搜档网
当前位置:搜档网 › 近距离煤层开采

近距离煤层开采

近距离煤层开采
近距离煤层开采

浅谈马口煤矿极近距离煤层

采空下开采设计

[摘要] 对马口煤矿极近距离煤层采空下开采设计进行分析,并通过生产实践总结出一套可靠的采掘安全保障系统,形成了一套完整的极近距离煤层采空下开采技术,对近距离煤层开采具有指导作用,具有广阔的推广应用前景。

[关键词] 极近距离煤层;采空区下;巷道布置;开采技术。

马口煤矿404盘区13#-1层于2010年底开采结束,为保证盘区正常接替,必须开采404盘区下部13#-2层。404盘区13#-1层与13#-2属极近距离煤层,层间距不稳定。我矿从科学合理的盘区开采设计到首采面13#-2层8402工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成一套完整的极近距离煤层采空下开采技术。

1、盘区概况

13#-2层404盘区所处的开采水平为1185水平,上部13#-1层均已回采结束,盘区走向长度1161m,倾斜长度480—615m。煤层厚度

1.8m~3.1m,平均厚度

2.6m,煤层倾角1°—5°,平均3°,13#-1和13#-2煤层层间距1.0m~2.5m,平均2m。

404盘区内地质构造复杂,有陷落柱2个,断层分布较密集。13#-2层顶板为砂岩,层理、节理发育,稳定性差,掘进和回采时顶板不易维护,易发生冒顶事故。

2、开拓方案说明

2.1 盘区巷道布置

13层盘区8402综采工作面顺槽巷道采用内错距布置方式。如图1所示。

2.2上下顺槽内错距的确定

13#-2层受上覆13#-1层采空区及层间距的影响,根据上部采空区塌落稳定后采空区及巷间煤柱的压力传递范围,选择13#-2层工作面与13#-1工作面内错式布置。根据顺槽平巷矿山压力显现规律,13#-2层顺槽在其与13#-1层层间距确定的情况下,应布置于压力的传递影响角以外,压力影响角与煤层倾角、层间岩石性质有关,一般情况下当煤层

倾角小于250时,压力影响为250~450,13#-2层上覆13#-1层煤层倾角一般为10~60,所以上下顺槽内错距应按水平煤层压力影响范围公式计算:

L≧H·tgθ

式中L ——上下顺槽内错距,米;

H——13#-2与13#-1层间距,米,取2米;

θ——压力影响角,度,取35°。

L≧H·tgθ= 2·tg35°=1.4米

根据上述公式计算及马口煤矿13#-1层与13#-2层层间距及岩石性质情况,以及根据矿压观测沿走向上13#-1层巷道对13#-2层巷道布置影响,最终确定上下顺槽净煤柱为5米,如图2所示:

3、首采面8402工作面开采情况

3.1 13#-2层8402工作面基本概况

13#-2层8402工作面相对上部13#-1层8402工作面内错布置,两顺槽均内错5m,工作面走向长度560m,可采长413m(保护煤柱147m),工作面倾斜长度130m。

3.2 首采面8402工作面掘进情况

3.2.1 实体煤下巷道掘进情况

8402工作面上覆采空区段为1089m~1205m,在非采空区段巷道掘进时皮带巷高度为2.6m,宽度为4.5 m,回风巷高度为2.6m,宽度为3.8m,两巷均沿13#-2层顶板掘进,支护形式为锚杆网、锚索联合支护。切巷宽8m,高2.6m,锚杆、锚索联合支护。

3.2.2 采空区下巷道掘进及维护

由于13#-2层与13#-1属极近距离煤层,且层间距极不稳定,其中200m范围采空下13#-2层与13#-1层间距0.5m~2.0m,平均1.5m,所以巷道掘进时采用留设13#-2顶煤掘进,支护采用锚网和工字钢棚联合支护。

巷道在采空区范围下掘进时压力显现非常明显,在5402巷具体表现为:所留设的顶煤由于节理裂隙发育,整体性差,加之顶板压力大,顶煤相当破碎,顶煤边掘边冒,掘进时随掘随冒,冒顶长度总计为100m,冒顶宽度为1.0m~2.5m高度为0.4~1.1m;能留住的顶煤处,由于顶煤已破碎,托于工字钢棚上方,压力显现:工字钢棚梁有变形。

为了提高近距离煤层留顶煤复合顶板巷道顶板的稳定性,我矿在极近距离煤层巷道13#-2层5402巷首次进行了小孔径全长锚固螺纹钢锚杆试验,该试验不仅实现了锚索和锚杆支护机具统一采用气动锚索

钻机,大大提高了锚杆支护的安全可靠性,而且由于对锚固区的围岩整体约束,使锚杆支护系统刚度大大增强,有效的控制了顶板变形。为了解决锚杆托板压烂、锚杆螺帽压飞、锚杆杆体被拉断带来的支护及安全问题,我们采取了打2.0m短锚索加强支护的措施,支护能力大大提高,支护效果非常理想。

针对棚梁压弯严重的现象,我们及时把棚距由0.8m改为0.5m,在压弯的棚梁下支设单体液压支柱和木桩防止变形加剧。同时主动掌握近距离煤层矿压显现特点及动压规律,在掘进巷道中每隔100m安装一块压力盒和没50m设一组顶板离层仪,定期观测压力与离层显现情况,发现压力大时,及时采取措施进行处理。

通过以上支护工艺变更后巷道维护虽得到了一定的改善,但由于留设的顶煤节理裂隙发育,整体性差,加之上覆采空冲击压力的影响,仍经常发生顶煤边掘边冒的现象。为了更主动的超前解决巷道维护问题,我矿采用马丽散聚合产品对巷道顶煤进行超前加固,超前注入马丽散后,顶板的整体性得到加强,有效的防止了冒顶的发生,巷道矿压显现明显减少。新技术的不断使用保证了巷道的安全掘进,简化了施工工艺,减轻了工人的劳动强度,提高了巷道的单进水平,为8402工作面按期圈出及安全顺利回采打下了坚实的基础。

3.3 8402工作面回采情况

13#-2层8402工作面从2012年4月10日正式生产,现已顺利回采90d,总进度413m,工作面经历了从实体煤下→采空区下→实体煤下的安全回采,累计总产量19万t,平均日产2080t,最高日产2600t,

最高月产7万t,最低月产5万t。

3.3.1 采煤方法

工作面采用单一长壁后退式综合机械化开采方法,全部跨落法辅助人工强制放顶管理顶板。工艺流程为:单向割煤,尾部斜切进刀→上行割煤→推溜→移架,下行清煤。

3.3.2 工作面设备配置

采高选择:本工作面在开采上覆实体煤段时,见顶见底,采高2.6m;开采上覆采空区段时,见底留顶,保证复合顶板厚度2.5m,采高2.1m。

支架选型:根据开采13#-1层时的采高为2.8m,留设顶煤厚度约0.5m可计算13#-2层时每架支架所承受的最大静压力为上覆13#-1层顶塌实时岩体冒落带及0.5m顶煤的重量之和,如图3所示。

Pd=4.5×1.5×(0.5×1.35+9×2.5)=155.4吨/架

上式中:4.5 为支架接顶长度;1.5为支架宽度;0.5为留设顶煤厚度;1.35为煤的容重;9为上覆13#-1层顶板充填满13#-1层采空冒落带高度;2.5为岩石容重。

若按1.5的安全系数计算,则每架支架的支承能力应为233.1t/架,换算可得每架支架的支承能力应大于2284.38KN。

所以本工作面选择ZZS5200/12/23支架可满足生产需要。

3.3.3 工作面进上覆采空区下时的技术措施

工作面进入采区前30m时,采高由2.6m逐渐降低为2.5m,留设顶煤以保证顶板厚度在2.5m以上;工作面进入采空区前20m时向煤体打钢针,向煤壁打锚杆护帮,防止片帮,减少自由面;支架移架采取紧跟采煤机前滚筒及时移架;把液压支架的大护壁板更换为小护壁板,以减小机道空顶距离。

工作面出采区前15 m时坚持及时移架,当进入实体煤后采用带压移架;进入实体煤后,逐渐加大采高至2.6m后,更换小护壁板为大护壁板。

3.3.4 工作面矿压显现情况

8402工作面在实体煤下推进,支架阻力平稳,安全阀按周期来压步距28m-35m均匀开启;当工作面推进到上覆采空区前20m至进入采空前7m时,工作面及巷道片帮严重,顶板压力增大,局部破碎冒落,支架阻力增大到30Mpa左右,安全阀80%开启;当工作面推进至距采空区边界7m时,工作面进入煤体的塑性变形区,顶板压力变小,煤壁片帮现象减轻;当工作面完全推进至采空区下后,顶板压力小,煤壁平直,截齿牙痕明显,支架阻力平稳,安全阀很少开启;当工作面推进至采空区范围外15m时,压力显现与工作面进入采空区时相似,强度稍弱。

3.3.5 超前、端头支护管理

超前支护采用DZ31.5-28/100型单体液压支柱、1.2m长π型钢梁进行支护,在实体煤下支护长度两巷均为20m,双排支设,柱距0.8m。采空区下单体液压支柱直接支护在原支护棚梁下,5402巷超前支护60m,双排支设;2402巷超前支护30m,双排支设。

在实体煤下安全出口处支护的原超前支护不能提前回取,每循环只能回取二根单体支柱。在采空区下原超前支护不变的情况下,增设迈步式抬棚,抬棚支护方式为二对四梁,棚梁为11#工字钢,长度为4.0m,每对抬棚梁间距0.3m,两对抬棚间距为1m。移架与抬棚迈步的关系为:当顶板比较完整时,先移两对梁的第一组梁,回取支架与抬棚之间的抬棚未架设的原支护棚梁、单体支柱,回取后,重新支设在第二组梁的左(或右),错距0.8m,再移架,依次往复;当顶板破碎时,抬棚梁进行迈步前移,采取延续棚梁,抬棚棚梁与原支护棚梁进入支架上方,在抬棚彻底进入采空区后,用回柱车将其回出。

工作面上下端头支护均由工作面支架设至巷中,巷中至煤柱侧由DZ31.5-28/100型单体液压支柱、1.2m长π型钢梁均匀支设至支架与煤帮中间,柱距0.8m,支设范围为放顶线至煤壁线,每循环回一次。工作面端头支架距煤帮小于0.8m时,端头将不采取加强支护,端头支架至煤帮为0.8m-2.5m时,平行顺槽在支架与煤壁中间支设一排单体支柱,端头支架距煤壁1.8m~2.5m时,平行支架支设两排单体支柱,其中在切顶位置必须支设两根关门柱。当进入采空区下顶板比较破碎时,抬棚梁及原巷道支护棚梁进入支架上方,端头支护采用单体液压

支柱支设在原巷道支护棚梁下,每梁棚下支设一根,共一排。

3.3.6 通防综合管理

13#-28402工作面为一低瓦期工作面,但上覆采空区CO浓度超标,回采过程中对8402综采工作面采取均压防灭火措施,在2402巷口安设均压风机并在2402与5402巷口安设均压风门;对13#-1层采空区黄泥灌浆;在皮带巷与回风巷内对上覆采空区钻孔灌注氯化镁和马丽散聚合产品,有效的的防止上覆采空区CO向工作面泄露,保证工作面的安全生产。

4、存在的问题

巷道在采空区下掘进时的顶板支护不能有效的控制上覆采空的

冲击压力,支护破坏严重,巷道二次维护工程量大,回采时钢棚回收率低。巷道的掘进时底板底鼓严重,虽然采取了向煤柱打Φ108mm的钻孔卸压,但效果不明显。

5、结语

本项目研究成功后,将安全开采出404盘区13#-2层煤炭50万t,该盘区开采结束后,可创经济效益1.5亿多元。首采面开采技术研究获得成功,将为该盘区正常开采总结出宝贵的理论基础和实践经验,同时将会为我矿下部14#层、15#层近距离煤层开采提供一套可靠的采掘安全保障系统,闯出一条开采极近距离煤层的路子和成功的先进经验,促进矿井安全生产,稳产高产,增强马口煤矿生产能力,产生巨大的经济、社会效益,具有广阔的推广应用前景。

作者简介

李东,1966年1月生,山西大同人,工程师、注册安全工程师,毕业于大同煤炭职业技术学院采煤专业,大专,现任大同煤矿集团地煤公司马口煤矿总工程师。

探究急倾斜极近距离煤层联合开采采煤方法

探究急倾斜极近距离煤层联合开采采煤方法 摘要】在目前煤层开采的过程之中,还存在着采煤技术以及采煤方法上的问题,尤其是在急倾斜极近距离煤层联合开采的过程之中会存在较多的问题,所以为了 进一步解决这一问题,需要通过理论研究、试验测试以及实际采煤经验来进行探讨,从而提出可行的优化建议,以此推动采煤的技术的有效应用。 【关键词】采煤技术;采煤方法;联合开采 急倾斜极近距离煤层联合开采具有一定程度上的难度,在回采巷道的布置上 会相对困难,并且整体的开采环境以及通风调节都不能够满足其开采要求,所以 要结合煤层开采主要影响因素来进一步分析煤层的层间结构、基本性质、从而决 定开采高度以及采煤方式,这样才能够提升技术应用措施的安全性以及可靠性, 提升煤炭开采的经济效益以及社会效益。 一、急倾斜极近距离煤层联合开采采煤方法应用现状 从理论等层面上来看,目前的煤层联合开采多基于理论基础所进行应用的采 煤方式,利用煤层之间的压力形式,以及协调采空区压实区之间的内部关系,从 而形成错矩布置的相应形式,才能够满足急倾斜极近距离煤层联合开采采煤工作 的相应需求。但是因为急倾斜极近距离煤层联合开采采煤方式自身具有相应的难度,所以需要通过大量的计算以及实验去优化采煤方式,克服煤层工作面因为生 产二出现的压力垮落现象,尽可能提升支撑点的支撑力,并且为巷道的维护工作 奠定相应的技术理论基础[1]。 而急倾斜极近距离煤层联合开采采煤技术在应用过程之中还有很大的发展空间,所以技术人员需要在充分明确急倾斜极近距离煤层联合开采采煤方法应用现 状以及应用过程之中所存在的相应问题,从而合理利用改进方式,加强常规错矩 定值研究,提升煤层工作面的质量,增强整体煤矿开采工作的安全性以及有序性。 二、优化急倾斜极近距离煤层联合开采采煤方法的具体措施 (一)加强急倾斜极近距离煤层联合开采的理论研究 理论研究是一切技术应用实践的相关基础,所以在优化急倾斜极近距离煤层 联合开采采煤方法的过程之中,需要加强急倾斜极近距离煤层联合开采的理论研究,从本质与核心上来看,目前煤层开采的过程之中,其急倾斜极近距离煤层联 合开采的主要难点都集中在下错距的确定上,所以需要加强理论研究,来确定好 急倾斜极近距离煤层联合开采的相关数据[2]。 可以应用离散元模拟技术来进行联合开采行为的模拟实验,以建立模型的形 式来检测联合开采采煤技术的应用程度。首先从层面的分解上来看,煤层会存在 着多个应力区,所以需要找到下煤层回采工作面、上采空区之间的应力区域,明 确临界点的实际位置;加强对于应力峰值点距离计算,从而得出上煤层的采高、 煤矿整体的粘聚能力、上层岩层在岩体重量平均值、应力集中系数等多个模型建 造基础数据,建立好模型之后才能够进行煤层结构以及实验探究。 (二)急倾斜极近距离煤层联合开采的实验过程 急倾斜极近距离煤层联合开采采煤方式也是需要反复的实验才能够投入应用的,一般而言,目前的急倾斜极近距离煤层联合开采需要结合柔性实验装置,来 进行模拟测试,其中的应用变量一般都是控制在煤层土质、煤层厚度以及煤层结 构分布等数据内容上,利用柔性实验装置顶部的液压装置系统,进行液压处理操作,并且以均匀的分布形式,来提升原型条件的合理状况,才能够提升实验过程

四台矿极近距离煤层采空下开采技术

编订:__________________ 单位:__________________ 时间:__________________ 四台矿极近距离煤层采空 下开采技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2669-96 四台矿极近距离煤层采空下开采技 术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 四台矿404盘区10#层于20xx年底开采结束,为保证盘区正常接替,必须开采404盘区下部11#层。404盘区10#层与11#属极近距离煤层,层间距不稳定。我矿从科学合理的盘区开采设计到首采面8423工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成一套完整的极近距离煤层采空下开采技术。 1盘区概况 11#层404盘区所处的开采水平为1045水平,上部10#层均已回采结束,盘区走向长度1340m~1770m,倾斜长度1180m。煤层包括11#层和盘区中部1000m段11#层与12-1#层合并层,厚度2.0m~7.4m,平均厚度4.0m,煤层倾角10~60,平均30,煤层与10#层层间

近距离薄煤层条带开采引起地表变形模拟分析

近距离薄煤层条带开采引起地表变形模拟分析 王传团1,2,潘志存2,张学豪2 (1.中国矿业大学资源学院,江苏徐州221008;2.济宁市金桥煤矿,山东济宁272200) 摘要近距离薄煤层条带开采是“三下”开采中控制覆岩移动变形和地表沉陷的有效方法之一,提高煤炭资源回收率,同时减少煤矿开采对矿区环境、地表破坏的影响,具有重要的理论意义和应用价值。本文采用数值模拟方法研究了近距离薄煤层条带开采引起的地表变形特征,结果表明:当采出率为50%时条带方案选取采40m留40m时最为合适。 关键词近距薄煤层条带煤柱数值模拟地表变形 中图分类号TD325+.2文献标识码A Simulation Analysis of Surface Deformation by Strip Mining in the Short-Distance Thin Coal Seam Wang Chuan-tuan1,2,Pan Zhi-cun2,Zhang Xue-hao2 (1.School of Resource and Earth Science,China University of Mining and Technology,221008;2.JinQiao Mine,JiNing,272200)Abstract The strip mining in short-distance thin coal seam is one of the effective methods controlling displacement deformation of overlying strata and surface subsidence in coal mining under buildings and railroads and water bodies.The method has a great theoretical significance and application value by increasing recovery rate of coal resources and cutting down the effect of coal mining on environment and surface of mining area.The numerical simulation method is adopted to study the surface deformation characteristics by the strip replacement mining in short-distance thin coal seam.Such conclusions are drawn as follows:the strip project of forty meters mining with forty meters reserving is quite suitably selected while half of mining rate. Key words short-distance thin coal seam strip coal pillar numerical simulation surface deformation 中国2010年煤炭规划产量为25亿t,2020年为28亿t,煤炭将长期是中国的主要能源[1]。据不完全统计“三下”压煤量达140亿t,仅全国建筑物下压煤量就达87.6亿t,占“三下”压煤总量的63.5%[2]。鉴于条带开采在解放“三下”压煤中的重要作用,国内外学者对条带开采技术进行了大量的研究。如条带开采地表移动机理和规律[3,4]、条带开采地表移动和变形预计方法和预计参数[5,6]、条带煤柱稳定性[7,8]、条带开采优化设计[9]等。条带开采由于能有效地控制地表沉陷,保护地面建(构)筑物和生态环境,一般不增加或较少增加吨煤生产成本,而且有利于安全生产,生产管理也不复杂。因此,深入研究作为“三下”采煤重要技术措施的条带开采无疑对解放“三下”压煤具有重要意义。为此本文拟采用FLAC3D软件对近距离薄煤层村下条带开采方式所引起的地表变形情况进行研究分析。 1数值模拟 1.1计算模型的确立 根据某煤矿所处区域的实际地质条件,建立倾斜方向长度为600m(X方向),走向方向长度为700m(Y 方向)及垂直方向长度为374m(Z方向)的三维计算模型,即三维计算模型大小为600?700?374m,模型共有258600个单元,273128个节点。为了提高计算精 *收稿日期:2011-09-22 作者简介:王传团(1970-),男,1994年毕业于中国矿业大学采矿工程系。现任济宁市金桥煤矿总工程师,现攻读中国矿业大学资源学院矿业工程硕士,曾在国内知名刊物发表论文数篇。曾获得省部级科技成果一、二、三等奖多项。度,工作面周围网格进行加密处理,其他部分网格成发散状,如图1所示。模型的两侧面(水平方向)采用水平位移约束,模型底面采用垂直方向及水平方向位移约束,模型上部边界为地表,因此采用自由面 。 图1计算区域内模型网格划分 1.2岩体力学参数的选取 本计算选取莫尔—库仑模型进行计算分析。依据现场地质调查和相关试验研究所提供的岩石力学试验结果,在考虑岩石尺度效应的基础上,最终确定模拟计算所需的岩体力学参数。 1.3分析方案 为了正确模拟分析近距薄煤层条件下不同煤柱尺寸时地表变形情况,为在建筑物下进行多工作面联合条带开采提供理论基础及必要的科学依据,特制定如下两类计算方案,其中第一类主要分析同一采出率不同煤柱留设尺寸,以采出率为50%为基准,煤柱留设尺寸分别为30m、40m及50m共3个计算方案;第二类主要分析同一采出尺寸不同煤柱留设宽度,以采出宽度为40m为基准,留设煤柱尺寸分别为10m及40m共 37 2012年第2 期

四台矿极近距离煤层采空下开采技术实用版

YF-ED-J6547 可按资料类型定义编号 四台矿极近距离煤层采空下开采技术实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

四台矿极近距离煤层采空下开采 技术实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 四台矿404盘区10#层于20xx年底开采结 束,为保证盘区正常接替,必须开采404盘区 下部11#层。404盘区10#层与11#属极近距离 煤层,层间距不稳定。我矿从科学合理的盘区 开采设计到首采面8423工作面掘进、开采的成 功完成,总结出宝贵的理论基础和实践经验, 形成一套完整的极近距离煤层采空下开采技 术。 1盘区概况 11#层404盘区所处的开采水平为1045水

平,上部10#层均已回采结束,盘区走向长度1340m~1770m,倾斜长度1180m。煤层包括11#层和盘区中部1000m段11#层与12-1#层合并层,厚度2.0m~7.4m,平均厚度4.0m,煤层倾角10~60,平均30,煤层与10#层层间距 0.4m~1.5m,平均1m。 404盘区内地质构造复杂,有陷落柱4个,断层分布较密集。11#层顶板为粉细砂岩互层、层理、节理、裂隙发育,稳定性差,掘进和回采时顶板不易维护,易发生漏顶事故。 2、开发方案说明 2.1 盘区巷道布置 10#层、11#层盘区巷道采用联合布置方式,开采11#层时,利用现有的开采10#层已布置的3条沿南北向布置的盘区巷,平行1045轨

煤峪口矿近距离薄煤层采场顶板跨落机理及支架承载分析

煤峪口矿近距离薄煤层采场顶板跨落机理及支架承载分析 p煤峪口矿14#层408盘区煤层倾角1°~3°,赋存较稳定,煤厚变化大,煤层厚度一般为0.07~4.17米,盘区西翼(盘区上山)开采期间煤厚变化不大,在2米左右。盘区东翼(盘区下山)开采时煤层厚度变薄,最薄处不足1.4米,工作面偶有冲刷、夹石。 从14#层307盘区、410盘区现已掘出巷道揭露的煤层来看,赋存情况不容乐观,煤厚变化大赋存极不稳定,煤层厚度为0.8-2.3,普遍不足1.6米。 408盘区盘区西翼(盘区上山)开采期间,采煤方法为长壁全部冒落法,工作面支护采用ZZS-5600/14/28型液压支架:适应煤厚 1.6-2.6米;工作阻力:28.5MPa(5600KN),支护强度:0.73-0.98MPa,该支架完全能够适应采场支护。盘区东翼(盘区下山)煤层厚度变薄,该支架在采高上已显出不足。为保证14#层的顺利开采,支架重新选型迫在眉睫。 ZYB4400/8.5/18液压支架适应煤厚1-1.6米;支护强度:0.766 MPa;初撑力:31.4MPa(3860KN);工作阻力:35.7MPa(4400KN)泵站压力:31.4MPa。支护强度是否能够支护采场顶板,是目前薄煤层开采采场支护急需解决的问题。 2 采区围岩状况 煤峪口矿14#层属近距离薄煤层,与11~12#层间距为2.86~10.45米,平均厚度4.39米。层间顶板为灰白色粉砂岩,上覆为11、12#层采空冒落部分。直接底灰色灰褐色粉砂岩,平均厚度1.6米。 3 采场顶板跨落机理及支架承载分析 由已采14#408盘区工作面矿压观测,工作面没有明显周期来压,有瞬时增阻。随工作面推进,直接顶在支架切顶线后1米左右跨落,支架切顶线后最大悬顶长1米左右,上覆为11、12#层采空冒落部分松散岩体随着下落。由于松散岩体高度大,采空区高度小,下落的松散岩体相互挤压,并未按流体沿斜面下滑。 11、12#合并层基本顶为灰白色中砂岩,厚度31.12—32.41米,平均31. 7米,直接顶灰白细粒砂岩细粒砂岩互层,厚度2.52—2.1米,平均2.18米。煤厚7.5-8.8米,平均煤厚8米。上下分层采高均为2.8米,下分层顶煤2.4厚米,顶煤回收率按50%计,则共采出煤厚6.8米;上下分层采出后,直接顶、下位基本顶冒落后填满采空区。 冒落岩石碎胀系数取1.35。设岩层冒落高度h: 6.8+h=1.35h

近距离煤层开采

浅谈马口煤矿极近距离煤层 采空下开采设计 [摘要] 对马口煤矿极近距离煤层采空下开采设计进行分析,并通过生产实践总结出一套可靠的采掘安全保障系统,形成了一套完整的极近距离煤层采空下开采技术,对近距离煤层开采具有指导作用,具有广阔的推广应用前景。 [关键词] 极近距离煤层;采空区下;巷道布置;开采技术。 马口煤矿404盘区13#-1层于2010年底开采结束,为保证盘区正常接替,必须开采404盘区下部13#-2层。404盘区13#-1层与13#-2属极近距离煤层,层间距不稳定。我矿从科学合理的盘区开采设计到首采面13#-2层8402工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成一套完整的极近距离煤层采空下开采技术。 1、盘区概况 13#-2层404盘区所处的开采水平为1185水平,上部13#-1层均已回采结束,盘区走向长度1161m,倾斜长度480—615m。煤层厚度 1.8m~3.1m,平均厚度 2.6m,煤层倾角1°—5°,平均3°,13#-1和13#-2煤层层间距1.0m~2.5m,平均2m。 404盘区内地质构造复杂,有陷落柱2个,断层分布较密集。13#-2层顶板为砂岩,层理、节理发育,稳定性差,掘进和回采时顶板不易维护,易发生冒顶事故。

2、开拓方案说明 2.1 盘区巷道布置 13层盘区8402综采工作面顺槽巷道采用内错距布置方式。如图1所示。 2.2上下顺槽内错距的确定 13#-2层受上覆13#-1层采空区及层间距的影响,根据上部采空区塌落稳定后采空区及巷间煤柱的压力传递范围,选择13#-2层工作面与13#-1工作面内错式布置。根据顺槽平巷矿山压力显现规律,13#-2层顺槽在其与13#-1层层间距确定的情况下,应布置于压力的传递影响角以外,压力影响角与煤层倾角、层间岩石性质有关,一般情况下当煤层

煤矿近距离煤层开采顶板控制措施

****8****煤业集团有限公司 近距离煤层开采顶板管理 安全技术措施 二〇二一年一月一日

目录 1 概况 (3) 1.1矿井概况 (3) 1.2位置、范围 (3) 1.3煤层顶底板赋存特征 (3) 1.4地质构造情况 (3) 1.5水文地质情况 (3) 1.6瓦斯、火、煤层情况 (4) 1.7上部煤层开采情况 (4) 2 围岩控制与锚杆支护原理 (4) 2.1下煤层巷道矿压特征 (4) 2.21工作面锚杆支护计算 (6) 3 巷道支护 (8) 3.1顺槽支护方案及参数 (8) 3.2切眼支护方案及参数 (11) 4 安全技术措施 (14)

1 概况 1.1 矿井概况 ****8****煤业集团有限公司位于***** 1.2位置、范围 下层煤第一个工作面为****工作面,现以第一个工作面进行说明。 ****工作面为9号煤首采面,东为一采区3条下山,西为井田边界,上覆****采空工作面,间距为6m左右。该工作面埋深352~394m,长171m,推进长度786m。采煤方法为综采一次采全高。 1.3煤层顶底板赋存特征 9号煤层顶底板岩性综合柱状。煤层位于太原组中段底部,上距8号煤层6.20~7.05m,平均6.54m。煤层厚度4.20m,煤层结构简单,含夹矸1层,为全区稳定可采煤层。煤层顶板岩性为砂质泥岩、粉砂岩、泥岩;底板岩性为砂岩、泥岩。 1.4地质构造情况 ****工作面位于华北板块鄂尔多斯板内拗陷带鄂尔多斯东缘板拗柳林鼻状块凸东部,受区域构造影响,本工作面总体上为一走向北东——南西,倾向北西的单斜构造,在此基础上伴随宽缓的波状褶曲,地层比较平缓,倾角为-5°~+3°。预计本工作面内无褶曲、大断层及陷落柱,无岩浆岩侵入现象。采区地质构造类型属简单类。 1.5水文地质情况 (1)9号煤层顶板上覆第四系和上伏第三系松散岩性孔隙含水层、二叠系****组和上、下统石盒子组砂岩裂隙含水,石碳系上统太原组灰岩含水层,其中第四系和上伏第三系松散岩性孔隙含水层、二叠系****组和上、下统石盒子组砂岩裂隙含水层富水性弱,靠大气降水补给,对巷道掘进影响较小;灰岩含水层岩溶裂隙较发育,富水性中等,预计掘进****回采巷道过程中会有少量顶板淋水。 (2)****回采巷道对应地面位置为山谷,无大的水体,盖山厚度为352~394m左右,煤层上覆砂岩含水层受大气降水补充,对掘进无影响。

四台矿极近距离煤层采空下开采技术

编号:AQ-JS-03603 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 四台矿极近距离煤层采空下开 采技术 Mining Technology Under Goaf of extremely close coal seam in Sitai Mine

四台矿极近距离煤层采空下开采技 术 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 四台矿404盘区10#层于2001年底开采结束,为保证盘区正常接替,必须开采404盘区下部11#层。404盘区10#层与11#属极近距离煤层,层间距不稳定。我矿从科学合理的盘区开采设计到首采面8423工作面掘进、开采的成功完成,总结出宝贵的理论基础和实践经验,形成一套完整的极近距离煤层采空下开采技术。 1盘区概况 11#层404盘区所处的开采水平为1045水平,上部10#层均已回采结束,盘区走向长度1340m~1770m,倾斜长度1180m。煤层包括11#层和盘区中部1000m段11#层与12-1#层合并层,厚度2.0m~7.4m,平均厚度4.0m,煤层倾角10~60,平均30,煤层与10#层层间距0.4m~1.5m,平均1m。

404盘区内地质构造复杂,有陷落柱4个,断层分布较密集。11#层顶板为粉细砂岩互层、层理、节理、裂隙发育,稳定性差,掘进和回采时顶板不易维护,易发生漏顶事故。 2、开发方案说明 2.1盘区巷道布置 10#层、11#层盘区巷道采用联合布置方式,开采11#层时,利用现有的开采10#层已布置的3条沿南北向布置的盘区巷,平行1045轨道大巷依次布置轨道巷、盘区皮带巷、盘区回风巷。盘区轨道巷、盘区回风巷布置在10#层,盘区皮带巷布置在11#层。顺槽巷倾斜布置,即东西向布置。如图1所示。 2.2上下顺槽内错距的确定 11#层受上覆10#层采空区及层间距的影响,根据上部采空区塌落稳定后采空区及巷间煤柱的压力传递范围,同时结合同煤集团公司王村矿近距离煤层开采经验,选择11#层工作面与10#工作面内错式布置。 根据顺槽平巷矿山压力显现规律,11#层顺槽在其与10#层层间

相关主题