大,我们必须选择距离期权到期日最近的那个国库券的利率作为无风险利率。

我们用一个例子来说明无风险利率的计算。假设一个还有84天到期的国库券,其买入报价为8.83,卖出报价为8.77。由于短期国库券市场报价为贴现率,我们可以推算出其中间报价对应的现金价格(面值为100美元)为:

TB P =100-[(8.83+8.77)/2]*(84/360)=97.947(美元)

进一步应用连续复利利率的计算公式得到相应的利率:

()r T t e -=100/TB P →0.23r e =100/97.947→0.0902r =

② 估计标的资产价格的波动率

估计标的资产价格的波动率要比估计无风险利率困难的多,也更为重要。正如第十章所述,估计标的资产价格波动率有两种方法:历史波动率和隐含波动率。

1. 历史波动率。所谓历史波动率,就是从标的资产价格的

历史数据中计算出价格收益率的标准差。以股票的价格

为例,表(1)列出了计算股票价格波动率的一个简单说

明。很显然,计算波动率的时候,我们运用了统计学中

计算样本均值和标准差的简单方法。其中,t R 为股票价格百分比收益率,R (或者μ)则为连续复利收益率(估

计方差),σ就是相应的(估计)标准差(波动率),即

Black-Scholes 公式计算时所用的参数。在表(1)中,共

有11天的收盘价信息,因此得到10个收益率信息。

t R =1/t t p p -

R 1

(1/)ln T t

t T R ==∑ 21var()[1/(1)](ln )T t t R T R R ==--∑

表(1) 历史波动率计算

在Black-Scholes 公式所用的参数中,有三个参数与时间有关:到期期限、无风险利率和波动率。值得注意的是,这三个参数的时间单位必须相同,或者同为天、周、或者同为年。年是经常被用到的时间单位,因此我们常常需要将天波动率转化

成年波动率。在考虑年波动率时,有一个问题需要加以重视:一年的天数究竟按照日历天数还是按照交易天数计算。一般认为,证券价格的波动主要来自交易日。因此,在转换年波动率时,应该按照一年252个交易日进行计算。这样,表(1)中的天波动率相应的年波动率

0.3467year day σσ==

在我们的例子中,我们使用的是10天的历史数据。在实际计算时,这个天数的选择往往很不容易。从统计的角度来看,时间越长,数据越多,获得的精确度一般越高。但是,资产价格收益率的波动率却又常常随时间的变化,太长的时间段反而可能降低波动率的精确度。因此,计算波动率时,要注意选取距离今天较近的时间,一般的经验法则则是设定度量波动率的时期等于期权的到期期限。因此,如果要为9个月的期权定价,可使用9个月的历史数据。

2.隐含波动率

从Black-Scholes 期权定价模型本身来说,公式中的波动率指的是未来的波动率数据,这使得历史波动率始终存在较大的缺陷。为了回避这一缺陷,一些学者将目光转向隐含波动率计算。所谓隐含波动率,即根据Black-Scholes 期权定价公式,将公式中除了波动率以外的参数和市场上的期权报价待入,计算得到的波动率数据。显然,这里计算得到的波动率可以看做是市场对未来波动率的预期。当然,由于Black-Scholes 期权定价公式比较复杂,隐含波动率的计算一般需要通过计算机完成。

(2)利用Black-Scholes 期权定价公式的一个例子

为了使广大读者进一步理解Black-Scholes 期权定价模

型,我们下面用一个简单的例子来说明这一模型的计算过程。

例3.1 假设某种不支付红利股票的市价为20

元,无风险利率为6%,该股票的年波动

率为50%,求该股票协议价格为20元、

期限1年的欧式看涨期权和看跌期权的

价格。

在本题中,可以将相关参数表达如下:

t S =20 X =20 r =0.06 σ=0.5 T =1

计算过程分为三步:

第一步,先算出1d 和2d 。

1=[ln(50/50)+(0.12+0.01/2)*1]/[0.1*sqrt(1)]=1.25d

2d =1-0.1* sqrt(1)=0.15d

第二步,计算1()N d 和2()N d

1()N d =(1.25)0.8944N =

2()(1.15)0.8749N d N ==

第三步,将上述结果以及已知条件代入公式(22),

这样,欧式看涨期权和看跌期权的价格分别为:

0.12*150*0.894450*0.8749 5.92c e -=-=(美元)

0.12*150*(10.8749)50*(10.8944)0.27p e -=---=(美元)

在本例中,标的资产执行价格和市场价格正好相等,

但是看涨期权的价格却与看跌期权的价格相差悬殊。其

中的原因在于利率和到期期限对期权价格的影响。在本

例中,利率高达12%,到期期限长达1年。在这种情况

下,执行价格的现值将大大的降低。对于欧式看涨期权

来说,这意味着内在价值的大幅上升,而对于欧式看跌

期权来说,却意味着内在价值的大幅降低。因此,在计

算了执行价格的现值以后,看涨期权是实值期权而看跌

期权则是一个虚值期权。事实上,实际中的市场短期利

率通常较低,期权到期期限一般不超过9个月,因此如

果标的资产市场价格与执行价格相等,同样条件下的看

涨期权价格和看跌期权价格一般比较接近。

(六)Black-Scholes期权定价公式的应用

Black-Scholes期权定价公式除了可以用来估计期权价格,在其他一些方面也有很重要的应用,主要包括评

估组合保险成本、可转换债券定价和为认股权证估值。

(1)评估组合保险成本

证券组合保险是指事先能够确定最大损失的投资策略,比如在持有相关资产的同时买入看跌期权就是一种组合保险。

假设你掌管着价值1亿元的股票投资组合,这个股票投资组合与市场组合十分类似。你担心类似于1987年10月9日的股灾会吞噬你的股票组合,这时购买一份看跌期权也许是合理的。显然,期权的执行价格越低,组合保险的成本越小,不过我们需要一个确切的评估,市场上可能根本就没有对应的期权,要准确估算成本十分困难,此时Black-Scholes期权定价公式就十分有用。比如10%的损失是可以接受的,那么执行价格就可以设为9000万元,然后再将利率、波动率和保值期限的数据代入公式,就可以合理估算保值成本了。

(2)给可转换债券定价

可转换债券是一种可有债券持有者转换成股票

的债券,因此可转换债券相当于一份普通的公司

债券和一份看涨期权的组合,即:

CB B C V V V =+

其中CB V 表示可转换债券的价值,B V 表示从可转换债券中剥

离出来的债券的价值,C V 代表从可转换债券中剥离出来的期权的

价值。

在实际中C V 的估计是十分复杂的,因为C V 对利率非常敏感,

而Black-Scholes 期权定价公式假定无风险利率不变,对C V 显然

不适用。其次,可转换债券中隐含的期权的执行与否会因为股票股利和债券利息的问题复杂化。而且,许多可转换债券的转换比例会随时间变化。

绝大多数可转换债券是可赎回的,可赎回债券的分解更加复杂。对债券持有者而言,它相当于一份普通的公司债券、一份看涨期权多头(转换权)和一份看涨期权空头(赎回权)的组合。可赎回的可转换债券对股票价格变动很敏感,而对利率也非常敏感。当利率下降的时候,公司可能会选择赎回债券。当然,利率上升的时候债券价值也会上升。

(3) 为认股权证估值

认股权证通常是与债券或优先股一起发行的,它的持有人拥有在特定的时间以特定的价格认购一定数量的普通股,因此认股权证其实是一份看涨期权,不过两者之间还是存在细微的差别,看涨期权执行的时候,发行股票的公司并不会受影响,而认股权证的执行存在解释效应,在估值的时候必须考虑这一点。

参考文献:

《期权分析----理论与应用》茅宁著南京大学出版社

《数理统计与概率论》王志江陶靖轩沈鸿编中国计量出版社

《衍生产品》郑振龙主编武汉大学出版社2005年2月第一版

二叉树期权定价模型

(一)单期二叉树定价模型

(1)一定数量的股票多头头寸

(2)该股票的看涨期权的空头头寸

股票的数量要使头寸足以抵御资产价格在到期日的波动风险,

即该组合能实现完全套期保值,产生无风险利率。

C0=1+r-d Cu u-1-r Cd

u—d 1+r u—d 1+r

最初,投资于0.5股股票,需要投资25元;收取6.62元的期权费,尚需借入18.38元。半年后,股价如果股价涨到66.66元,

0.5股股票收入33.33元,借款本息18.75(18.35*1.02)

看期权的持有人会执行期权,期权出售人补足价差14.58(66.66-50),

投资人的净损益=0

股价如果跌到37.5元,

0.5股股票收入18.75元,支付借款本息18.75元,投资人的净损益为0

因此该看涨期权的公平价值就是6.62元。

(二)两期二叉树模型

把6个月的时间分为两期,每期3个月。现在股价50元,看涨期权的执行价格52.08元。每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。

股价:

计算Cu的价值:有两种办法:

1.复制组合定价

H=(23.02-0)÷(75.10-50)=0.91713

借款=(50×0.91713)÷1.01=45.40元

3个月后股票上行的价格是61.28元

Cu=投资成本=购买股票支出-借款=61.28×0.91713-45.40=10.8元

2.风险中性定价

期望报酬率=1%=上行概率×22.56%+下行概率×(-18.4%)

[22.56%=(74.10-61.28)/61.28 18.4%=(50-61.28)/61.28

上行概率=0.47363

期权价值6个月后的期望值=0.47363*23.02+(1-0.47363)*0=10.9030元

Cu=10.9030÷1.01=10.8元

根据Cu和Cd计算C0的价值:

1.复制组合定价

H=(10.8-0)/(61.28-40.80)=0.5273

借款=(40.80×0.5273)÷1.01=21.3008元

C0=投资成本=购买股票支出-借款=50×0.5273-21.3008=5.06

2.风险中性原理

C0=0.47363×10.8÷1.01=5.06元

(三)多期二叉树模型

u =1+上升百分比=

d =1-下降百分比=1 / u

e =自然常数,约等于2.7183

σ=标的资产连续复利收益率的标准差

t =以年表示的时段长度。

沿用上题,将半年的时间分为6期,即每月1期。S0=50元,执行价格52.08元,年无风险利率为4%,股价波动率0.4068,到期时间6个月,划分期数为6期(即每期1个月)t=1/12

布莱克---斯科尔斯模型:

C0-------看涨期权的当前价值

S0--------标的股票的当前价格

N(d)------标准正态分布中离差小于d的概率

X----------期权的执行价格

e-----------z自然对数的底

rc----------连续复利的年度的无风险利率

t------------期权到期日前的时间(年)

σ2--------连续复利的以年计的股票回报率的方差

In(S0÷X)--------S0÷X的自然对数

无风险利率:

应用无违约风险的固定证券收益来估计,例如国库券利率。

应选择与期权到期日相同或时间最接近的国库券利率

国库券利率指市场利率,不是票面利率。

按连续复利计算,不是常见的年复利。

看跌期权估价

看涨期权价格C-看跌期权价格P=标的资产价格S-执行价格的现值PV(X)

美式期权估价:

对于不派发股利的美式看涨期权,可以直接使用布-斯模型进行估价。

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含m a t l a b代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价格有两种可能:S高=100元,S低=25元。有一份看涨期权合约,合约约定在4月份可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份

S低=25元S高=100元 卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p上升到Su,以概率1-p下降到Sd,其中,u>1,O

二叉树期权定价法22222

二叉树期权定价法 摘要上世纪七十年代以来金融衍生品得到了蓬勃的发展,在这之中,期权的地位尤为受到重视,居于核心地位,很多的新创的衍生品,都包含了期权的成分。所以一直以来,期权的定价问题受到了大量经济学家的探索。实物期权的定价模式的种类较多,理论界和实务界尚未形成通用的定价模型,主要估值方式有两种:一是B l a c k-S c h o l e s期权定价模型;二是二叉树期权定价模型。 1973年,布莱克和斯科尔斯(B l a c k a n d C s c h o l e s)提出了 B l a c k-S c h o l e s期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。1979年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)、马克·鲁宾斯坦(M a r k R u b i n s t e i n)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为C o x-R o s s-R u b i n s t e i n二项式期权定价模型。 关键词 B l a c k-S c h o l e s期权定价模型虽然有许多优点,但是它的推导过程却是难以为人们所接受;二叉树期权定价模型假设股价波动只有

二叉树定价模型

.. 期权定价的二叉树模型 Cox、Ross和Rubinstein 提出了期权定价的另一种常用方法二叉树(binomialtree )模型,它假设 标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产 和期权价格的演进历程。本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票 指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。 8.1 一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18.股 票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能 出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图 8.1表示的二叉树称为一步 (one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期 日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到 相应的期权价格为. 这种过程可通过一 步( one- step )二叉树表示出来, 如图 8.2

所示。我们的问题是根据这个二叉树对该欧式股票期权定价。

.. 为了对该欧式股票期权定价,我们采用无套利(noarbitrage)假设,即市场上无套利机会存 在。构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。 如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组 合在期权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应 该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险利率,则该组合的现值(thepresent value)为,又注意到该组合 的当前价值是,故有 即 将(8.1) 代入上式,可得基于一步二叉树模型的期权定价公式为 (8.2) (8.3) 需要指出的是,由于我们是在无套利(noarbitr age )假设下讨论欧式股票期权的定价,因此无风险利率

第九章 期权估价-二叉树期权定价模型

2015年注册会计师资格考试内部资料 财务成本管理 第九章 期权估价 知识点:二叉树期权定价模型 ● 详细描述: 一、单期二叉树模型 关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。 以风险中性原理为例: 根据前面推导的结果: 代入(1)式有: 二、两期二叉树模型 如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。由单期模型向两期模型的扩展,不过是单期模型的两次应用。 三、多期二叉树模型

原理从原理上看,与两期模型一样 ,从后向前逐级推进 乘数确定期数增加以后带来的主要问题 是股价上升与下降的百分比如 何确定问题。期数增加以后 ,要调整价格变化的升降幅度 ,以保证年收益率的标准差不 变。把年收益率标准差和升降 百分比联系起来的公式是: u=1+上升百分比= d=1-下 降百分比= 其中:e=自然常 数,约等于2.7183 σ=标的资 产连续复利收益率的标准差 t=以年表示的时间长度(每期 时间长度用年表示) 做题程序: (1)根据标准差和每期时间间隔确定每期股价变动乘数(应用上述的两个公式) (2)建立股票价格二叉树模型 (3)根据股票价格二叉树和执行价格,构建期权价值的二叉树。 构建顺序由后向前,逐级推进。——复制组合定价或者风险中性定价。 (4)确定期权的现值 例题: 1.如果股票目前市价为50元,半年后的股价为51元,假设没有股利分红,则 连续复利年股票投资收益率等于()。 A.4% B.3.96% C.7.92% D.4.12% 正确答案:B 解析:r=ln(51/50)/0.5=3.96%

基于二叉树模型的期权定价

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (3) 1.1 背景介绍 (3) 1.2 本文的主题 (4) 第二章预备知识 (5) 2.1 期权 (5) 2.2二叉树方法 (6) 2.2.1 方法概述 (6) 2.2.2 二叉树方法的优点和缺点 (9) 2.2.3 风险中性定价 (9) 2.3 Black-Scholes 期权定价模型 (11) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。

第三章本论 (14) 3.1期权定价的二叉树模型 (14) ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 ................................................ 错误!未定义书签。 3.2 例子模拟计算和结果分析 (18) 3.3 模型改进——三叉树 (19) 第四章结论...................................... 错误!未定义书签。谢辞及参考文献 (23) 谢辞 (23) 参考文献 (23) 附录 (25) 计算过程中涉及算法 (25)

摘要 Black-Scholes 期权定价模型为期权定价尤其是欧式期权定价提供了良好的解析结果,而Black-Scholes 公式是此模型的核心,但是此公式并不能很好地求解出在很多衍生模型例如亚式期权以及美式期权中的解析解。二叉树方法作为一种数值方法,同时也是图论中一种重要方法,应用于期权定价问题中,它有了更特别的演变。本文利用二叉树方法计算期权定价的数值解,用二叉树方法迭代多次,求出较为准确的期权价格。通过B-S公式得出的结果与二叉树方法得到的结论对比,分析二叉树方法模拟的优点和缺点。同时,我们还要研究二叉树模拟的步数与预测结果和精度间的关系,从而更加深入了解二叉树方法。然而,我们在模型中设立了许多条件,这些都使模型离真实情况越来越远,我们必须不断发展模型,完善模型。三叉树方法正是二叉树方法的合适补充。 关键词:二叉树方法,Black-Scholes 模型,风险中性定价

金融工程-二叉树模型——期权定价方法试验报告---用于合并

期权定价(二叉树模型)实验报告1204200308 学号:1201 姓 名:郑琪瑶班级:创金 一、实验目的计算出支付连续红利率资产Excel 本实验基于二叉树模型对 期权定价。利用的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方从而巩固二叉树模型这种期权定价的数对于期权价格的影响,式、收益率等等)值方法的相关知识。 二、实验原理的红利时,在风险中性条件下,证券价格的当标的资产支付连续收益率为q应该满足以下,因此参数(股票价格上升的概率)、、增长率应该为pq?r u d式子:tq)?(r?dpe)(?pu?1?;同时在一小段时间内股票价格变化的方差 满足下式:2222?]p1?)p)dd?[pu?(?t?pu?(1?;1,将三式联列,可以解考克斯、罗斯和鲁宾斯确定参数的第三个条件是?u d)得(*(r?q)?t??edp?? u?d????t u?e????t?d?e???t?0?三、实验内容 1.假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变化,保持其余变量不变,分别计算出相应美式f和欧式f期权的价格21 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常数、递增及递减情况下,保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程:步骤一:输入已知参数输入参数支付连续收TRSX N 步数无风险利率波动率σ股票价格期限期权执行价格0RC益率9.00% 5 50.00

期权定价

第八章期权定价的二叉树模型 8.1 一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T)后该股票价 格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权 的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到,则该组合在期权到期 日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得 (8.1) 上式意味着是两个节点之间的期权价格增量与股价增量之比率。在这种情况下,该组合是无风险的。以表示无风险 利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有

即 将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为 (8.2) (8.3) 需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: . 现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。 已知:且在期权到期日, 当时,该看涨权的价值为而当时,该看涨权的价值为 根据(8.3)和(8.2),可得 . 上述期权定价公式(8.2)和(8.3)似乎与股价上升或下降的概率无关,实际上,在我们推导期权价值时它已经隐含在股票价 格中了。不妨令股价上升的概率为,则股价下降的概率就是,在时间的期望股票价格为

二叉树定价模型

二项式期权定价模型 1.实验名称: 二项式期权定价模型 2.实验目的: 利用二叉树期权定价模型公式Excel 模板计算期权价格。 3.基本原理 计算到期时资产价值的分布,求出资产的期望值,用适当的贴现率计算现值,得到资产的当前价值。 (1) 计算n 期中上升i 次的概率: ()(1 )i i n i i n P n C p p -=-; (2) 计算在终期时的价格分布: ()0i n i ni S S u d -= (3) 计算期权的价值: ()0max(,0)i n i ni Call S u d K -=-,()0max(,0)i n i ni Put K S u d -=-; (4)计算终期时的期望值:0()n n ni i ECall P i Call == ∑,0()n n ni i EPut P i put ==∑; (5)计算期权在起初时刻的价值: ()00 (1)max(,0)n RT RT i i n i i n i n i Call e ECall e C p p S u d K ----===--∑ ()00(1)max(,0)n RT RT i i n i i n i n i Put e EPut e C p p K S u d ----===--∑。 4. 实验数据域内容 已知股票价格为50,执行价格为50,时间为半年,无风险利率为5%,波动率为20%,分为10个时间段,利用二叉树定价模型计算看涨看跌期权的价格。 5. 操作过程与结果 (1)定义变量的符号 在单元格B2—B14中分别输入S 、K 、T 、R 、VOL 、n 、dt 、u 、d 、G-factor 、D-factor 、p 分别表示股票价格、期权执行价格、期权有效期、无风险利率、股价波动率、时段数、时段、上升因子、下降因子、增长因子、贴现因子、风险中性概率。如图:

二叉树和三叉树的期权定价方法

第七章期权定价的二叉树和三叉树方法在这一章中,我们利用二叉树和三叉树方法为期权定价。在第2.1节中我们已经介绍了利用基础途径的二叉树方法解决期权价格不确定性的模型。二叉树方法依赖于对相关随机过程的离散化并利用计算和内存的结合以满足易于管理的要求。我们也在,我们必须把原来的单步格方法扩展到多步格方法,但是我们必须校对格使它能够反映出相关模型,且这个模型是连续时间、连续状态的随机微分方程。然后我们就可以推广到多步的二叉树格和三叉树格。 在7.1节中,我们从如何利用在离散概率分布的时刻下随机价格波动校准简单的二叉树格。从这点来看,弄清楚网格技术和蒙特卡洛模拟之间的联系是非常重要的,而利用时刻匹配技术缩减方差可以看作一种快捷的抽样排序。然后我们讨论内存效率的实现是如何设计的,美式期权定价是7.2节的主题。同时,还是要注重它和其他技术方法的联系。现在我们要做的本质上是一个非常简单满足动态规划原则的程序,我们将在第10章程序中进一步拓展。在7.3节中,我们把上述方法推广到双标的资产的情形,虽然这是一个最简单的情形,但是我们可以从这个情形中看出内存控制是这一情形的基础。另一种一般化的代表是三叉树格方法,三叉树格方法可以作为一种更普遍的有限差分方法(具体将在,最后,我们在7.5节中具体讨论网格化方法的优势和劣势。 期权定价的二叉树和三叉树格方法 图7.1 单时期二叉树格 7.1 二叉树定价方法

在,我们已经考虑过单步二叉树方法在无套利情况下的期权定价, 这里我们为了方便直接利用图7.1。其主要思想是复制两个资产,一 个是无风险资产,另一个是相关股票。利用这两项资产,我们可以通 过它们的组合塑造任何收益率的资产。如果我们令u 和d 为任意两个 价格的角标,我们可以看到期权的价格应该为0f 则, ])1([0d u t r f p pf e f -+=-δ (7.1) 在公式7.1中u f 和d f 是标的资产在涨跌两种情况的期权价格,p 是风 险中性前提下相关资产升值的概率。 为了寻找一个更好的不确定性模型,我们可以增加分类的情况, 复制期权收益,甚至我们可以使用更多的资产,或允许中间日期交易。 第二种可能性更为实际,并且也是必不可少的,例如,对于在期权的 存续期内可以随时执行的美式期权来说。对其求极限,就会得到连续 时间模型,并且其最后收敛于Black —sholes 方程。当Black —sholes 方程没有解析解的时候,我们必须采取一些离散化的途径,比如说可 以通过蒙特卡洛模拟从而估计出风险中性条件下预期收益,或者建立 一个自适应网格的有限差分方法去解决相应的PDE 模型。就像我们 在图7.2中展示的一样,多级二叉树格方法就是一种可以选择的离散 化方法。我们也可以考虑利用树图,但是要注意使计算方法易于控制。 二叉树格定价 图7.2 新生成的二叉树图 这里我们为了方便令d u /1=。虽然这个不是必须的,但是在后面 我们可以看到,这个假设令模型简化了很多即每上一步紧接着下一步 都会得到相同的初始价格。

金融工程-二叉树模型——期权定价方法实验报告---用于合并

期权定价(二叉树模型)实验报告 班级: 创金1201 姓名: 郑琪瑶 学号: 08 一、实验目的 本实验基于二叉树模型对期权定价。利用Excel 计算出支付连续红利率资产的期权价格,并探究输入参数(如无风险利率、波动率、期限、时间区间划分方式、收益率等等)对于期权价格的影响,从而巩固二叉树模型这种期权定价的数值方法的相关知识。 二、实验原理 当标的资产支付连续收益率为q 的红利时,在风险中性条件下,证券价格的增长率应该为q r -,因此参数p (股票价格上升的概率)、u 、d 应该满足以下式子: d p pu e t q r )1()(-+=?-; 同时在一小段时间内股票价格变化的方差满足下式: 2222])1([)1(d p pu d p pu t -+--+=?σ; 考克斯、罗斯和鲁宾斯确定参数的第三个条件是d u 1 =,将三式联列,可以解 得(*) 三、实验内容 1. 假定有一支付连续红利率股票的美式看涨期权,有效期期限为5个月,目前 的股票价格和期权执行价格都为50元,无风险利率为10%,波动率为40%,连续收益率为3%,为了使得估计的期权价格比较准确,把时间区间划分成30步,即N=30,利用excel 加载宏可以计算得到相应美式和欧式期权的价格 2.探究基于不同红利支付类型:支付已知收益率和支付已知红利数额,计算出相 应的美式和欧式期权价格。 3.以支付已知收益率模式下分析期权价格。使资产连续复利收益率在[1%,10%]变 化,保持其余变量不变,分别计算出相应美式f 1和欧式f 2期权的价格 4.以支付已知红利数额模式下分析期权价格。探究下一期的红利支付数额为常 数、递增及递减情况下, 保持其余变量不变,分别计算出相应美式和欧式期权的价格。 5.根据上述每一步计算得到的当期期权价格的数据绘制折线图,观察折线图,得出结论。 四、实验过程: 步骤一:输入已知参数 步骤二:根据已知参数及式(*)原理,计算如下参数

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果 图) 实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7.0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19.3实验工具 MATLAB7. 0。 19. 4理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox,Ross&Rubinstein(1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票 价格有两种可能:S 高=100元,S 低 =25元。有一份看涨期权合约,合约约定在4月份

可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19.1所示。 表19.1投资组合的到期收益分布表 四月份 三月份 =25元 S 低=100元 S 高 卖出3份看涨期权合约3C 0 -150 买人两股股票-10050 200 借人现金40 -50 -50 总计0 00 由一价定律3C-100+40=0,可得C=20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p 上升到Su,以概率1-p下降到Sd,其中,u>1,O

期权定价的数值方法

期权定价的数值方法 小结 1.当不存在解析解时,可以用不同的数值方法为期权定价,其中主要包括二叉树图方法、蒙特卡罗模拟和有限差分方法。 2.二叉树图方法用离散的随机游走模型模拟资产价格的连续运动在风险中性世界中可能遵循的路径,每个小的时间间隔中的上升下降概率和幅度均满足风险中性原理。从二叉树图的末端开始倒推可以计算出期权价格。 3.蒙特卡罗方法的实质是模拟标的资产价格在风险中性世界中的随机运动,预测期权的平均回报,并由此得到期权价格的一个概率解。 4.有限差分方法将标的变量满足的偏微分方程转化成差分方程来求解,具体的方法包括隐性有限差分法、显性有限差分法、“跳格子方法”和 Crank-Nicolson方法等。 5.树图方法和有限差分方法在概念上是相当类似的,它们都可以看成用离散化过程解出偏微分方程的数值方法,都适用于具有提前执行特征的期权,不太适合路径依赖型的期权。其中二叉树模型由于其简单直观和容易实现,是金融界中应用得最广泛的数值定价方法之一;有限差分方法则日益受到人们的重视。 6.蒙特卡罗方法的优点在于应用起来相当直接,能处理许多盈亏状态很复杂的情况,尤其是路径依赖期权和标的变量超过三个的期权,但是不擅长于处理美式期权,而且往往所需计算时间较长。 二叉树定价方法的基本思想:假设资产价格的运动是由大量的小幅度二值运动构成,用离散的随机游走模型模拟资产价格连续运行可能遵循的路径。模型中隐含导出的概率是风险中性世界中的概率p,从而为期权定价。 蒙特卡洛模拟的基本思想:由于大部分期权的价值都可以归结为期权到期回报的期望值的贴现,因此尽可能地模拟风险中性世界中标的资产价格的多种运动路径,计算每种结果路径下的期权回报均值,之后贴现就可以得到期权价值。 蒙特卡洛模拟的优点:在大多数情况下,人们可以很直接地应用蒙特卡洛模拟,而无需对期权定价模型有深刻的认识;蒙特卡洛模拟的适用情形相当广泛。 蒙特卡洛模拟的缺点:只能为欧式期权定价,难以处理提前执行期权的的定价情形;为了达到一定的精准度,需要大量的模拟运算。 有限差分方法的基本思想:将衍生证券所满足的偏微分方程转化为一系列近似的差分方程,即用离散算子逼近偏微分方程中的各项,之后用迭代法求解以得到期权价值。

_二叉树期权定价模型

财务成本管理(2019)考试辅导 第十三章++产品成本计算 第1页 (二)二叉树期权定价模型 1.单期二叉树定价模型 期权价格=×+× U:上行乘数=1+上升百分比 d:下行乘数=1-下降百分比 【理解】 风险中性原理的应用 其中: 上行概率=(1+r-d )/(u-d ) 下行概率=(u-1-r )/(u-d ) 期权价格=上行概率×C u /(1+r )+下行概率×C d /(1+r ) 【教材例7-10】假设ABC 公司的股票现在的市价为50元。有1股以该股票为标的资产的看涨期权,执行价格为52.08元,到期时间是6个月。6个月以后股价有两种可能:上升33.33%,或者降低25%。无风险利率为每年4%。 【答案】 U=1+33.33%=1.3333 d=1-25%=0.75 =6.62(元) 【例题?计算题】假设甲公司的股票现在的市价为20元。有1份以该股票为标的资产的看涨期权,执行价格为21元,到期时间是1年。1年以后股价有两种可能:上升40%,或者降低30%。无风险利率为每年4%。 要求:利用单期二叉树定价模型确定期权的价值。 【答案】期权价格=(1+r-d )/(u-d )×C u /(1+r )=(1+4%-0.7)/(1.4-0.7)×7/(1+4%)=3.27(元) 2.两期二叉树模型 (1)基本原理:由单期模型向两期模型的扩展,不过是单期模型的两次应用。 【教材例7-11】继续采用[例7-10]中的数据,把6个月的时间分为两期,每期3个月。变动以后的数据如下:ABC 公司的股票现在的市价为50元,看涨期权的执行价格为52.08元,每期股价有两种可能:上升22.56%或下降18.4%;无风险利率为每3个月1%。 【解析】 P=(1+1%-0.816)/(1.2256-0.816)=0.47363 C U =23.02×0.47363/(1+1%)=10.80 C d =0 C 0=10.80×0.47363/(1+1%)=5.06 (2)方法: 先利用单期定价模型,根据C uu 和C ud 计算节点C u 的价值,利用C ud 和C dd 计算C d 的价值;然后,再次利用单期定价模型,根据C u 和C d 计算C 0的价值。从后向前推进。 3.多期二叉树模型 (1)原理:从原理上看,与两期模型一样,从后向前逐级推进,只不过多了一个层次。

欧式看涨期权二叉树定价

欧式看涨期权二叉树定价(含matlab代码和结果图)实验概述 本实验首先介绍了二叉树方法的来源和主要理论基础,然后给出期权的二叉树定价方法的基本过程和MATLAB7. 0实现的过程。 19. 2 实验目的 (1)了解二叉树的定价机理; (2)掌握用MATLAB7. 0生成股票价格的二叉树格子方法; (3)掌握欧式期权和美式期权的二叉树定价方法。 19. 3 实验工具 MATLAB 7. 0。 19. 4 理论要点 构造二叉树图(Binomial Tree)是期权定价方法中最为常见的一种。这个树图表示了在期权有效期内股票价格可能遵循的路径。二叉树定价方法与风险中性定价理论是紧密联系的。Cox, Ross & Rubinstein (1979)首次提出了构造离散的风险中性概率可以给期权定价,在此基础上他们给出了二叉树定价方法。 1)一个简单的例子 假设当前(3月份)股票的价格So =50元,月利率是25%。4月份股票价 格有两种可能:S 高=100元,S 低 =25元。有一份看涨期权合约,合约约定在4月份 可以以50元价格买进一股股票。现在考虑一个投资组合,进行几项操作:以价格C卖出3份看涨期权合约;以50元购入2股股票;以25%的月利率借人40元现金,

借期为一个月。 根据上述组合,我们可以得到以下到期收益分布表,如表19. 1所示。 表19.1 投资组合的到期收益分布表 四月份 三月份 S低=25元S高=100元 卖出3份看涨期权合约3C 0 -150 买人两股股票-100 50 200 借人现金40 -50 -50 总计0 0 0 由一价定律3C-100+40=0,可得C= 20元,即为期权的价格。这个例子说明,可以用一个相当简单的方法为期权定价,唯一需要做的是假设对投资者而言不存在套利机会。我们可以通过某种方式构造一个股票和期权的组合,使得在4月份该组合的价值是确定的。于是我们可以说该组合无风险,它的收益率一定等于无风险收益率。二叉树方法正是基于上述思想构造了二项分布下的风险中性概率。 2)二叉树模型 考虑一个不支付红利的股票期权价格估值。我们把期权的有效期分为很多很小的时间间隔Δt。假设在每一个时间段内股票价格从开始的价格S以概率p 上升到Su,以概率1-p下降到Sd,其中,u>1,O

股票期权二叉树定价-excel-VBA程序

Sub 期权定价() Dim i As Long '将输入的参数的值赋给相应的变量 s0 = Worksheets(1).Cells(1, 2) x = Worksheets(1).Cells(2, 2) r = Worksheets(1).Cells(3, 2) s = Worksheets(1).Cells(4, 2) t = Worksheets(1).Cells(5, 2) n = Worksheets(1).Cells(6, 2) '生成表格 Worksheets(1).Cells(1, 4) = "期数" Worksheets(1).Cells(2, 4) = "时间(年)" Worksheets(1).Cells(3, 4) = "上行乘数" Worksheets(1).Cells(4, 4) = "下行乘数" Worksheets(1).Cells(5, 4) = "股票价格" Worksheets(1).Cells(n + 6, 4) = "执行价格" Worksheets(1).Cells(n + 7, 4) = "上行概率" Worksheets(1).Cells(n + 8, 4) = "下行概率" Worksheets(1).Cells(n + 9, 4) = "买入期权价格"

'合并相应单元格 Set rr1 = Range("D5") For i = 1 To n Set rr1 = Union(Range("D" & (5 + i)), rr1) Next rr1.Select With Selection .HorizontalAlignment = xlGeneral .VerticalAlignment = xlBottom .WrapT ext = False .Orientation = 0 .AddIndent = False .IndentLevel = 0 .ShrinkToFit = False .ReadingOrder = xlContext .MergeCells = True End With '设置格式居中 With Selection .HorizontalAlignment = xlCenter .VerticalAlignment = xlCenter .WrapT ext = False

欧式期权二叉树定价MATLAB代码

调用函数代码 function Price=EuroOption(S0,K,T,r,M,type,sigma) dt = T/M; u=exp(sqrt(dt)*sigma); d=1/u; p = (exp(r*dt)-d)/(u-d); S=zeros(M+1,M+1); S(1,1)=S0; for j=1:M for i=0:j S(i+1,j+1)= S0*u^(j-i)*d^i; end end V=zeros(M+1,M+1); for i=0:M switch type case'call' V(i+1,M+1)=max(S(i+1,M+1)-K,0); case'put' V(i+1,M+1)=max(K-S(i+1,M+1),0); case'stra' V(i+1,M+1)=max(S(i+1,M+1)-K,0)+max(K-S(i+1,M +1),0); case'bino' V(i+1,M+1) =(S(i+1,M+1)>K); end end

for j=M-1:-1:0 for i=0:j V(i+1,j+1)=exp(-r*dt)*(p*V(i+1,j+2)+(1-p)*V( i+2,j+2)); end end Price=V(1,1); 数据作图 S0 = 6; K = 5; T = 1; r = 0.05; sigma = 0.20; for M=1:100 type='call'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vec(M)=Price; end for M=1:100 type='put'; Price=EuroOption(S0,K,T,r,M,type,sigma); Vep(M)=Price; end for M=1:100 type='call'; Price=AmOption(S0,K,T,r,M,type,sigma); Vac(M)=Price; end for M=1:100 type= 'put'; Price=AmOption(S0,K,T,r,M,type,sigma);

期权定价二叉树多步推导

期权定价的二叉树模型 Cox、Ross和Rubinstein提出了期权定价的另一种常用方法-----二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。这里只讨论股票期权定价的二叉树模型 1一步二叉树模型 我们首先通过一个简单的例子介绍二叉树模型。 例1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18.股票价格的这种变动过程可通过图8.1直观表示出来。 在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。这是最简单的二叉树模型。 一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。经过一个时间步(至到期日T) 后该股票价格有可能上升到相应的期权价格为;也有可能下降到 相应的期权价格为.这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。我们的问题是根据这个二叉树对该欧式股票期权定价。 为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。如果该股票价格上升到 ,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到 期日的价值为。根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有 由此可得

bs期权定价与二叉树期权定价

第三节Black-Scholes期权定价模型一与期权定价有关的基本假设: (一).关于金融市场的基本假设 假设一:市场不存在摩擦.这就是说金融市场没有交易成本(包括佣金费用,买卖价差,税赋,市场冲击等),没有保证金要求,也没有买空的限制.提出市场无摩擦的假设在于简化金融资产定价的分析过程,其主要理由有以下两点:第一,对于大的金融机构来说,这一假设是一个较好的近似,因为他们的交易成本很低,他们在保证金要求和卖空方面受的约束很少,他们能够以买卖差的中间价进行交易等.由于金融机构是市场价格的制定者,所以从描述性角度出发,上述假设是一个较为现实的假设.第二,对于小的市场参与者来说,他们首先需要了解的是无摩擦条件下金融市场将如何运作.在此基础上,才能对复杂场合下的市场规律进行进一步深入分析.因此,从规范性角度出发,上述假设也是绝对必要的. 假设二:市场参与者不承担对家风险.这就是说,对于市场参与者所涉及的任何一个金融合同交易,合同对家不存在违约的可能. 假设三:市场是完全竞争的这就是说,金融市场上任何一位参与者都是价格的承受者,而不是价格的制定者.此假设被现代财务金融学普遍采纳,相当于一条标准的公理.任何参与者都可以根据自己的愿望买入和卖出任何数量的证券,而不至于影响该证券的市场价格.显然市场规模越大,竞争性市场假设就越接近于现实. 假设四:市场参与者厌恶风险,而且希望财富越多越好.

假设五:市场不存在套利机会.如果市场上存在套利的机会,价 格会迅速准确的进行调整,使得这种套利机会很快消失. (二).关于股利的假设 股利是影响期权价值的一个重要因素.不过,在研究期权定价问题时,股利是一个广义概念.首先,这一概念包含了通常意义上的股利,即发行标的股票公司向其股东定期支付的现金股利,我们称之为离散股利对于标的资产为股票的合同其大小一般用D 表示.一般来说,离散股利的支付发生在期权有效期内某些特定的时刻,它们往往是可以预先知道的.例如,公司将在每个季度末或每隔半年发放一定的股利.另一方面,对于标的资产为货币,股票指数,期货等的非股票期权来讲,所谓的的股利是指标的资产所有者在一段时间内,按一定的收益率所得到的报酬,如利息收入,因此它是一种连续的支付,我们称之为连续股利,其大小通常用股利支付率 二 模型假设与概述 (一)模型假设 Black 和Scholes 在推导B-S 模型时做了以下假设: (1)无风险利率r 已知,且为一个常数,不随时间变化. (2)标的资产为股票,其价格t s 的变化为一几何布朗运动,即 或者说,t s 服从正态分布 21/20exp{(0.5)},0t t s s t t e t T μσσ=-+<<……… 由(18)式容易得到 其中t e 为标准正态分布N(0,1),且不同时刻的t e 相互独立. (3)标的股票不支付股利.

相关主题