搜档网
当前位置:搜档网 › 工业废水中铊的化学形态

工业废水中铊的化学形态

工业废水中铊的化学形态
工业废水中铊的化学形态

本页面为作品封面,下载文档后可自由编辑删除!

环境保护

单位:

姓名:

时间:

工业废水中铊的化学形态

1试验方法

用移液管准确移取50mL废水样品于100mL烧杯中,加5mL浓硝酸,盖上表面皿,加热样品至95℃,回流30min,然后开盖加热蒸至5mL。冷却,过滤,用硝酸溶液(1+99)定容至50mL得待测样品。然后吸取20μL待测样品和5mLPd(NO3)2/Mg(NO3)2混合试剂以及1mL(NH4)2S O4溶液进行石墨炉原子吸收法直接测定铊含量。1.3仪器测定条件测定波长276.8nm,光谱通带宽度0.7nm,灯电流8.0mA。进样20μL

待测液。仪器工作升温程序如表1所示。

2结果与讨论

2.1工业废水中铊的化学形态铊在自然水体中主要以Tl(Ⅰ)和Tl (Ⅲ)化学形态存在。如Tl(Ⅰ)在海水、河水和地表水中占溶解性铊的68%~96%,在酸性废水中Tl(Ⅰ)占98%的溶解态铊[9]。在pH6.5~ 8.5的自然水体中,以自由离子形态存在的Tl(Ⅰ)的比例达到77%~9 0%,而在强酸的水体中则以有机络合物形式存在的Tl(Ⅰ)的比例为6 8%~96%[9]。因此水体中铊的化学形态主要是以无机Tl(Ⅰ)形式存在。

2.2灰化温度的选择在升温程序的步骤3中,灰化阶段的目的是除去待测样品中共存的基体,减少基体对测定铊的干扰。图1为原子化温度为1600℃的条件下,不同的灰化温度对吸光度的影响。由图1

可知,灰化温度在800℃时的吸光度最大,故确定最佳的灰化温度为800℃。

2.3原子化温度的选择在升温程序的步骤4中,原子化阶段的目的是使待测样品中铊元素转变成基态原子。图2为灰化温度为800℃的条件下,不同的原子化温度对吸光度的影响。由图2可知,原子化温度在1600℃时的吸光度最大,故确定最佳的原子化温度为1600℃。

2.4基体改进剂的选择为了提高测定过程中的灰化温度和原子化

温度,硝酸钯/硝酸镁混合基体改进剂可使铊和基体得到有效分馏,从而达到降低基体对铊的干扰。同时为了消除氯的干扰,硫酸铵使氯化物提前分解生成氯原子而挥发,避免生成氯化铊,可有效地消除氯对铊的干扰。图3为基体改进剂对灰化温度和原子化温度的影响。由图3可知,加入基体改进剂后,最大灰化温度由600℃升至800℃,最大原子化温度由1300℃升至1600℃。因此确定基体改进剂为硝酸钯/硝酸镁/硫酸铵混合试剂。

2.5标准曲线、检出限按试验方法对0,10.0,20.0,30.0,40.0,50.0μg/L铊标准溶液进行测定,其线性回归方程为y=0.0056x+0.0 053,相关系数r为0.999。按照试验全部分析步骤,对10份空白进行测定,以标准偏差的3倍所对应的铊浓度表示检出限,计算出铊的检出限为1.96μg/L。

2.6加标回收率实验按试验步骤测定工业废水水样中的铊含量,并在铊回收试验过程中加入本底值0.5~1.0倍左右的铊标准溶液进行

加标回收率试验,每组测定平行测定7份,结果见表2。

3结论

皮革废水及处理工艺(水污染处理)

皮革废水及处理工艺(水污染处理)

皮革废水 随着皮革工业的迅速发展, 制革废水已经成为主要的污染源之一。目前我国有大中小型皮革厂20000 余家, 年排放废水量达8000~ 12000 万吨, 约占全国工业废水总量的0. 3% 。这些废水中排放的Cr 约3500 吨, SS悬浮物12 万吨, COD 为18 万吨,BOD 为7 万吨。因此, 如何治理制革废水, 优化生态环境, 促进皮革工业的可持续发展是皮革行业亟待解决的迫切问题。 1、皮革废水的来源及特点 1. 1 皮革废水的来源 皮革生产过程中产生的废水主要来自鞣前工段(包括浸水去肉、脱毛浸灰、脱灰软化工序)、鞣制工段(包括浸酸、鞣制工序)、整饰工段(包括复鞣、中和、染色、加脂工序)。鞣前工段是皮革污水的主要来源, 污水排放量约占皮革废水

总量的60% 以上,污染负荷占总排放量的70% 左右; 鞣制工段污水排放量约占皮革废水总量的5% 左右, 整饰工段污水排放量则占30%左右。 皮革废水主要来源于这三个工段,产生各环节主要污染物如下表: 工段工序主要污染物 准备工段 原皮水洗SS、COD、Cl- 浸水COD、Cl- 去肉脱脂S2-、COD、油脂脱毛、浸灰S2-、COD、油脂 鞣制工段 脱灰pH、SS、COD、Cl-、NH3-N 软化SS、COD、盐 水洗COD、油脂 浸酸、脱脂PH、COD、脂肪鞣制pH、COD、Cr、中性盐、色度复鞣pH、COD、Cr3+、中性盐 中和COD 染色SS、COD、色度 加脂COD、油脂 整饰工段 挤水COD、油脂 喷涂COD

COD:化学需氧量又称化学耗氧量(Chemical Oxygen Demand)。 利用化学氧化剂(如高锰酸钾)将水中可氧化物质(如有机物、亚硝酸盐、亚铁盐、硫化物等)氧化分解,然后根据残留的氧化剂的量计算出氧的消耗量。 BOD:生化需氧量或生化耗氧量【五日化学需氧量】(Biochemical Oxygen Demand)。 水中有机物等需氧污染物质含量的一个综合指示。即水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。 SS:即水质中的悬浮物,(Suspended Substance)。 1.2 皮革废水的主要特点 含有高浓度的S2-和Cr3+ , S2- 全部来自脱毛浸灰, 含量一般在2000 ~ 3000

地球化学模型在土壤重金属形态研究中的应用进展

地球化学模型在土壤重金属形态研究中的应用进展 摘要:重金属进入自然环境中之后会在土壤、沉积物和地表水体中经历吸附-解吸、沉淀-溶解和氧化-还原等各种迁移转化过程,导致其赋存形态多样,进而影 响其化学活性、迁移性和生物有效性等,因此重金属的形态研究对其风险评估和环境质量标准的制定有着重要意义。 关键词:地球化学形态模型;土壤;重金属形态;研究;应用进展 一、地球化学形态模型的发展 地球化学形态模型即基于所研究体系中各组分全部化学反应的热力学平衡常数,考虑反应过程中的物料平衡、质量平衡和电荷平衡,通过计算获得各物质形态浓度的方法。虽然人们很早就认识到可用此方法计算物质的形态浓度,但由于环境体系中涉及反应众多,直到计算机出现,大规模的形态计算才成为可能。 20世纪60—70年代,以MICROQL为代表的地球化学平衡计算程序被开发使用,形态计算开始应用于水环境领域。到了80—90年代,描述离子在矿物表面 吸附行为的表面络合模型快速发展;90年代以后,一些代表性SCM模型,如双 电层模型、广义双电层模型、电荷分配-多点位表面配合模型等逐渐完善;同时也出现了WHAM、SHM等一批优秀的描述离子在天然有机质表面吸附行为的热力学模型。这些表面络合模型极大地充实了地球化学形态模型。 同时,一些热力学数据库也逐渐形成和完善,如国际纯粹及应用化学协会的关键数据库、美国国家标准技术局的标准数据库、联合专家形态系统的热力学数据库等,这些数据库包含化学形态变化涉及的化学计量关系、平衡常数、反应焓变等相关参数,可以编入形态计算软件。在此基础上,一批涵盖了水相络合、吸附-解吸、沉淀-溶解、溶解-挥发、氧化-还原等众多过程的计算程序被相继开发应用,如MINETEQ、ECOSAT、CHEAQS等。进入21世纪之后,一方面,借助现代 表征技术手段,如EXAFS等,表面络合模型的参数和结构更趋细化;另一方面,结合了多介质多界面的综合模型数据库逐渐充实,使用地球化学模型预测复杂环境体系中离子的形态成为可能。 二、地球化学模型在土壤重金属形态研究中应用进展 (一)多表面形态模型 地球化学形态模型最初主要应用于水环境中离子的形态计算,但随着重金属在各固相胶体表面SCM模型的发展和完善,吸附常数的不断充实,现逐渐开始应用于预测复杂体系(如土壤环境)中重金属形态。Weng等最早采用“多表面模型”来描述Cu、Cd、Pb、Zn、Ni在砂性土壤中的吸附行为。该模型将重金属在土壤 中的吸持视为其在各个固相胶体组分上吸附作用的加和,同时考虑溶液相中发生的有机/无机络合作用,以及矿物溶解平衡过程等,以此来描述重金属在土壤中的形态分布。 在对重金属的固-液相间分配行为研究过程中,相较于传统的经验式多元回归模型,多表面模型基于化学热力学平衡计算,模型参数不受Ph、离子强度和其他竞争离子等条件影响,因此更具有普适性。Groenenberg等比较了经验回归模型 和多表面形态模型对As、Ba、Cd、Co、Ni、Pb、Sb和Zn多种元素在土壤环境中溶解性的预测效果,结果表明经验回归模型只有在获得回归方程的土壤类型和环境条件范围中才会有较好的表现,而多表面模型则可以将应用范围推广至更宽泛的环境条件下。 目前常用的可进行多表面模型计算的化学形态软件包括Keizer的ECOSAT,

土壤中重金属形态分析方法

土壤中重金属形态分析方法 赵梦姣 (湖北理工学院环境科学与工程学院) 摘要:介绍了土壤重金属的形态及各种分析方法, 重点说明了土壤中重金属形态分布及影响因素;讨论了影响土壤环境中重金属形态转化的因素, 重金属形态与重金属在土壤中的迁移性、可给性、活性的关系, 重金属污染土壤修复与重金属形态分布的关系。形态分析在一定程度上反映自然与人为作用对土壤中重金属来源的贡献, 并反映重金属的生物毒性。 关键词: 土壤; 重金属; 形态分析;分析方法 自20 世纪70 年代以来重金属污染与防治的研究工作备受关注,目前重金属污染物已被众多国家列为环境优先污染物。重金属的总量往往很难表征其污染特性和危害,环境中重金属的迁移转化规律、毒性以及可能产生的环境危害更大程度上取决于其赋存形态[1],不同的形态产生不同的环境效应。土壤的重金属污染是当今面积最广、危害最大的环境问题之一,其所含的重金属可以通过食物链被植物、动物数十倍的富集[2], 但土壤中的重金属的毒性不仅与其总量有关, 更大程度上由其形态分布所决定。环境中重金属的迁移性、生物有效性及生物毒性与重金属污染物在土壤中的存在形态有关, 因此, 土壤中的重金属形态分析已成为现代分析化学特别是环境分析化学领域的一个热门研究方向。

1重金属的形态及形态分析方法 根据国际纯粹与应用化学联合会的定义,形态分析是指表征与测定的一个元素在环境中存在的各种不同化学形态与物理形态的过程[3]。形态分析的主要目的是确定具有生物毒性的重金属含量,当所测定的部分与重金属生物效应或毒性一致时,形态分析的目的就可实现。重金属形态是指重金属的价态、化合态、结合态和结构态4个方面,由于土壤化学结构复杂及各种影响因素复杂多变,对土壤中的重金属形态分析,与水环境中重金属的分析方法:如溶出伏安法、离子选择电极法不同,土壤中重金属大多采用连续提取的形态分析方法对样品进行浸提和萃取,然后用原子吸收光谱法测定提取液中的每种形态重金属的浓度,许多学者关于土壤中重金属形态提出了不同的方法。FORSTNER[4]则提出了7步连续提取法,将重金属形态分为交换态、碳酸盐结合态、无定型氧化锰结合态、有机态、无定型氧化铁结合态、晶型氧化铁结合态、残渣态; SHUMAN[5]将其分为交换态、水溶态、碳酸盐结合态、松结合有机态、氧化锰结合态、紧结合有机态、无定形氧化铁结合态和硅酸盐矿物态8种形态;为融合各种不同的分类和操作方法,CAMBRELL[6]认为土壤中重金属存在7种形态,即水溶态、易交换态、无机化合物沉淀物、大分子腐殖质结合态、氧化物沉淀吸收态、硫化物沉淀态和残渣态;而具有代表性的形态分析方法是由TIESSER等人提出的[7]。将土壤或者沉积物中的金属元素分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态与残渣态。在TIESSER方法的基础上,欧共体标准物质局(European

研究制革工业废水特点

制革工业是目前重点污染行业之一,废水年排放非常大,本文根据废水的组成特点及治理现状进行研究说明 废水的组成与特点 目前制革工业生产一般包括脱脂、浸灰脱毛、软化、鞣制、染色加工、干燥、整饰等几个工段,加工过程中需要添加多种化学品,从而使得废水中含有油脂、胶原蛋白、动植物纤维、有机无机固形物、硫化物、铬、盐类、表面活性剂、染料等多种污染物质和有毒物质。制革工业综合废水的水质特性为:ρ(CODcr)为3000—4000mg/L,ρ(BOD5)为1000—2000mg/L,ρ(SS)为2000—4000mg/L,pH值为8-11。 废水主要来源于鞣前准备,鞣制和其他湿加工工段。污染最重的是脱脂废水、浸灰脱毛废水、铬鞣废水,这3种废水约占总废水量的50%,但却包含了绝大部分的污染物,各种污染物占其总量的质量分数为:CODcr80%,BOD575%,SS70%,硫化物93%,氯化钠50%,铬化合物95%。 制革废水的特点表现在以下几方面 ①水质水量波动大; ②可生化性好; ③悬浮物浓度高,易腐败,产生污染量大; ④废水含S2-和铬等有毒化合物。 制革废水由强碱性的浸灰脱毛废水和弱酸性的鞣革废水组成。前者含有高浓度的氯化物,硫化物,表面活性剂,防腐剂,油脂,蛋白质及SS等污染物;后者含有高浓度的鞣料,化学助剂及染料等。制革混合废水呈碱性,有毒,难降解物质含量高,外观污浊,气味难闻。废水排放量大;水量随时间变化大;水质差别大;污染物浓度高,成分复杂。 制革废水零排放设备在结构上采用模块化、系列化设计,集除脂模块和生物处理装置于一体,安装运输方便。工艺上采用简单高效、耐冲击负荷能力强的活性污泥法和多元公司研制的高效零速气浮相结合的工艺,可去除各种形态的污染物,处理效果稳定可靠。 以上污废水处理工艺能够有效的去除制革废水中去除大分子、有毒物质、胶体物质等难降解物质,制革废水零排放设备运行过程噪声小,运行成本低。

分析化学期末复习资料

第一章 绪论 1. 分析化学包括:定量分析,定性分析,结构分析(形态分析) 2. 定性分析的对象包括:样本,分析物 3. 按样本大小可分为:常量分析(固:>100mg ,液:>10mL ),半微量分析(固:10~100mg ,液:1~10mL ),微量分析(固:~10mg ,液:~1mL ) 4. 按分析物在样品中所占含量可分为:主要(常量)组分分析(>1%),微量组分分析(~1%),痕量组分分析(<%) 第二章 误差及分析数据的统计处理 1. 误差:测定值与真值之间的差值。 2. 绝对误差:E=T X - 3. 相对误差:Er= ?-T T X 100% 4. 准确度:测定平均值与真值接近的程度,常用误差大小表示。误差小,准确度高。 5. 偏差:个别测定结果与几次测定结果的平均值之间的差值。 6. 绝对偏差:di =Xi-X 7. 相对偏差:dr = ?-X X Xi 100% 8. 相对平均偏差:??-= ∑X n X Xi dr 100% 9. (样本)标准偏差:s= () 1 -n X -Xi n 1 i 2 ∑= 10. 精密度:在相同条件下,多次重复测定值相互符合的程度,常用偏差大小表示。 11. 实验结果首先要求精密度高,才能保证有准确的结果,但高的精密度不一定能保证有高的准确度。(如无系统误差存在,则精密度高,准确度也高) 12. 校正系统误差(准确度,误差)的方法:改进方法,校正仪器,对照实验,

空白实验,回收率实验 13. 校正随机(偶然)误差(精密度,偏差)的方法:增加测定次数 14. 随机误差大,系统误差不一定大 15. 可疑值的取舍:G 检验(书p17)(G= s X X i -,s :标准偏差),Q 检验(p18) 16. 平均值的置信区间(p14):n s t X ?± =μ(t :查表可得,n ;测定次数) 17. 判断两组数据精密度是否有差异(p19):F 检验(与偏差有关)(F=22 s s 小 大) 18. 比较某测定值与标准值有无显著性差异(p19):t 检验(与误差有关) [t= n s X ?-μ(μ:标准值)] 19. 有效数字: 1)pH 、pM 、pKa 、pKb 、lgK 等有效数字位数,按小数点后的位数来算(书p23; eg :pKa=,则Ka=510-?都是2位有效数字) 2)修约规则:“四舍六入五留双”&“奇进偶舍(倒数第二位为5时)”(书p23) 3)运算规则:加减法:先计算后修约,与小数点后位数最少的相同;乘除法: 结果的有效数字位数与所有数中有效数字位数最少的相同 4)实验中数据统计中的有效数字:万分之一天平(保留到小数点后4位);滴定 管(小数点后2位);移液管(小数点后2位);标准溶液浓度(小数点后4位);高含量组分>10%(小数点后4位);中含量组分1~10%(小数点后3位);微量组分<1%(小数点后2位) 第三章 滴定分析 1. 滴定分析法按原理分:氧化还原滴定法,酸碱滴定法,配位(络合)滴定法,沉淀滴定法 2. 按实验方法分:直接滴定法,间接滴定法,置换滴定法,返滴定法 3. 直接滴定法:使用一种标准溶液 eg :NaOH 滴定HAc

镉污染,环境化学

一、影响重金属在土壤—植物体系中迁移的理化性质 (一)pH pH的大小显著影响土壤中重金属离子的存在形态和土壤对重金属的吸附量。由于土壤胶体一般带负电荷,而重金属在土壤中大多以阳离子形式存在,因此,一般来说,土壤pH越低,H+越多,重金属被解吸得越多,其活动性就越强,从而加大了土壤中重金属向生物体内迁移的数量。如pH=4时,土壤中镉的溶出率超过50%;当pH达到7.5时,镉就很难溶出;pH>7.5时,94%以上的水溶态镉进入土壤中,这时的镉主要以粘土矿物和氧化物结合态及残留态形式存在。 Cd(OH)2 = Cd2+ + 2OH- (Ksp = 2.0×10-14) [Cd2+][OH-]2 = 2.0×10-14 [Cd2+] = 2.0×10-14/ 1.0×10-14/ [H+]2 log[Cd2+] = 14.3–2pH 因此,[Cd2+] 随pH 值的升高而减少.反之,pH 值下降时土壤中重金属就溶解出来,这就是酸性土壤作物受害的原因。但对部分主要以阴离子状态存在的重金属来说,则正好相反。 (二)土壤质地 土壤质地影响着颗粒对重金属的吸附,一般来说,质地粘重的土壤对重金属的吸附能力强,降低了重金属的迁移转化能力。如小麦盆栽试验结果表明,随着土壤质地的改变,即从砂壤→轻壤→中壤→重壤→粘土,麦粒对汞的吸收率呈规律性减少。 (三)土壤的氧化还原电位 土壤的氧化还原电位影响重金属的存在形态,从而影响重金属化学行为,迁移能力及对生物的有效性。一般来说,在还原条件下,很多种金属易产生难溶的硫化物,而在氧化条件下,溶解态和交换态含量增加。但以阴离子状态存在的砷的情况正好相反。对某些重金属来说,在不同的氧化还原条件下,不同价态的化合物的溶解性和毒性显著不同。以镉为例,CdS是难溶物质,但在氧化条件下CdSO4的溶解度要大很多。而实验发现镉对水稻生长的抑制与镉的溶解度有关。 (四)土壤中有机质含量 土壤中有机质含量影响土粒对重金属的吸附能力和重金属的存在状态,有机质含量较高的土壤对重金属的吸附能力高于有机质低的土壤。研究表明,重金属各组分占全量比例一般与有机质含量的大小没有密切关系。如土壤剖面中,水溶性硒含量随剖面深度的增加而迅速降低,与有机质变化趋势一致。 二、镉(Cd)的土壤污染 地壳中镉的含量一般为0.18 mg/kg,土壤背景值大体为0.06~0.7 mg/kg。我国未污染的土壤含镉量一般低于1 mg/kg,某些污染地区土壤含镉量可达10 mg/kg。 农业土壤中镉污染的来源主要是含镉污水灌溉、含镉污泥的施用以及大气中含镉飘 尘的沉降。 土壤中镉的迁移转化,受pH、Eh、CEC、有机质的含量和黏土类型的影响。

重金属在水体中的存在形态及污染特征分析

重金属在水体中的存在形态及污染特征分析 摘要阐述了重金属在水体中的存在形态类型及迁移性质,介绍了重金属迁移规律的研究方法,并分析了重金属在水体中的污染特征。 关键词重金属;水体;存在形态;迁移规律;污染特征 1重金属在水体中的存在形态 1.1存在形态的类型 要分析污染物在水体中的迁移转化规律,首先就要了解污染物在水体中以何种形式存在以及各存在形态之间的关系,对重金属污染物的研究也不例外。汤鸿霄提出“所谓形态,实际上包括价态、化合态、结合态和结构态4个方面,有可能表现出来不同的生物毒性和环境行为”,这里所分析的存在形态主要指重金属在水体中的结合态。水体中重金属存在形态可分为溶解态和颗粒态,即用0.45μm滤膜过滤水样,滤水中的为溶解态(溶解于水中),原水样中未过滤的为颗粒态(包括存在于悬移质中的悬移态及存在于表层沉积物中的沉积态)。用Tessier等[1]提出的逐级化学提取法又可将颗粒态重金属继续划分为以下5种存在形态:一是可交换态,指吸附在悬浮沉积物中的黏土、矿物、有机质或铁锰氢氧物等表面上的重金属;二是碳酸盐结合态,指结合在碳酸盐沉淀上的重金属;三是铁锰水合氧化物结合态,指水体中重金属与水合氧化铁、氧化锰生成结合的部分;四是有机硫化物和硫化物结合态,指颗粒物中的重金属以不同形式进入或包括在有机颗粒上,同有机质发生螯合或生成硫化物;五是残渣态,指重金属存在于石英、黏土、矿物等结晶矿物晶格中的部分。 1.2迁移性质 不同存在形态的重金属在水体中的迁移性质不同。溶解态重金属对人类和水生生态系统的影响最直接,是人们判断水体中重金属污染程度的常用依据之一。颗粒态重金属组成复杂,其形态性质各不相同。可交换态是最不稳定的,只要环境条件变化,极易溶解于水或被其他极性较强的离子交换,是影响水质的重要组成部分;碳酸盐结合态在环境变化,特别是pH值变化时最易重新释放进入水体;铁锰水合氧化物结合态在环境变化时也会部分释放;有机硫化物和硫化物结合态不易被生物吸收,利用较稳定;残渣态最稳定,在相当长的时间内不会释放到水体中。

重金属消解与形态提取方法

4.三酸消煮(测土壤重金属全量或是残渣态):准确称取0.25g (准确到0.0001)风干土样于聚四氟乙烯坩埚中,用几滴水润湿后,加入10ml HF(破坏土壤晶格)消煮至黑褐色,加入5ml HClO4(氧化钝化),并加热至黑烟冒尽使之变成黄色含珠状,即粘稠不流动,加入5mlHNO3,继续消煮之接近无色,一般都有淡黄色,取下稍冷却,加水使之全部溶解,冲洗内壁,温热溶解残渣,在50ml容量瓶中过滤、定容。每一批样品都要做空白。开始可用高温,等温度上去后用中低温,以使之消煮完全。 5.实验步骤 (1)弱酸提取态:准确称取通过100目筛的风干土壤样品1.0000g 置于100mL离心管中,加入40mL 0.1mol/L HOAc,放在恒温振荡器中22℃±5℃下连续震荡16h,然后放入离心机中3000r/min下离心20min。将离心管中的上清液移入50mL容量瓶中,用水稀释到刻度,摇匀。用原子吸收分光光度计测量浓度,表示为C1 (2)可还原态:向上一步残渣中加入40mL 0.5mol/L 的NH4OH ? HCl, 放在恒温振动器中22℃±5℃下连续震荡16h,然后放入离心机中3000r/min下离心20min。将离心管中的上清液移入50mL容量瓶中,用水稀释到刻度,摇匀。用原子吸收分光光度计测量浓度,表示为C2。(3)可氧化态:向上一步残渣中加入10mL H2O2(pH值2~3),搅拌均匀后室温下静置1h后用水浴加热至85℃±2℃,再加入10mL H2O2 ,在恒温水浴箱中保持85℃±2℃ 1h. 加入50mL 1mol/L NH4OAc,放在恒温振动器中22℃±5℃下连续震荡16h,然后

形态分析的实验报告

竭诚为您提供优质文档/双击可除 形态分析的实验报告 篇一:形态的识别与分析——证券投资技术分析实验报告 学生实验报告 一、实验目的与要求 1.实验目的 掌握各种反转和持续形态的特征,能够识别与分析我国股市大盘指数或个股走势图中的形态。 2.实验要求 (1)根据实验目的及指导教师的具体要求,通过小组讨论的方式,确定实验具体对象、设计实验思路与步骤,用文字、图表、流程图、表格等形式记录分析过程,写出实验结论。最后总结本实验的成功和不足之处,并提出改进的建议。提倡和鼓励学生提出创新性见解,不可照搬教材或教师课堂讲授的内容。 (2)截取价格走势图时,请将技术分析软件的配色改为“绿白”等浅色方案,并根据需要灵活选择使用“分时走势

线使用粗线、分时重播、复权处理、显隐主图指标、窗口个数、分析周期、叠加股票、画线工具”等功能。建议利用技术分析软件或windows的“画图”软件在走势图中添加一些文字、箭头、方框或线条后再粘贴到实验报告文档中。 (3)正文使用黑色小四号宋体、1.5倍行距。在规定的时间内完成,并提交电子稿(注意按规范进行命名)和打印稿(用A3纸双面打印中缝装订,或A4纸双面打印左侧装订,不需彩色打印)。 二、实验设备与软件 1.实验设备:联接互联网的计算机 2.实验软件:证券投资技术分析软件 三、实验思路与步骤 选取个股进行形态分析,其中形态分析分两大类:持续和反转。并通过了解他们在实际运用中的优缺点,从而深入全面地接触到各种形态在个股中的实际运用,以达到对大盘及个股研判的目的。 首先对反转形态进行分析,常见的反转形态有:头肩(顶和底)形态、双(三)重顶与底、圆弧顶与底、V形、喇叭形、菱形、岛形等。 相应的对持续形态进行分析,常见的持续形态有:三角形、矩形、旗形、楔形等。 四、实验分析与结论

土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态 ?1、重金属形态 ?2、重金属形态研究方法及发展历程 ?3、本实验的目的 ?4、实验原理 ?5、实验步骤 ?6、数据处理 1.重金属形态 ?重金属形态是指重金属的价态、化合态、结合态、和结构态四 个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。 ?重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种 作用,形成不同的化学形态,并表现出不同的活性。 ?元素活动性、迁移路径、生物有效性及毒性等主要取决于其形 态,而不是总量。故形态分析是上述研究及污染防治等的关键 2、重金属形态研究方法及发展历程 ?自Chester 等(1967)和Tessier 等(1979)的开创性研究以来, 元素形态一直是地球和环境科学研究的一大热点。 ?在研究过程中,建立了矿物相分析、数理统计、物理分级和化学 物相分析等形态分析方法。

?由于自然体系的复杂性,目前对元素形态进行精确研究是很困 难,甚至是不可能的。 ?在诸多方法中,化学物相分析中的连续提取(或逐级提取) (Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。 逐级提取(SEE) 技术的发展历程 ?60~70年代(酝酿期) ?以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试 用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。 ?70 年代末(形成期)

?在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。 ?80 年代(发展期) ?不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。 ?90 年代(成熟期) ?为获得通用的标准流程及其参照物,由BCR 等主办的以“沉积物和土壤中的逐级提取”(1992) 、“环境风险性评价中淋滤/ 提取测试的协和化”(1994) 和“敏感生态系统保护中的环境分析化学”(1998) 等为主题的欧洲系列研讨会先后召开,并分别出版了研究专刊。 ?Ure et al. (1993) 在Forstner (1985) 等流程的基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生了相应的参照物(CRM 601) 。 ?BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。 ?Rauret et al. (1999) 等对该流程作了改进,形成了改进的BCR

土壤中重金属形态分析的研究进展(完整版)

土壤中重金属形态分析研究进展 罗小三,周东美,陈怀满 土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所(210008) E-mail:dmzhou@https://www.sodocs.net/doc/f45561228.html, & trhjhx@https://www.sodocs.net/doc/f45561228.html, 摘要:本文简要介绍了元素形态分析的概念、方法及其应用,概括和评述了当前土壤重金属的形态分析方法,详细讨论了各种形态分离手段和痕量重金属的测定技术,提出了土壤重金属形态分析领域亟待解决的问题和发展方向。 关键词: 土壤 重金属 形态分析 环境 1. 引言 从上世纪70年代开始,环境科学家就认识到,重金属的生物毒性在很大程度上取决于其存在形态,元素总量已经不能很好地说明环境中痕量金属的化学活性、再迁移性、生物可给性以及最终对生态系统或生物有机体的影响[1,2]。事实上,重金属与环境中的各种液态、固态物质经物理化学作用后以各种不同形态存在于环境中,其赋存形态决定着重金属的环境行为和生物效应[3]。正因如此,通过元素形态分析方法定量确认环境中重金属的各种形态已成为环境分析化学研究领域的新热点,其环境介质包括土壤、沉积物、水体、植物和食品等[4-6]。随着工作的不断深入,特别是分析测试技术的迅猛发展,元素的形态分析方法日趋完善,并且在化合物生物地球化学循环、元素毒性及生态毒性确定、食品质量控制、临床分析等领域显示出独特的作用[7]。 土壤环境处于大气圈、水圈、岩石圈及生物圈的交接地带,它是地表环境系统中各种物理、化学以及生物过程、界面反应、物质与能量交换、迁移转化过程最为复杂和最为频繁的地带。而重金属土壤污染对食品安全和人类健康存在严重威胁。因此,研究土壤中重金属的形态尤为重要。但土壤是一个多组分多相的复杂体系,类型多样,其组成、pH和Eh等差异明显,加上重金属来源不同、在土壤中的形态复杂,使得土壤中重金属形态分析更为困难[8]。 本文对元素形态分析的概念、方法、常用技术、应用进行了概括,对当前土壤中重金属的形态分析方法进行了详细介绍和评述,并提出了存在的问题和将来的预期发展方向。 2. 元素形态分析的概念 2.1 元素形态 元素形态的概念可追溯到1954年Goldberg为改善对海水中痕量元素的生物地球化学循环的理解而将其引入[9]。其后,元素的形态得到广泛研究,但不同的学者对形态有不同的理解和认识。Stumm[10]认为形态是指某一元素在环境中的实际存在的离子或分子形式; - 1 -

食品元素分析和元素化学形态分析中的ICP-MS 应用

扑磷(Methidathion);乙酰甲胺磷(Acephate);巴胺磷(Propetam2 phos);甲基对硫磷(Parathion Me);杀螟硫磷(Fenitrothion);异柳磷(Is ofenphos);乙硫磷(E thion) 21 25种有机氯及拟除虫菊酯农药 a(2666((2BHC);(2666((2BHC);(2666((2BHC);Op2DDE; pp’2DDE;op2DDD;pp’2DDD;pp’2DDT;异菌脲(I prodione);五氯硝基苯(Pentachloronitrobenene);林丹(Lindane);乙烯菌核利(Vinclozolin);三氯杀螨醇(K eithane);op2DDT;功夫(Cyhalothrin lambda);氯硝胺(Dicloran);百菌清(Chlorothalonil);粉锈宁(T ri2adimefon);甲氰菊酯(Fenpropathrin);正氯菊酯(Permethrin cis);反氯菊酯(Permethrin trans);反氰戊菊酯(Fenvalerate trans);正氰戊菊酯(Es fenvalerate);正溴氰菊酯(Deltamethrin cis);反溴氰菊酯(Deltamethrin trans) 31 8种氨基甲酸酯农药 涕灭威亚砜(Aldicarb sulfoxide);涕灭威砜(Aldicarb sul2 fone);灭多威(Methomyl);32羟基呋喃丹(32OH carbofuran);涕灭威(Aldicarb);呋喃丹(Carbofuran);甲奈威(Carbaryl);异丙威(Is oprocarb) 食品元素分析和元素化学形态分析中的ICP2MS应用 陆文伟 (上海交通大学 上海 200030)  胡克 (美国Therm oElemental C o.) 摘 要 综述了近几年来食品中元素分析和元素化学形态分析方面的发展趋势,以及ICP2MS仪器深入该领域的情况。叙述了HP LC2ICP2MS在元素化学形态分析中的一些方法开发和进展。强调了ICP2MS仪器在食品日常分析和研究领域的作用。 关键词 食品;元素;元素化学形态;ICP2MS 中图分类号 O657 Analysis of Food Material E lements and Species by ICP2MS Lu Wenwei (Shanghai JiaoT ong University,Changhai200030,China)  Hu K e (Therm oE lemental C o.) Abstract The development of the element analysis and species analysis at food material in recent years by ICP-MS was reviewed in this paper.The paper described the HP LC-ICP-MS method development and its application in food analysis. K ey w ords F ood;elements;species;ICP2MS 我国食品的元素分析历来以原子吸收光谱(AAS)为主。90年代开始也有些使用等离子体发射光谱(ICP2OES),但它的分析下限对一些有害元素的分析不适应。80年代初期出现的等离子体质谱(ICP2MS),它的多元素快速分析,很低的检出限(ppt级)和很宽的线性范围,引起各行业的高度重视。我国的食品检测行业是在90年代初期开始引入ICP2MS仪器,用于进出口食品的检验。ICP2MS仪器在经历近二十年发展,已逐渐进入各行业的常规分析实验室内。 随着社会的进步,人们生活水平的提高和环保意识的增强。国际国内对食品分析的要求越来越高,元素分析也如此,元素分析项目不断增多。从最基本的国际饮用水标准中就可以发现这种变化。早期版本的NS30英国饮用水水质标准中,最大允许元素污染量(PC V).As,Pb,Ni都为50ppb,现在As,Pb的PC V为10ppb,Ni为20ppb[1]。而Sb从早期的10ppb降至5ppb,而日本水质标准中的Sb仅为2ppb。这种变化对分析仪器的要求提高了。因为NS30标准要求分析仪器的 收稿日期:2002-12-04 作者简介:陆文伟,男,上海交通大学分析测试中心高级工程师。

制革废水处理方法

制革废水 制革废水是制革生产过程中排出的废水。目前制革工业生产一般包括脱脂、浸灰脱毛、软化、鞣制、染色加工、干燥、整饰等几个工段,加工过程中需要添加多种化学品[2],从而使得废水中含有油脂、胶原蛋白、动植物纤维、有机无机固形物、硫化物、铬、盐类、表面活性剂、染料等多种污染物质和有毒物质主要污染物为: a:有机废物包括污血、泥浆、蛋白质、油脂等; b:无机废物包括盐、硫化物、石灰、碳酸钠、NH3-N 、烧碱; c:有机化合物包括表面活性剂、脱脂剂等 预处理系统 主要包括格栅、调节池、沉淀池、气浮池等处理设施。制革废水中有机物浓度和悬浮固体浓度高,预处理系统就是用来调节水量、水质;去除SS、悬浮物;削减部分污染负荷,为后续生物处理创造良好条件。 生物处理系统 制革废水的ρ(CODcr)一般为3000—4000 mg/L,ρ(BOD5)为1000—2000mg/L,属于高浓度有机废水,m(BOD5)/m(CODcr)值为0.3—0.6,适宜于进行生物处理。目前国内应用较多的有氧化沟、SBR和生物接触氧化法,应用较少的是射流曝气法、间歇式生物膜反应器(SBBR)、流化床和升流式厌氧污泥床(UASB)。 物化处理 目前国内用于处理制革废水的物化处理法有投加混凝剂(聚合氯化铝)、内电解等技术。用混凝剂物化处理,设备简单、管理方便,并适合于间歇操作。 内电解法对废水的处理是基于电化学反应的氧化还原和电池反应产物的絮凝及新生絮体的吸附等的协同作用。 典型的工艺组合 SBR的工艺流程: 格栅-调节池-混凝沉淀池-SBR-二沉池-出水。 接触氧化法工艺流程: 格栅-调节池-厌氧池-好氧池-水解酸化池-接触氧化池-气浮-活性炭滤池-出水。 曝气生物滤池工艺流程: 格栅-调节池-一级沉淀池-曝气生物滤池-二沉池-出水。

重金属废水处理方法

在环境与人类健康领域,重金属主要指汞(Hg)、镉(Cd)、铅(Pb)、铬(cr)、砷(As)、铜(Cu)、锌(Zn)、钴(Co)、镍(Ni)等重金属。他们以不同的形态存在于环境之中,并 在环境中迁移、积累。采矿、冶金、化工等行业是水体中主要的人为污染源。重金属在食物链中的过量富集会对自然环境和人体健康造成很大的危害。 1.1 沉淀法 1.1.1 氢氧化物沉淀法 往重金属废水中加入碱性溶液,利用OH一与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废 水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 1.1.2 硫化物沉淀法 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此。硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 1.1.3 还原一沉淀法 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 1.1.4 絮凝浮选沉淀法 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 1.2 物理化学法 1.2.1 吸附法 (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 (2)树脂吸附。环保是树脂吸附法的一个重要的特点t41,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 1.2.2 浮选法

环境样品中痕量元素的化学形态分析__分析技术在化学形态分析中的应用

第24卷 第1期2005年3月 岩 矿 测 试ROC K AND MIN ERAL ANAL YSIS Vol.24,No.1 March ,2005 文章编号:02545357(2005)01005108国土资源地质大调查分析测试技术专栏 环境样品中痕量元素的化学形态分析 Ⅰ.分析技术在化学形态分析中的应用 何红蓼1,李 冰1,杨红霞1,倪哲明2 (1.国家地质实验测试中心,北京100037;2.中科院生态环境研究中心,北京100085) 摘要:文章介绍了形态分析的基本概念,常用的联用分析技术,如气相色谱原子吸收光谱、 气相色谱原子荧光光谱、气相色谱微波诱导等离子体原子发射光谱、气相色谱电感耦合等离子体质谱、高效液相色谱电感耦合等离子体质谱等在环境样品(水、土壤、沉积物)中痕量元素化学形态(价态、金属有机化合物等)分析中的应用,土壤和沉积物中污染元素的顺序提取步骤,以形态分析发展动态。引用文献72篇。 关键词:形态分析;价态;金属有机化合物;顺序提取中图分类号:O655.6;X132 文献标识码:A 收稿日期:2003212230;修订日期:2004208220 基金项目:国土资源地质大调查项目(20012019010601) 作者简介:何红蓼(1949),女,北京人,研究员,分析化学专业。 1 形态分析的基本概念 形态分析是分析化学的一个分支,它包括物理 形态分析和化学形态分析(见图1),本文仅涉及化学形态分析。尽管元素化学形态分析已经有30多年的研究发展史,但由于其复杂性,长期以来,人们对形态分析的认识还不是很明确,概念和术语也比较混乱。自上世纪80年代以来,一直有各种有关形态分析定义的讨论。国际纯粹应用化学联合会(IU PAC )于2000年统一规定了痕量元素形态分析的定义(IU PAC Guidelines for Terms Related to Speciation of Trace Element s )[1]: 化学形式(chemical species ) 一种元素的特有形式,如:同位素组成,电子或氧化状态,化合物或分子结构等。 形态(speciatio n ) 一种元素的形态即该元素在一个体系中特定化学形式的分布。 形态分析(speciation analysis ) 识别和(或)定量测量样品中的一种或多种化学形式的分析工作。 分步提取(fractionation ) 根据物理(如粒度、溶解度等)或化学性质(如结合状态、反应活性等)把样 品中一种或一组被测定物质进行分类提取的过程。 有时某些样品中元素的不同化学形态的测定很难做到。因为样品中存在的化学形态往往不是很稳定,在整个分析过程中可能会发生变化。各种不同的形态处于一个平衡体系中,在分析的化学处理过程中,平衡被破坏,就可能产生不同形态之间的转化。当难以测定一种特定基体中构成某种元素总含量的各个不同化学形式时,即不可能实现严格的形态分析时,一种实用的替代方案就是鉴别元素形态的各种分类组合,即所谓分步提取实验方法,也称偏提取、顺序提取或相态分析。 2 化学形态分析技术 2.1 准确定量的化学形态分析技术 化学形态分析对了解环境元素的毒性及其对生态系统的影响极为重要,已成为近年来越来越引人关注的课题。对于环境中的痕量无机元素的价态、化合态、金属有机化合态进行分析[2],是近年来化学分析中非常活跃的领域。 — 15—

制革工业废水的处理

制革工业废水的处理 水处理技术:制革工业在我国重点污染中列第3位。据统计,我国现有制革近万家,年排量达到1×108t左右,年排放总量CODcrl8×104t,BOD58×104t,SSl2×104t,铬3500t,硫5000t[1]。本文着重论述制革的特点、治理技术现状和研究成果。 1 的组成与特点 目前制革工业生产一般包括脱脂、浸灰脱毛、软化、鞣制、染色加工、干燥、整饰等几个工段,加工过程中需要添加多种化学品[2],从而使得废水中含有油脂、胶原蛋白、动植物纤维、有机无机固形物、硫化物、铬、盐类、表面活性剂、染料等多种污染物质和有毒物质。制革工业综合废水的水质特性为:ρ(CODcr)为3000—4000mg/L,ρ(BOD5)为1000—2000mg/L,ρ(SS)为2000—4000mg/L,pH值为8-11。 废水主要来源于鞣前准备,鞣制和其他湿加工工段。污染最重的是脱脂废水、浸灰脱毛废水、铬鞣废水,这3种废水约占总废水量的50%,但却包含了绝大部分的污染物,各种污染物占其总量的质量分数为:CODcr80%,BOD575%,SS70%,硫化物93%,氯化钠50%,铬化合物95%。 制革废水的特点表现在以下几方面[3]

①水质水量波动大; ②可生化性好; ③悬浮物浓度高,易腐败,产生污染量大; ④废水含S2-和铬等有毒化合物。 2 技术现状 传统的制革是将各工序废水收集混合,采用物理、化学、生物等手段集中处理,把废水中的油脂、蛋白质和各种化工材料作为处理掉,浪费资源,投资高,且生皮加工过程中脱毛浸灰工段产生的高浓度含硫废水和铬鞣工段产生的废铬液,对处理废水是非常不利的。故比较合理的是“原液单独处理、综合废水统一处理”[4],工艺路线,将脱脂废水、浸灰脱毛废水、铬鞣废水分别进行处理并有价值的资源,然后与其他废水混合统一处理。但对于小型制革厂采用这种方法,工艺流程长、费用高,仍可进行集中处理。 2.1 单项处理技术 2.1.1 脱脂废水

化学中的重金属定义正本

重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人 体有毒。 如汞中毒的临床表现有,全身症状为头痛、头昏、乏力、发热。口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。 重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到,如果轻微中毒,就大量喝牛奶,牛奶中的蛋白质会和重金属反应,这样不会损伤到你自身的身体机能,喝了以后马上就医。 对什么是重金属,目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞(水银)、镉、铅、铬以及类金属砷等生物毒性显著的重元素。重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。 重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者重金属被稻谷、小麦等农作物所吸收被人类食用,重金属就会进入人体使人产生重金属中毒,轻则发生怪病(水俣病、骨痛病等),重者就会死亡。所以我们不要过量地进食海产,每次进食前一定要把海产彻底煮熟,以免吃入细菌。 重金属污染 从环境污染方面所说的重金属是指汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。 重金属对人体的伤害常见的有: 铅:伤害人的脑细胞,致癌致突变 等。 汞:食入后直接沉入肝脏,对大脑 神精视力破坏及大。天然水每 化学中的重金属定义

相关主题