搜档网
当前位置:搜档网 › 人教版数学必修五知识点总结

人教版数学必修五知识点总结

人教版数学必修五知识点总结
人教版数学必修五知识点总结

第一章 解三角形

1、内角和定理:(1)三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角?任意两边的平方和大于第三边的平方.

2、正弦定理:2a b c R ===(R 为三角形外接圆的半径). C R c B R b A R a C B A c b a sin 2,sin 2,sin 2)2(;sin :sin :sin ::)1(====

)(3解三角形:已知三角形的几个元素求另外几个元素的过程。

???,可求其它元素已知两边和一边的对角

可求其它边和角已知两角和任意一边, 注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解.

3、余弦定理:?????-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(求边) 或 (求角)????

?????-+=-+=-+=ab c

b a C a

c b c a B bc a c b A 2cos 2cos 2cos 2222222

22 ??

???求其它已知两边和一边对角,已知三边求所有三个角已知两边一角求第三边(注:常用余弦定理鉴定三角形的类型). 4、三角形面积公式:R abc B ac A bc C

ab ah S a 4sin 2

1sin 21sin 2121=?????????==. 5、解三角形应用

(1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。

(2)从正北方向顺时针转到目标方向的水平角叫方位角。

(3)坡面与水平面所成的二面角度数的正切值叫做坡度。

(4)解斜三角形应用题的一般步骤:

分析→建模→求解→检验

第二章 数 列

1.数列的通项、数列的项数,递推公式与递推数列,数列的通项与数列的前n 项和公式的关系:{1

1,(1),(2)n n n S n a S S n -==-≥(必要时请分类讨论).

注意:112211()()()n n n n n a a a a a a a a ---=-+-++-+ ;121121

n n n n n a a a a a a a a ---=

???? . 2.等差数列{}n a 中:

(1)等差数列公差的取值与等差数列的单调性. .000R d d d d d ∈??

???→<→=→>的取值为,可知数列单调递减数列为常数列

数列单调递增 (2)1(1)n a a n d =+-()m a n m d =+-;p q m n p q m n a a a a +=+?+=+.

(3){}n n b a 21λλ+、{}n ka 也成等差数列.

(4)在等差数列{}n a 中,若.0),(,=≠==+n m n m a n m m a n a 则

(5)1211,,m k k k m a a a a a a ++-++++++ 仍成等差数列.

(6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22

n d d S n a n =+-,2121n n S a n -=-,。 {}{}.,,71212--=m m m m n n n n T S b a m b a T S 项之比

的前项和,则两数列第分别为等差数列)若( {}成等差数列。项和项和、后项和、中间为等差数列,则其前)若(m m m m m n S S S S S m m m a 232,,8--

(9)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;

“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和;

(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

3.等比数列{}n a 中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

(2)11n n a a q -=n m m a q -=; p q m n p q m n b b b b +=+??=?.

(3){}{}n n a b 、成等比数列{||}n a 、{}??????

n n a a 1,2

、{}n ka {}n n b a ,??????n n

b a 成等比数列.

(4)1211,,m k k k m a a a a a a ++-++++++ 成等比数列.

(5)111111 (1) (1)(1) (1) (1)1111n n n n na q na q S a a a a q a q q q q q q q q ==????==--??-+≠=≠??----??

. 特别:123221()()n n n n n n n a b a b a a b a b ab b ------=-+++++ .

{}成等比数列。项和项和、后项和、中间为等比数列,则其前)若(m m m m m n S S S S S m m m a 232,,6--

(7)“首大于1”的正值递减等比数列中,前n 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前n 项积的最小值是所有小于或等于1的项的积;

(8)有限等比数列中,若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.

(9)等比中项要么不存在,要么仅当实数,a b

同号时存在,且必有一对G =

(10)判定是否是等比数列的方法:定义法、中项法、通项法、和式法。

4.等差数列与等比数列的联系

(1)如果数列{}n a 成等差数列,那么数列{}n a A (n a

A 总有意义)必成等比数列.

(2)如果数列{}n a 成等比数列,那么数列{log ||}(0,1)a n a a a >≠必成等差数列.

(3)如果数列{}n a 既成等差又成等比,那么数列{}n a 是非零常数数列;但反之不成立。

(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式(三种形式),

②等比数列求和公式(三种形式),

③1123(1)2n n n ++++=+ ,22221123(1)(21)6

n n n n ++++=++ ,2135(21)n n ++++-= ,2135(21)(1)n n +++++=+ .

(2)分组求和法:常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法;(4)错位相减法;

(5)裂项相消法: ①111(1)1n n n n =-++, ②1111()()n n k k n n k =-++, 特别声明: 运用等比数列求和公式,务必检查公比与1的关系,必要时分类讨论.

三、不等式

1.(1)求不等式的解集,务必用集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式()()

()0≠>a a x g x f (移项通分,等价为分子分母相乘大于或小于0); (3)含有两个绝对值的不等式(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式ab b a 2≥+ 以及变式2

()2

a b ab +≤等求函数的最值时,务必注意a ,b +

∈R ,且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三相等).

3.

2211a b a b +≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222

a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)

4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质: a b 、同号或有0?||||||a b a b +=+≥||||||||a b a b -=-;

a b 、异号或有0?||||||a b a b -=+≥||||||||a b a b -=+.

6.不等式的恒成立问题

若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >

若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <

高中数学必修五知识点总结及例题学习资料

高中数学必修5知识点 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径, 则有 2sin sin sin a b c R A B C ===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;(边化角) ②sin 2a A R =,sin 2b B R =,sin 2c C R =;(角化边) ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++. 3、三角形面积公式:111 sin sin sin 222 C S bc A ab C ac B ?AB ===. 4、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc A =+-, 2222cos b a c ac B =+-, 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边, 则:①若222 a b c +=,则90C =;(.C A B C ?? 为直角为直角三角形) ②若2 2 2 a b c +>,则90C <;(.C A B C ??为锐角不一定是锐角三角形) ③若2 2 2 a b c +<,则90C >.(.C A B C ?? 为钝角为钝角三角形) 注:在C ?AB 中,则有 (1)A B C π++=,sin 0,sin 0,sin 0A B C >>>(正弦值都大于0) (2),,.a b c a c b b c a +>+>+>(两边之和大于第三边) (3)sin sin A B A B a b >?>?>(大角对大边,大边对大角) 7、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 8、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 9、常数列:各项相等的数列.11,.n n a a S na == 10、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 11、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 12、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.11()n n n n a a d a a d -+-=-= 13、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2 a c b += ,则

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高中数学必修五知识点详细解答附答案

姓名____________ 20XX 年____月_____日 第___次课 正、余弦定理 一。知识回顾:在初中我们知道:(1)在三角形中,大边对大角、大角对大边的边角关系; (2)在直角三角形中,sinA= a c ,sinB= b c ?c=sin a A ,c=sin b B ? sin a A =sin b B ,又Q sinC=1?sin a A =sin b B =sin c C 二。学习提纲: <一>.正弦定理: (1)概念:在一个三角形中,各边与它所对应角的正弦比相等,即: sin a A =sin b B =sin c C (2)证明: j r C ①几何证明法:(略,同学们自己证明) ②向量证明: 证明:(如图)当?ABC 为锐角三角形时, A B 过A 作单位向量j r ⊥AB u u u r ,则j r 与AB u u u r 的夹角为2π,j r 与BC uuu r 的夹角为2π-B ,j r 与CA u u u r 的夹角为2π +A ; 设AB=a,BC=c,AC=b. Q AB u u u r +BC uuu r +CA u u u r =0r ,∴j r g (AB u u u r +BC uuu r +CA u u u r )=j r g 0r ∴j r g AB u u u r +j r g BC uuu r +j r g CA u u u r =0 ∴|j r |g |AB u u u r |g cos 2π+|j r |g |BC uuu r |g cos(2π-B )+|j r |g |CA u u u r |g cos 2 π +A )=0 ∴asinB=bsinA,即:sin a A =sin b B 同理可得:sin b B =sin c C ,故:sin a A =sin b B =sin c C 当?ABC 为钝角三角形或直角三角形时,同样可证明得到:sin a A =sin b B =sin c C (3)正弦定理的变形: ①asinB=bsinA; csinB=bsinC; asinC=csinA; ②a :b:c=sinA:sinB:sinC ③ sin a A =sin b B =sin c C =2R (R 为?ABC 外接圆的半径) ?a=2RsinA; b=2RsinB; c=2RsinC ? sinA=2a R sinB=2b R sinC=2c R (二)余弦定理: (1)概念:三角形中任何一边的平方等于其他两边的平方的和减去这两边与他们的夹角的余弦的积的两倍,即: 2 a =2 b +2 c -2bccosA; 2 b =2 a +2 c -2accosB; 2 c =2 a +2 b -2abcosC 变形:2 sin A=2 sin B+2 sin C-2sinBsinCcosA 2 sin B=2 sin A+2 sin C-2sinAsinCcosB 2 sin C=2 sin A+2 sin B-2sinAsinBcosC 求角:cosA=2222bc b c a +- , cosB=2222c a c b a +-, cosC=222b 2a c ab +- 变形:cosA=222sin sin sin 2sin sin A B C A B +-,cosB=222sin sin sin 2sin sin A C B A C +-,cosC=222sin sin sin 2sin sin A B C A B +- (2)勾股定理:2 c =2a +2b 推广:A 为锐角→222a b c <+;A 为直角→222a b c =+;A 为钝角→222 a b c >+ (3)三角形的面积公式: ①ABC S ?=12ah ②ABC S ?=12absinC=12bcsinA=1 2 acsinB ③ABC S ?(p=12(a+b+c) ④ABC S ?=4abc R (4)对于任意的三角形,都有:sinA>0

人教版高中数学必修一至必修五知识点总结大全

高中数学必修一常用公式及结论归纳总结 1、集合的含义与表示 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。它具有三大特性:确定性、互异性、无序性。集合的表示有列举法、描述法。 描述法格式为:{元素|元素的特征},例如},5|{N x x x ∈<且 2、常用数集及其表示方法 (1)自然数集N (又称非负整数集):0、1、2、3、…… (2)正整数集N * 或N + :1、2、3、…… (3)整数集Z :-2、-1、0、1、…… (4)有理数集Q :包含分数、整数、有限小数等 (5)实数集R :全体实数的集合 (6)空集Ф:不含任何元素的集合 3、元素与集合的关系:属于∈,不属于? 例如:a 是集合A 的元素,就说a 属于A ,记作a ∈A 4、集合与集合的关系:子集、真子集、相等 (1)子集的概念 如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集(如图1),记作 B A ?或A B ?. 若集合P 中存在元素不是集合Q 的元素,那么P 不包含于Q , 记作Q P ? (2)真子集的概念 若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A (如图2). A ≠?B 或B ≠?A . (3)集合相等:若集合A 中的元素与集合B 中的元素完全相同则称集合A 等于集合B,记作A=B. 5、重要结论(1)传递性:若B A ? ,C B ?,则C A ? (2 )空Ф集是任意集合的子集,是任意非空集合的真子集. 6、含有n 个元素的集合,它的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个(即不计空集);非空的真子集有2n –2个. 7、集合的运算:交集、并集、补集 (1)一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的交集. 记作A ∩B (读作"A 交B "),即A ∩B={x|x ∈A ,且x ∈B }. (2)一般地,对于给定的两个集合A,B 记作A ∪B (读作"A 并B "),即A ∪B={x|x ∈A ,或x ∈B }. 图1) 或 (图2)

高二数学必修五知识点归纳

高二数学必修五知识点归纳 第一章解三角形 1、三角形的性质: ①.A+B+C=, AB2 C2 sin AB2 cos C2 ②.在ABC中, ab>c , ab<c ; A>BsinA>sinB, A>BcosA<cosB, a >b A>B ③.若ABC为锐角,则AB> ,B+C > ,A+C > a2b2>c2,b2c2>a2,a2+c2>b2 2、正弦定理与余弦定理:①. (2R为ABC外接圆的直径) a2Rsin A、b2Rsin B、c2RsinC sinA a2R

12 b2R 、 sinC 12 c2R 12 acsinB 面积公式:SABC absinC bcsinA ②.余弦定理:abc2bccosA、bac2accosB、cab2abcosC bca 2bc cosA、cosB ac b 2ac 222 、cosC abc

222 3第二章数列 1、数列的定义及数列的通项公式: ①. anf(n),数列是定义域为N 的函数f(n),当n依次取1,2,时的一列函数值② i.归纳法 若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm Snf(an) iv. 若Snf(an),先求a 1得到关于an1和an的递推关系式 Sf(a)n1n1Sn2an1 例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an Sn12an11 2.等差数列: ① 定义:a n1an=d(常数),证明数列是等差数列的重要工具。② 通项d0时,an为关于n的一次函数; d>0时,an为单调递增数列;d<0时,a n为单调递减数列。 n(n1)2 ③ 前nna1

高二语文必修五知识点总结

精心整理 高二语文必修五知识点总结 【一】 一、文言实词 (2)众人匹之 古义:一般人今义:多数人,大家 (3)虽然,犹有未树也。

古义:虽然这样今义:转折连词 (4)穷发之北 古义:毛,草木今义:头发 (5)小年不及大年 生物之以息相吹也(名词,气息) 4.词类活用 (1)名词用作动词。而后乃今将图南(往南飞)/奚以之九万里而南为(往南飞) (2)使动用法。德合一君(使……满意)/彼于致福者(使……到

来)/而徵一国者(使……信任)二、文言虚词 1.之 (1)助词,的。鹏之背,不知其几千里也/其翼若垂天之云(助词,的) 悲乎 /而彭祖乃今以久特闻 (3)连词,表并列。若夫乘天地之正,而御六气之辩 (4)连词,表承接。而控于地而已矣 3.则

(1)连词,就。海运则将徙于南冥 (2)连词,或者。时则不至 (3)连词,那么。则其负大舟也无力 4.然 (2)副词,还。彼且恶乎待哉 (3)副词,将要。且适南冥也 7.于 (1)介词,对于。彼其于世/彼其于世

(2)介词,在。覆杯水于坳堂之上 8.其 (1)用在选择问句中,或许……或说得过去,是……还是……其正色邪?其远而无所至极邪 ) ) ) 朝来暮去颜色故。(古义:容貌。今义:色彩。) 又闻此语重唧唧。(古义:叹息声。今义:一般指虫鸣。) 凄凄不似向前声。(古义:刚才。今义:朝着前面。) 河内凶,则移其民于河东。(古:黄河。今义:泛指河流。)

(古:谷物收成不好。今义:凶恶,厉害。) 弃甲曳兵而走。(古:逃跑。今义:行,走路。) 是使民养生丧死无憾也。(古:供养活着的人。今义:保养身体。) 五十者可以衣帛矣。(古:可以凭借。今义:表示同意、认可。) ) ) ) ) ) 赢粮而景从。(古:背负,担负。今义:获得,获胜。) 山东豪俊遂并起而亡秦族矣。(古:崤山以东。今义:山东省。) 古之学者必有师。(古:求学的人。今义:有专门学问的人。) 吾从而师之。(古:跟随并且。今义:表因果的连词。)

高一数学必修五知识点归纳

高一数学必修五知识点归纳 高一数学必修五知识点归纳 在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面是为大家整理的高一数学必修五知识点总结。希望对大家的学习有所帮助。 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性, (2)元素的互异性, (3)元素的无序性, 3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ?注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 1)列举法:{a,b,c} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R|x-3;2},{x|x-3;2}

3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.包含关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB 或BA 2.相等关系:A=B(55,且55,则5=5) 实例:设A={x|x2-1=0}B={-1,1}元素相同则两集合相等 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) ③如果A?B,B?C,那么A?C ④如果A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集

高中数学必修一至必修五知识点总结

必修1 第一章集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A 二、集合间的基本关系 任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且B?A那就说集合A是集合B的真子集,记作A?B(或B?A) 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.(即找公 共部分)记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。(即A和B中所有的元素)记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(即除去A剩下的元素组成的集合) 四、函数的有关概念

定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 4.了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量a,b,当a

数学必修五知识点

高中数学必修5知识点 第一章、数列 一、基本概念 1、数列:按照一定次序排列的一列数. 2、数列的项:数列中的每一个数. 3、数列分类:有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项 的数列. 4、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 5、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 二、等差数列 1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一 个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或 2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-. 通项公式的变形:①()n m a a n m d =+-;②n m a a d n m -=-. 通项公式特点:1()n a d n a d =+- ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 3、等差中项 若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2 a c b +=,则 称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2 a c b += 4、等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 (1)q p n m a a a a q p n m +=++=+,则若。 (2)d m n a a m n )(-=- (3)m n m n n a a a +-+=2

数学必修五第三章不等式知识点总结

数学必修五 第三章 不等式 一、知识点总结: 1、 比较实数大小的依据:①作差:0a b a b ->?>;0a b a b -=?=;0a b a b ->>?>时,1a a b b =?=,1a a b b ?<时,,1a a b b =?=,1a a b b 2、 不等式的性质 3、一元二次不等式的解法步骤:①将不等式变形,使一端为0且二次项的系数大于0;②计算相应的判别式;③当0?≥时,求出相应的一元二次方程的根;④根据对应二次函数的图象,写出不等式的解集。(大于0取两边,小于0取中间).含参数的不等式如20(0)ax bx c a ++>≠解题时需根据参数的取值范围依次进行分类讨论:①二次项系数的正负;②方程20(0)ax bx c a ++=≠中?与0的关系;③方程20(0)ax bx c a ++=≠两根的大小。 4、一元二次方程根的分布:一般借助二次函数的图象加以分析,准确找到限制根的分布的等价条件,常常用以下几个关键点去限制:(1)判别式;(2)对称轴;(3)根所在区间端点函数值的符号。设12,x x 是实系数一元二次方程20(0)ax bx c a ++=>的两个实根,则12,x x 的分布情况列表如下:(画出函数图象并在理解的基础上记忆)

5、一元高次不等式()0f x >常用数轴穿根法(或称根轴法、区间法)求解,其步骤如下:①将()f x 最高次项的系数化为正数;②将()f x 分解为若干一次因式或二次不可分解因式的积;③将每一个根标在数轴上,从右上方向下依次通过每一点画曲线(注意重根情况,偶重根穿而不过,奇重根既穿 又过);④根据曲线显现出的符号变化规律,写出不等式的解集。 6、简单的线性规划问题的几个概念:①线性约束条件:由关于,x y 的二元一次不等式组成的不等式组是对,x y 的线性约束条件;②目标函数:要求最值的关于,x y 的解析式,如:22z x y =+,

人教版高中数学必修五知识点总结

必修5 第一章 解三角形 一、正弦定理 1.定理 2.sin sin sin a b c R A B C === 其中a ,b ,c 为一个三角形的三边,A ,B ,C 为其对角,R 为外接圆半径. 变式:a =2R sin A ,b =2R sin B ,c =2R sin C 二、余弦定理 1.定理 a 2= b 2+ c 2-2bc cos A 、b 2=a 2+c 2-2ac cos B 、c 2=a 2+b 2-2ab cos C 变形:222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222 cos 2a b c C ab +-= 2.可解决的问题 ①已知三边,解三角形; ②已知两边及其夹角,解三角形; ③已知两边及一边的对角,求第三边.

三、三角形面积公式 (1)111 222 a b c S ah bh ch ?===. 其中h a ,h b ,h c 为a ,b ,c 三边对应的高. (3)如果一个数列已给出前几项,并给出后面任一项与前面的项之间关系式,这种给出数列的方法叫做递推法,其中的关系式称为递推公式. (4)一个重要公式:对任何数列,总有 111, (2). n n n a S a S S n -??? ??==-≥ 注:数列是特殊的函数,要注意数列与函数问题之间的相互转化. 二、等差数列 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做数列的公差. (2)递推公式:a n +1=a n +d . (3)通项公式:a n =a 1+(n -1)d . (4)求和公式:11()(1).22 n n n a a n n S na d +-==+ (5)性质:

北师高中数学必修五知识点归纳(纯)

必修5知识点 第一章 解三角形 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的 半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 4、余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > . —1—

第二章 数列 7、数列:按照一定顺序排列着的一列数. 8、数列的项:数列中的每一个数. 9、有穷数列:项数有限的数列. 10、无穷数列:项数无限的数列. 11、递增数列:从第2项起,每一项都不小于它的前一项的数列. 12、递减数列:从第2项起,每一项都不大于它的前一项的数列. 13、常数列:各项相等的数列. 14、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 15、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 16、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 17、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 18、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差 中项.若2 a c b +=,则称b 为a 与 c 的等差中项. 19、若等差数列 {}n a 的首项是1 a ,公差是d ,则()11n a a n d =+-. 20、通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③1 1 n a a d n -=-; ④1 1n a a n d -=+;⑤n m a a d n m -=-. 21、若{}n a 是等差数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若{} n a 是等差数列,且2n p q =+(n 、p 、*q ∈N ),则2n p q a a a =+. —2—

人教版数学必修五知识点总结教学教材

第一章 解三角形 1、内角和定理:(1)三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2)锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角?任意两边的平方和大于第三边的平方. 2、正弦定理:2sin sin sin a b c R A B C ===(R 为三角形外接圆的半径). C R c B R b A R a C B A c b a sin 2,sin 2,sin 2)2(;sin :sin :sin ::)1(==== ) (3解三角形:已知三角形的几个元素求另外几个元素的过程。 ???,可求其它元素已知两边和一边的对角 可求其它边和角已知两角和任意一边, 注意:已知两边一对角,求解三角形,若用正弦定理,则务必注意可能有两解. 3、余弦定理:?????-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222(求边) 或 (求角)???? ?????-+=-+=-+=ab c b a C a c b c a B bc a c b A 2cos 2cos 2cos 2222222 22 ?? ???求其它已知两边和一边对角,已知三边求所有三个角已知两边一角求第三边(注:常用余弦定理鉴定三角形的类型). 4、三角形面积公式:R abc B ac A bc C ab ah S a 4sin 2 1sin 2 1sin 2121=?????????==. 5、解三角形应用 (1)在视线和水平线所成的角中,视线在水平线上方的角叫仰角;视线在水平线下方的角叫俯角。 (2)从正北方向顺时针转到目标方向的水平角叫方位角。 (3)坡面与水平面所成的二面角度数的正切值叫做坡度。 (4)解斜三角形应用题的一般步骤: 分析→建模→求解→检验

高一数学必修五数列知识点

高一数学必修五数列知识点 1.数列的函数理解: ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的 观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解 析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。 ③函数不一定有解析式,同样数列也并非都有通项公式。 2.通项公式:数列的第N项an与项的序数n之间的关系可以用 一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。 数列通项公式的特点: (1)有些数列的通项公式可以有不同形式,即不唯一。 (2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。 3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 数列递推公式特点: (1)有些数列的递推公式可以有不同形式,即不唯一。 (2)有些数列没有递推公式。 有递推公式不一定有通项公式。 注:数列中的项必须是数,它可以是实数,也可以是复数。 1、ABC的三边a,b,c既成等比数列又成等差数列,则三角 形的形状是()

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形 2、在等比数列{an}中,a6a5a7a548,则S10等于() A.1023 B.1024 C.511 D.512 3、三个数成等比数列,其积为1728,其和为38,则此三数为() A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36 4、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于() A.0 B.15 C.30 D.60 5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是()a4 A.1 B.2 C.3 D.4 6、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是() A.29% B.30% C.31% D.32% 7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

人教版数学必修五知识点总结

一、三角形中的三角函数 (1)内角和定理:三角形三角和为π,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形?三内角都是锐角?三内角的余弦值为正值?任两角和都是钝角?任意两边的平方和大于第三边的平方. (2)正弦定理:2a b c R ===(R 为三角形外接圆的半径). 注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解. (3)余弦定理:22222222 ()2cos ,cos 122b c a b c a a b c bc A A bc bc +-+-=+-==-等,常选用余弦定理鉴定三角形的类型. (4)面积公式:11sin 224a abc S ah ab C R ===. 二、数 列 1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前n 项和公式的关系:{11,(1),(2) n n n S n a S S n -==-≥(必要时请分类讨论). 注意:112211()()()n n n n n a a a a a a a a ---=-+-++-+ ;121121 n n n n n a a a a a a a a ---= ???? . 2.等差数列{}n a 中: (1)等差数列公差的取值与等差数列的单调性. (2)1(1)n a a n d =+-()m a n m d =+-;p q m n p q m n a a a a +=+?+=+. (3)1(1){}n k m a +-、{}n ka 也成等差数列. (4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211,,m k k k m a a a a a a ++-++++++ 仍成等差数列. (6)1()2n n n a a S +=,1(1)2n n n S na d -=+,21()22 n d d S n a n =+-,2121n n S a n -=-,()(21)n n n n A a f n f n B b =?=-.

高中数学必修五知识点公式总结讲解学习

必修五数学公式概念 第一章 解三角形 1.1 正弦定理和余弦定理 1.1.1 正弦定理 1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin sin a b c A B C ==. 正弦定理推论:① 2sin sin sin a b c R A B C ===(R 为三角形外接圆的半径) ②2sin ,2sin ,2sin a R A b R B c R C === ③sin sin sin ,,sin sin sin a A b B a A b B c C c C === ④::sin :sin :sin a b c A B C = ⑤sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++ 2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。任何一个三角形都有六个元素:三条边),,(c b a 和三个内角),,(C B A .在三角形中,已知三角形的几个元素求其他元素的过程叫做解三角形。 图 形 关 系 式 解 的 个 数 A 为 锐 角 ①sin a b A = ②a b ≥ 一 解 sin b A a b << 两 解 sin a b A < 无 解 A 为钝角或直角 b a > 一 解 b a ≤ 无 解 4、任意三角形面积公式为:

2111sin sin sin 2224( )( )( )()2sin sin sin 2 ABC abc S bc A ac B ab C R r p p a p b p c a b c R A B C ==== =---=++=V 1.1.2 余弦定理 5、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即 2222cos a b c bc A =+-,222 2cos b a c ca B =+-,2 2 2 2cos c a b ab C =+-. 余弦定理推论:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 15° 75° 105° 165° αsin 426- 42 6+ 42 6+ 4 2 6- αcos 42 6+ 42 6- 4 2 6+- 4 2 6+- αtan 32- 32+ 32-- 32+- 1.2 应用举例 1、方位角:如图1,从正北方向顺时针转到目标方向线的水平角。 2、方向角:如图2,从指定线到目标方向线所成的小于90°的水平角。(指定方向线是指正北或正南或正西或正东) 3、仰角和俯角:如图3,与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角。 (1)方位角 (2)方向角 (3)仰角和俯角 (4)视角 4、视角:如图4,观察物体的两端,视线张开的角度称为视角。 5、铅直平行:于海平面垂直的平面。 6、坡角与坡比:如图5,坡面与水平面所成的夹角叫坡角,坡面的铅直高度与水平宽度的比叫坡比h i l ?? = ??? . (5)坡角与坡比

数学必修五知识点总结归纳

必修五知识点总结归纳 (一)解三角形 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外 接圆的半径,则有 2sin sin sin a b c R C ===A B . 正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB =A ==B . 3、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 4、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 5、射影定理:cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+ 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则:①若2 2 2 a b c +=,则90C = ; ②若2 2 2 a b c +>,则90C < ;③若222a b c +<,则90C > . (二)数列 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数.

相关主题