搜档网
当前位置:搜档网 › SIW带通滤波器仿真设计

SIW带通滤波器仿真设计

SIW带通滤波器仿真设计
SIW带通滤波器仿真设计

0 引言

滤波器在无线通信、军事、科技等领域有着广泛的应用。而微波毫米波电路技术的发展,更加要求这些滤波器应具有低插入损耗、结构紧凑、体积小、质量轻、成本低的特点。传统用来做滤波器的矩形波导和微带线已经很难达到这个要求。而基片集成波导(SIW)技术为设计这种滤波器提供了一种很好的选择。

SIW的双膜谐振器具有一对简并模式,可以通过对谐振器加入微扰单元来使这两个简并模式分离,因此,经过扰动后的谐振器可以看作一个双调谐电路。分离的简并模式产生耦合后,会产生两个极点和一个零点。所以,双膜滤波器在减小尺寸的同时,也增加了阻带衰减。而且还可以实现较窄的百分比带宽。可是,双膜滤波器又有功率损耗高、插入损耗大的缺点。为此,本文提出了一种新型SIW腔体双膜滤波器的设计方法。

该SIW的大功率容量、低插入损耗特性正好可以对双膜滤波器的固有缺点起到补偿作用。而且输入/输出采用直接过渡的转换结构,也减少了耦合缝隙的损耗。

l 双膜谐振原理及频率调节

SIW是一类新型的人工集成波导,它是通过在平面电路的介质层中嵌入两排金属化孔构成的,这两排金属化孔构成了波导的窄壁,图1所示是基片集成波导的结构示意图。这类平面波导不仅容易与微波集成电路(MIC)以及单片微波集成电路(MMIC)集成,而且,SIW还继承了传统矩形波导的品质因数高、辐射损耗小、便于设计等优点。

1.1 基片集成波导谐振腔

一般情况下,两个电路的振荡频率越接近,这两个电路之间的能量转换需要的耦合就越小。由于谐振腔中的无数多个模式中存在着正交关系,故要让这些模式耦合发生能量交换,必须对理想的结构加扰动。但是,为了保持场结构的原有形式,这个扰动要很小。所以,本文选择了SIW的简并主模TE102和 TE201,它们的电场分布图如图2所示。因为TM和TEmn(n10)不能够在SIW中传输。因此,一方面可以保证在小扰动时就可以实现耦合,同时也可以保证场的原有结构。

假设图3所示的矩形腔体的长、宽、高分别为a、b、d。因为TEmn(n10)不能在SIW中传输,所以对于SIW谐振腔来说,其谐振频率的计算公

式如下:

对于具有相同谐振频率的两个模式来说,则有如下关系:

选定的工作简并模式,利用公式(1)、(2)、 (3)来确定矩形波导谐振腔的初始尺寸,然后再结合有关文献,就可以确定SIW腔体的尺寸。图3所示是其金属矩形谐振腔的基本结构。

1.2 双膜SIW谐振腔及其频率调节

圆柱形波导、矩形波导和微带线都可以用来做双膜滤波器。然而,一些典型的双膜设计方法(如加调节螺钉、内角加工、在微带贴片上加入十字槽等)并不适用于SIW腔体。有文献提到采用切角、打孔、馈电扰动等扰动方式来应用于SIW腔体。故此,本文选取了在SIW

腔体对称的角上切两个相同的方形切角作为微扰方式。扰动腔体的谐振频率被分成f1和f2两个高低不同的频率,这两个频率的平均值(f1+f2)/2和原有腔体的谐振频率f0往往不相等。类似地,输入/输出部分的耦合也会造成谐振频率的平移。这样就会造成两种情况:一是(f1+f2)/2>f0;二是(f1+f2)/2< P>

是大于还是小于取决于耦合结构。对于第一种情况,可以通过加大谐振腔尺寸来调节频率移动;而对于第二种情况,则可以通过减小谐振器尺寸或者在谐振腔上开个缝来减少谐振腔等效尺寸等方法来调节。当然也可以不调节,分别针对这两种情况加以利用。在实际的工程应用中。要求s<λ/20,当SIW工作在高频段时,为了满足上述条件,往往要求金属柱半径以及它们之间的间距很小,以至于加工非常困难。而此时就可以利用第一种情况,以较大的尺寸在较高频率处实现良好的滤波性能,降低加工难度;而对于第二种情况,可以以更小的尺寸在较低的谐振频率处实现良好的滤波性能,从而实现滤波器的小型化。本文就是有效地利用了第二种情况,从而设计出性能好、尺寸小的滤波器。

2 双膜滤波器的实现与仿真

图4所示是双膜SIW腔体带通滤波器的结构示意图。在谐振腔的对角线上挖去两个相同的立方体,输入/输出采用直接过渡的转换结构。滤波器选用 Rogers RO3010作为介质基板,其相对介电常数εr=10.2,损耗角正切tan d为0.0035;谐振腔长度a为21.5 mm,宽b为21.5 mm,高h为0.5mm;切去的立方体边长cw为2.2 mm;中心馈线的宽度tw 为0.72 mm。输入/输出采用无缝耦合的直接转换结构,这样可减少输入/输出结构的耦合损耗。

3 仿真结果分析

仿真可采用电磁仿真商业软件HFSS来完成。通过仿真介质谐振腔滤波器(滤波器源型)可以发现,不同的耦合输入/输出窗口宽度影响着滤波器中心频率的位置,同时也影响耦合强度和带内插入损耗。从图5中看出,随着耦合窗宽度的增大,滤波器的中心频率会上移,耦合减弱,带内插入损耗变大,也就是滤波器的匹配性能变差。

针对切去的立方体尺寸对滤波器性能的影响。从方便的角度考虑,应先保证一个角上的正方体尺寸不变,而改变另一个切去的立方体尺寸,然后观察微扰变化对S参数的影响。从图6所示的曲线可以看出,微扰尺寸几乎不改变S参数曲线的形状,对中心频点的影响不大,微扰越大,带宽越宽,相应的高阻带传输零点会往高频点移动。

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

二阶带通滤波器课程设计.

一、制作一个1000Hz 的正弦波产生电路: 图1.1 正弦波产生电路 1.1 RC 桥式振荡电路 RC 桥式振荡电路如图(1.1)所示。这个电路由两部分组成,即放大电路和选频网络。其中,R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。R3、W R 及R4组成负反馈网络,调节W R 可改变负反馈的反馈系数,从而调节放大的电压增益,使电压增益满足振荡的幅度条件。RC 串并联网络与负反馈中的R3、W R 刚好组成一个四臂电桥,电桥的对角线顶点接到放大器A1的两个输入端,桥式振荡电路的名称即由此得来。 分析RC 串并联网络的选频特性,根椐正弦波振荡电路的振幅平衡条件,选择合适的放大指标,构成一个完整的振荡电路。 1.2 振荡电路的传递函数 由图(1.1)有 1111 Z R sC =+,2 2222 1Z 1R R C sC =+=2221R sC R + 其中,1Z 、2Z 分别为图1.1中RC 串、并联网络的阻值。 得到输入与输出的传递函数: F ν(s)= 21 2 1212221121()1 sR C R R C C s R C R C R C s ++++ =12 21122111212 11111()s R C s s R C R C R C R R C C ++++ (1.1) 由式(1.1)得 21212 R R 1 C C =ω 2 1210R R 1 C C = ?ω

取1R =2R =16k Ω,12C C ==0.01μF ,则有 1.3 振荡电路分析 就实际的频率而言,可用s j ω=替换,在0ωω=时,经RC 选频网络传输到运放同相端的电压与1o U 同相,这样,放大电路和由Z1和Z2组成的反馈网络刚好形成正反馈系统,可以满足相位平衡条件。 12 2 11221212 ()12v j C R F j j C R j C R C C R R ωωωωω= ++- (1.2) 令2 12101R R C C = ω,且R R R C C C ====2121,,则式(1.2)变为 ) (31 )(00ω ωωωω-+= j j F v (1.3) 由此可得RC 串并联选频网络的幅频响应 2 002)( 31ω ωωω-+= V F (1.4) 相频响应 3 )( arctan 0ω ωωω?--=f (1.5) 由此可知,当 2 12101R R C C = =ωω,或CR f f π21 0= = 时,幅频响应的幅度为最大,即 而相频响应的相位角为零,即 这说明,当2 12101R R C C = =ωω时,输出的电压的幅度最大(当输入电压的幅 度一定,而频率可调时),并且输出电压时输入电压的1/3,同时输出电压与输入

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

二阶带通滤波器课程设计

目录 1 课程设计的目的与作用 (1) 2 设计任务及所用multisim软件环境介绍 (1) 2.1 设计任务 (1) 2.2 Multisim软件环境介绍 (1) 3 电路模型的建立 (2) 4 理论分析及计算 (3) 5 仿真结果分析 (4) 6 设计总结和体会 (4) 7 参考文献 (5)

1 课程设计的目的与作用 目的:根据设计任务完成对二阶带通滤波器的设计,进一步加强对模拟电子技术的理解。了解二阶带通滤波器的工作原理,掌握对二阶带通滤波器频率特性的测试方法。 带通滤波器:其作用是允许某一段频带范围内的信号通过,而将此频带以外的信号阻断。常用于抗干扰设备中,以便接收某一段频带范围内的有效信号,而消除高频段和低频段的干扰和噪声。 2 设计任务及所用multisim软件环境介绍 2.1 设计任务 学会使用Multisim10软件设计二阶带通滤波器的电路,使学生初步了解和掌握二阶带通滤波器的设计、调试过程及其频率特性的测试方法,能进一步巩固课堂上学到的理论知识,了解带通滤波器的工作原理。 2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim 提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。

有源RC带通滤波器设计方案

有源RC带通滤波器设计方案 一、需要关注的指标: 功能指标 1.通带带宽(Bandwidth)滤波器通过截止信号的频率界限,一般用绝对频率来表示,也可用中心频率和相对带宽等值来表示。 带通滤波器,中心频率200KHz,带宽25KHz。 2.通带纹波(Passband Ripple):把通带波动的最高点和最低点的差值作为衡量波动剧烈程度的参数,即是通带波纹。通带波纹导致对于不同频率的信号放大的增益倍数不同,可能输出信号波形失真。 0?巴特沃斯,通带平坦。 3.阻带抑制((Stopband Rejection):即对不需要信号的抑制能力,一般希望尽可能大,并在通带范围内陡峭的下降。通常取通带外与带宽为一定比值的某一频率的衰减值作为此项指标。 ?? 4.通带增益(Passband Gain):有用信号通过的能力。无源滤波器产生衰减,有源滤波器可以产生增益。 ?? 5.群时延:定义为相位对频率的微分,表征不同频率的信号通过系统时的相位差异。 ?? 性能指标: 1.运算放大器的增益带宽积,GBW对于滤波器的性能来讲,起到了至关重 要的作用。如果设计得到的GBW较小不满足要求,则滤波器将在高频频 段出现增益尖峰。同时为了降低滤波器的整体功耗,GBW又不能选取的 太大。根据当前业界对滤波器的研究,这里我们设定GBW为滤波器工作 截止频率的50倍。 带通滤波器,中心频率200KHz,带宽25KHz=====》最高截止频率为 212.5KHz=====》GBW至少10.625MHz。 2.电流功耗,主要是单个运放的功耗。 示例:带宽为2MHz的有源带通滤波器所采用的的运放,1.8V电源电压 下,消耗的电流为310uA,中频电压增益为65dB,增益带宽积GBW为 160MHz,相位裕度为55度,驱动负载为100K欧,2pF。 本项目电源电压3.3V,GBW至少10.625MHz,负载1M欧,10pF,相位裕 度大于80,电流<250uA。 3.共模电平,一般设置为电源电压的一半。 考虑到电源电压浮动,按最小电源电压的一半设计,拟设计为1.5V。 4.输入输出差分电压摆幅,最好是满摆幅。 5.噪声,来自电阻和运放,值得注意的是,构成高阶滤波器的各个Biquad 位置放置不同,噪声也会不同,适当时候也可以引进全通单元放第一级 来抑制噪声(全通还被用来平衡群延时)。 6.线性度,也是滤波器的一个重要的性能性指标,在模拟基带电路中,一 般用THD总谐波失真来衡量,也有看输入1dB压缩点的。 7.稳定性,分两种,一种是涉及到振荡的稳定性,需要仔细设计运放,并

IIR数字带通滤波器设计

课 程 设 计 报 告 课程名称: 数字带通滤波器设计 学生姓名: 学 号: 专业班级: 指导教师: 完成时间: 报告成绩: IIR 数字带通滤波器的设计

1课程设计目的 1掌握冲激响应不变法IIR 低通滤波器的设计。 2 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 2.课程设计要求 采用双线性变换法设计一IIR 数字带通滤波器,抽样频率为 1s f kH z =,性能 要求为:通带范围从250Hz 到400Hz ,在此两频率处衰减不大于3dB , 在150Hz 和480Hz 频率处衰减不小于20dB ,采用巴特沃思型滤波器 3.设计原理 3.1用双线性变换法设计IIR 数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S 平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T ~π/T 之间,再用st e z =转 换到Z 平面上。也就是说,第一步先将整个S 平面压缩映射到S 1平面的-π/T ~π/T 一条横带里;第二步再通过标准变换关系z =e s 1T 将此横带变换到整个Z 平面上去。这样就使S 平面与Z 平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1-3所示。 图1双线性变换的映射关系 为了将s 平面的整个虚轴 Ω j 压缩到1s 平面1Ωj 轴上的-π/T 到π/T 段上, Z 平面 S 1 平面 S 平面

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1理论分析 (3) 1.2电路组成 (4) 1.3一阶无源RC低通滤波电路性能测试 (5) 1.3.1正弦信号源仿真与实测 (5) 1.3.2三角信号源仿真与实测 (10) 1.3.3方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2电路组成 (22) 2.3二阶无源LC带通滤波电路性能测试 (23) 2.3.1正弦信号源仿真与实测 (23) 2.3.2三角信号源仿真与实测 (28)

2.3.3方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1结论 (39) 3.2误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

基于MATLAB的数字带通滤波器课程设计报告.doc

基于MATLAB的数字带通滤波器课程设计报告1 西安文理学院机械电子工程系 课程设计报告 专业班级08级电子信息工程1班 题目基于MATLAB的数字带通滤波器 学号 学生姓名 指导教师 2011 年12 月 西安文理学院机械电子工程系 课程设计任务书 学生姓名_______专业班级________ 学号______ 指导教师______ 职称副教授教研室电子信息工程课程数字信号处理题目 基于MATLAB 的数字带通滤波器设计任务与要求 设计任务:

要求设计一个IIR 带通滤波器,其中通带的中心频率为πω5.0=po ,通 带的截止频率πω4.01=p ,πω6.02=p ,通带最大衰减dB p 3=α;阻带最小 衰减dB s 15=α,阻带截止频率πω3.01=s ,πω7.02=s 。 设计要求: 1. 根据设计任务要求给出实现方案及实现过程。 2. 给出所实现的滤波器幅频特性及相频特性曲线并加以分析。 3. 论文要求思路清晰,结构合理,语言流畅,书写格式符合要求。 开始日期2011.12.19 完成日期2011.12.30 2011年12月18 日 一、设计任务 设计一数字带通滤波器,用IIR 来实现,其主要技术指标: 通带边缘频率:wp 1=0.4π,wp2=0.6π 通带最大衰减:Ap=3dB 阻带边缘频率:ws 1=0.3π,ws2=0.7π 阻带最小衰减:As=15dB 设计总体要求:用MATLAB 语言编程进行设计,给出IIR 数字滤波器 的参数,给出幅度和相位响应曲线,对IIR 实现形式和特点等方面进行讨

论。 二、设计方法 IIR 数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以 IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。比较常用的原型滤波器有巴特沃什滤波器(Butterworth )、切比雪夫滤波 器(Chebyshev )、椭圆滤波器(Ellipse )和贝塞尔滤波器(Bessel )等。他们有各自的特点,巴特沃什滤波器具有单调下降的幅频特性;切比雪夫 滤波器的幅频特性在通带和阻带里有波动,可以提高选择性;贝塞尔滤波 器通带内有较好的线性相位特性;椭圆滤波器的选择性最好。本设计IIR 数字滤波器采用巴特沃什滤波器[3]。 设计巴特沃什数字滤波器时,首先应根据参数要求设计出相应的模拟 滤波器,其步骤如下: (1)由模拟滤波器的设计指标wp ,ws ,Ap ,As 和式(1)确定滤波器 阶数N 。 )lg(2)110110lg(1.01.0w w s p As Ap N --≥ (1) (2)由式(2)确定wc 。

RC有源带通滤波器

RC 有源带通滤波器的设计 滤波器的功能是让一定频率范围内的信号通过,而将此频率范围之外的信号加以抑制或使其急剧衰减。当干扰信号与有用信号不在同一频率范围之内,可使用滤波器有效的抑制干扰。 用LC 网络组成的无源滤波器在低频范围内有体积重量大,价格昂贵和衰减大等缺点,而用集成运放和RC 网络组成的有源滤波器则比较适用于低频,此外,它还具有一定的增益,且因输入与输出之间有良好的隔离而便于级联。由于大多数反映生理信息的光电信号具有频率低、幅度小、易受干扰等特点,因而RC 有源滤波器普遍应用于光电弱信号检测电路中。 一.技术指标 总增益为1; 通带频率范围为300Hz —3000Hz ,通带内允许的最大波动为-1db —+1db ; 阻带边缘频率范围为225Hz 和4000Hz 、阻带内最小衰减为20db ; 二.设计过程 1. 采用低通-高通级联实现带通滤波器; 将带通滤波器的技术指标分成低通滤波器和高通滤波器两个独立的技术指标,分别设计出低通滤波器和高通滤波器,再级联即得带通滤波器。古 低通滤波器的技术指标为: dB A Hz f G dB A Hz f SH PH 204000113000min max ===== 高通滤波器的技术指标为: dB A Hz f G dB A Hz f SL PL 2022511300min max ===== 2. 选用切比雪夫逼近方式计算阶数 (1). 低通滤波器阶数N 1 ) /(] )110/()110([11.01.011max min PH SH A A f f ch ch N ----≥ (2). 高通滤波器阶数N 2 )/(] )110/()110([11.01.012max min SL PL A A f f ch ch N ----≥ 3. 求滤波器的传递函数 1). 根据N 1查表求出归一化低通滤波器传递函数H LP (s ’),去归一化得 P H f S S LP LP S H S H π2'|)'()(== 2). 根据N 2查表求出归一化高通滤波器传递函数H HP (s ’),去归一化得 S f S HP HP P L S H S H π2'| )'()(==

带通滤波器设计模拟电子技术课程设计报告大学论文

模拟电子技术课程设计报告带通滤波器设计 班级:自动化1202 姓名:杨益伟 学号:120900321 日期:2014年7月2日 信息科学与技术学院

目录 第一章设计任务及要求 1、1设计概述------------------------------------3 1、2设计任务及要求------------------------------3 第二章总体电路设计方案 2、1设计思想-----------------------------------4 2、2各功能的组成-------------------------------5 2、3总体工作过程及方案框图---------------------5 第三章单元电路设计与分析 3、1各单元电路的选择---------------------------6 3、2单元电路软件仿真---------------------------8 第四章总体电路工作原理图及电路仿真结果 4、1总体电路工作原理图及元件参数的确定---------9 4、2总体电路软件仿真---------------------------11 第五章电路的组构与调试 5、1使用的主要仪器、仪表-----------------------12 5、2测试的数据与波形---------------------------12 5、3组装与调试---------------------------------14 5、4调试出现的故障及解决方法-------------------14 第六章设计电路的特点及改进方向 6、1设计电路的特点及改进方向-------------------14 第七章电路元件参数列表 7、1 电路元件一览表---------------------------15 第八章结束语 8、1 对设计题目的结论性意见及改进的意向说明----16 8、2 总结设计的收获与体会----------------------16 附图(电路仿真总图、电路图) 参考文献

带通滤波器的设计和仿真

带通滤波器的设计和仿真 学院信息学院 姓名吴建亮 学号 201203090224 班级电信1202 时间 2014年10月 1.设计要求 设计带通为300Hz~10KHz的带通滤波器并仿真。 2.原理与方案 2.1工作原理: 带通滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制,本实验通过一个4阶低通滤波器和一个4阶高通滤波器的级联实现带通滤波器。 2.2总体方案 易知低通滤波电路的截止角频率ωH大于高通滤波电路的截止角频率ωn,两者覆盖的通带就提供了一个带通响应。先设计4阶的低通滤波器,截止频率,选取第一级高通滤波器的,第二级的高通滤波器的。 主要参数: 电容则 基准电阻, ,取标称值2400pF, ,取标称值14.7kΩ, ,取标称值14.7kΩ, ,取标称值7.32kΩ,

,取标称值6.04kΩ, , ,取标称值0.013μF, ,取标称值3.01?Ω, 同理,设计一个4阶高通滤波器,通带增益,截止频率,选取第一级高通滤波器的,第二级的高通滤波器的。 主要参数如下: 电容, ,取标称值10kΩ, ,取标称值27kΩ, ,取标称值3.9kΩ, ,取标称值62kΩ。 3 电路设计 图3-1 高通滤波器 图3-2 低通滤波器

如上图3-1与图3-2所示为滤波器的电路,函数信号发生器生成信号经过级联在一起的4阶低通、高通滤波器后完成滤波。 4仿真、分析 图4-1,图4-2,图4-3为频率分别为300Hz、1kHz与10kHz时的示波器波形显示,其输入的正弦信号的幅值均为2V,滤波器的仿真结果符合预期结果。 图4-1 时滤波器仿真结果 图 4-2 f=1000Hz滤波器仿真结果 图4-3 f=10kHz滤波器仿真结果 图4-4 下限截止频率

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GH以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 (刃耦合微幣线滤彼器 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

(3)岌夬线带通滤波器 4、1/4波长短路短截线滤波器 (4)1/4波长您路短戡线湛枝器 5、半波长开路短截线滤波器 (5)1/2波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对 地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mr以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

二阶有源带通滤波器介绍

2014-2015第二学期 北京工业大学 电子技术课程设计报告 题目二阶有源带通滤波器 专业电子信息工程 学号 ******** 姓名 XX 指导教师 XXXX

电源滤波器是由电容、电感和电路组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。滤波器在通信技术、测量技术、控制系统等领域有着广泛的应用。由有源器件和电阻、电容构成的滤波器称为RC 有源滤波器。滤波器的分类很多,根据滤波器对信号频率选择通过的区域,可分为低通、高通、带通和带阻等四种滤波器;按使用的滤波元件不同,可分为LC 滤波器、RC 滤波器、RLC 滤波器;有源滤波器还分为一阶、二阶和高阶滤波器,阶数越高,滤波电路幅频特性过渡带内曲线越陡,形状越接近理想。 本实验设计了二阶RC 有源带通滤波器,并利用Multisim12.0 对实验进行仿真演示,列出了具体的分析与设计方法。 English abstract The power filter is composed of capacitor, inductor and circuit filter circuit. The filter can be outside the power line frequency specific frequency or the frequency of frequency were effectively filter, a specific frequency power signal, or remove a specific frequency power 1signals. Filter in communication technology, measurement technology, control systems and other fields have a wide range of applications. A filter called RC active filter, which is composed of an active device and a resistor and a capacitor. The classification of the filter, according to filter the signal frequency selection through a region can be divided into low pass, high pass, band pass and band stop and other four kinds of filter; according to the different use of the filter element can be divided into LC filters, RC filter and RLC filter; active power filter is first order, second order and higher order filter, the higher order, filter circuit amplitude frequency characteristic transition zone curve is steeper, the shape is more close to the ideal. In this experiment, the two order RC active band pass filter is designed, and the Multisim12.0 is used to carry out the simulation demonstration, and the specific analysis and design method are listed.

ADS设计的带通滤波器

设计报告 学生: 课题:带通滤波器的设计与仿真 目录

摘要 (3) 一平行耦合微带线滤波器的理论基础 (3) 二、平行耦合微带线滤波器的设计的流程图 (4) 三、设计的具体步骤 (5) 1、确定下边频和归一化带宽 (5) 2、在设计向导中生成原理图 (6) 3、平行耦合微带线带通滤波器设计 (7) 4、设计平行耦合微带线带通滤波器原理图 (8) 四、心得体会 (14) 五、参考文献 (14) 带通滤波器的设计与仿真

摘要: 介绍一种借助ADS( Advanced Des ign SySTem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2.4 GHz,相对带宽为9%的微带带通滤波器的设计及优化实例和仿真结果,仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 一、滤波器的介绍 (1)波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器 按照滤波器的制作方法和材料,射频滤波器又可以分为以下四种: (2)波器、同轴线滤波器、带状线滤波器、微带滤波器 (3)滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带的一定外有产生新的通带 二、平行耦合微带线滤波器的理论基础 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。 平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

相关主题