搜档网
当前位置:搜档网 › princomp函数

princomp函数

princomp函数
princomp函数

matlab实现主成分分析 princomp函数

最近看了些主成分分析,混迹Matlab论坛,翻了n多帖子,对princomp函数有了些了解。

在此只讲一些个人理解,并没有用术语,只求通俗。

贡献率:每一维数据对于区分整个数据的贡献,贡献率最大的显然是主成分,第二大的是次主成分......

[coef,score,latent,t2] = princomp(x);(个人观点):

x:为要输入的n维原始数据。带入这个matlab自带函数,将会生成新的n维加工后的数据(即score)。此数据与之前的n维原始数据一一对应。

score:生成的n维加工后的数据存在score里。它是对原始数据进行的分析,进而在新的坐标系下获得的数据。他将这n维数据按贡献率由大到小排列。(即在改变坐标系的情况下,又对n 维数据排序)

latent:是一维列向量,每一个数据是对应score里相应维的贡献率,因为数据有n维所以列向量有n个数据。由大到小排列(因为score也是按贡献率由大到小排列)。

coef:是系数矩阵。通过cofe可以知道x是怎样转换成score 的。

则模型为从原始数据出发:

score= bsxfun(@minus,x,mean(x,1))*coef;(作用:可以把测试

数据通过此方法转变为新的坐标系)

逆变换:

x= bsxfun(@plus,score*inv(coef),mean(x,1))

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

构造辅助函数证明微分中值定理及应用

构造辅助函数证明微分中值定理及应用 摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。 关键字:辅助函数,微分方程,微分中值定理 Constructing auxiliary function to prove differential median theorem and its copplications

Abstract: Constructing auxiliary function is the important method to prove median theorem. This paper gives several ways of constructing auxiliary function:Differential equation, Constant K, Geometry law, Primary function law, Determinant law;and Gives some specific examples to illustrate how to constructing. Key words: Auxiliary function; Differential equation; Differential median theorem 目录 一:引言 (4) 二:数学分析中三个中值定理 (4) 三:五种方法构造辅助函数 (6) 1:几何直观法 (6)

2:行列式法…………………………………………………………………… .第7页 3:原函数法 (8) 4:微分方程法 (10) 5:常数k值法 (13) 四:结论 (15) 参考文献 (15) 致谢 (16) 一:引言 微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础,这部分内容理论性强,抽象程度高,所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命

小学数学 数学故事 数学猜想系列四色猜想

数学猜想系列----四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 1

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

小学数学数学故事数学猜想系列四色猜想

小学数学数学故事数学猜想系列四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

数学故事大全

数学故事大全 动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109 度28 分,所有的锐角为70 度32 分,这样既坚固又省料。蜂房的巢壁厚0.073 毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110 度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54 度44 分8 秒!而金刚石结晶体的角度正好也是54 度44 分8 秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365 条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3 亿5 千万年前的珊瑚虫每年“画”出400 幅“水彩画”天。文学家告诉我们,当时地球一天仅21.9 小时,一年不是365 天,而是400 天蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109 度28 分,所有的锐角为70 度32 分,这样

既坚固又省料。蜂房的巢壁厚0.073 毫米,误差极小。蚂蚁的计算本领也十分高明。英国科学家亨斯顿做过一个有趣的实验:他把一只死蚱蜢切成三块,第二块比第一块大一倍,第三块比第二块大一倍,在蚂蚁发现这三块食物4 0分钟后,聚集在最小一块蚱蜢处的蚂蚁有2 8只, 第二块有4 4只,第三块有8 9只,后一组差不多较前一组多一倍;蚂蚁的计算本领如此准确,令人惊奇! 美国有只黑猩猩,每次吃10根香蕉。有一次,科学家在黑 猩猩的食物箱里只放了8根香蕉,黑猩猩吃完后,不肯离去,不停地在食物箱里翻找。科学家再给它1根,它吃完后仍不肯走开,一直到吃够10根才离开。看来黑猩猩会数数,至少能数到10植物中的数学知识李忠东精彩的“斐波那契数列” 早在13 世纪,意大利数学家斐波那契就发现,在1、1、2、3、5、8、13、21、34 、55 、89??这个数列中,有一个很有趣的规律:从第三个数字起,每个数字都等于前两个数加起来的和,这就是著名的“斐波那契数列”科。学家们在观察和研究中发现,无论植物的叶子,还是花瓣,或者果实,它们的数目都和这个著名的数列有着惊人的联系。 像其它植物一样,桃树的叶子在排列上井然有序。它叶子的叶序周是“2” ,即从起点至终点的螺旋线绕树枝两圈,5 片桃树叶排列在这“2”周的螺旋空间里,有着明显的排列规律。桃花、梅花、李花、樱花等也是依照“斐波那契数列”排列的,花瓣数目为5 枚。植物的果实和种子也不

经典数学故事教学内容

经典数学故事----高斯的故事 高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时後的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然後他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆. 高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音後,就自己学着读起书来。 七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然後把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为101的数目,所以答案是50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。 经典数学故事----“无理数”的由来 公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。 不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

构造辅助函数

构造辅助函数解题 一、 直接构造 1.实数k 为何值时,不等式x e kx ≥对x R ?∈恒成立? 二、稍作变形 2. 设函数()1(01)ln f x x x x x =>≠且 (I)求()f x 的单调区间; (II)已知12a x x >对(0,1)x ?∈成立,求实数a 的取值范围. 三、适当放缩 3. 设函数1()ln(1)(1)n f x x x = +--.其中n N *∈.求证:对n N *?∈,当2x ≥时,有()1f x x ≤-. 四、化离散为连续 4.证明:对n N *?∈,不等式23 111ln(1)n n n +> -都成立.

五、二次构造 5.函数()2 2 ln (1)1x f x x x =+-+ (1)求()f x 的单调区间; (2)若不等式11n a e n +??+≤ ??? 对任意的n N *∈都成立,求a 的最大值. 六、构造双函数 6.证明:对0x ?>,都有12ln x x e ex > -成立. 七、注意繁简之分 7.设()ln f x x =. (1)求函数()()1g x f x x =+-的最大值; (2)已知0a b <<,求证:()()22 2()a b a f b f a a b --> +. 附2012年高考题分类: 一、数列与不等式 1.已知函数()ln()f x x x a =-+的最小值为0,其中0a >. (1)求a 的值; (2)若对任意的[)0,x ∈+∞,有()2f x kx ≤成立,求实数k 的最小值;

(3)证明:12ln(21)2()21n i n n N i *=-+<∈∑ - 2. 设函数()1(0)x x f x ae b a ae =++> (Ⅰ)求()f x 在[)0,+∞内的最小值; (Ⅱ)设曲线y=f(x)在点(2,f(2))处的切线方程为y= 32x ,求a,b 的值。 3. 设函数()(,,)n n f x x bx c n N b c R +=++∈∈. (Ⅰ)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12?? ??? 内存在唯一的零点; (Ⅱ)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (Ⅲ)在(Ⅰ)的条件下,设n x 是()n f x 在1,12?? ???内的零点,判断数列23,,,n x x x 的增减性。 4.(I )已知函数()(1)(0)r f x rx x r x =-+->,其中r 为有理数,且01r <<,求()f x 的最小值; (II )试用(I )的结果证明如下命题:设12120,0,,a a b b ≥≥为正有理数,若121b b +=,则12121122b b a a a b a b ≤+; (III )请将(II )中的命题推广到一般形式,并用数学归纳法证明你所推广的命题。注:当α为正有理数时,有求道 公式()1x x ααα-'=. 5.函数()223f x x x =--,定义数列{}n x 如下:112,n x x +=是过两点()(4,5),(,)n n n P Q x f x 的直线n PQ 与x 轴交点 的横坐标. (1)证明:123n n x x +≤<<; (2)求数列{}n x 的通项公式.

36个数学小故事

36个数学小故事,带孩子一起趣味学数学 36个数学故事目录 ·数学家与消防员·苏格兰的黑羊·很少篱笆的故事 ·数学家花拉子密的遗嘱·爱因斯坦给孩子们出的题 ·苏步青做过的数学题·怎样来分才合理·应敲哪个房间? ·坐公交车·一休小和尚的故事·小头爸爸与大头儿子比赛 ·卖水果的狐狸·八戒卖鱼·如何切西瓜·谁要的是猪排? ·爱做运动·三人各自的籍贯和职业·三户人家区分开 ·那个老师教数学?·店主亏了吗?·魔术师与数学·兄妹四个多少岁? ·老山羊损失了多少钱?·排队的问题·坐井观天的小青蛙·烙饼的故事 ·玩具有多少?·篮子里面的鸡蛋·小猴子捞帽子·小熊玩具店 ·小猴的冠军(数学故事会系列)·买书兄弟(数学故事会系列) ·小蜗牛爬井台(数学故事会系列)·小猴子摘桃(数学故事会系列) ·小猪做客(数学故事会系列)·猪小戒卖文具(数学故事会系列) 数学小故事第一则——数学家与消防员 一天,数学家觉得自己已受够了数学,于是他跑到消防队去宣布他想当消防员。 消防队长说:“您看上去不错,可是我得先给您一个测试。” 消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管。消防队长问:“假设货栈起火,您怎么办?”数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭。”消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?”数学家疑惑地思索了半天,终于答道:“我就把货栈点着。” 消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?” 数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。” 数学小故事第二则——苏格兰的黑羊 物理学家、天文学家和数学家走在苏格兰高原上, 碰巧看到一只黑色的羊.“啊,” 天文学家说道,“原来苏格兰的羊是黑色的.” “得了吧, 仅凭一次观察你可不能这么说.” 物理学家道, “你只能说那只黑色的羊是在苏格兰发

16个趣味数学小故事集锦

16个趣味数学小故事集锦 数学在人的生活中处处可见,息息相关。若能良好的使用数学,则能使我们的生活变得更加快捷。 进入数学的礼堂,让一个一个字符为我们的生活带来乐趣与方便。其实计算,就是这么简单。 1、趣味数学小故事——200字 泰勒斯看到人们都在看告示,便上去看。原来告示上写着法老要找世界上最聪明的人来测量金字塔的高度。于是就找法老。 法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。泰勒斯真是世界上最聪明的人,他不用爬到金字塔的顶上就方便量出了金字塔的高度。 2、趣味数学小故事——200字 战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。 但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

3、趣味数学小故事——200字 动物学校举办儿歌比赛,大象老师做裁判。 小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。” 小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。” 大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。 4、趣味数学小故事——200字 气象学家Lorenz提出一篇论文,名叫《一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?》论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 5、趣味数学小故事——200字 唐僧师徒四人走在无边无际的沙漠上,他们又饿又累,猪八戒想:如果有一顿美餐该有多好啊!孙悟空可没有八戒那么贪心,悟空只想喝一杯水就够了。孙悟空想着想着,眼前就

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

zt4专题四关于中值定理证明中辅助函数的构造

专题四关于中值定理证明中辅助函数的构造 构造函数法的内涵十分丰富,没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归等思想.使用构造法是一种创造性的思维活动,一般无章可循,它要求既要有坚实的基础知识背景,又要有丰富的想象力和敏锐的洞察力,针对问题的具体特点而采用相应的构造方法,常可使论证过程简洁明了. 在教学中,不失时机地加强对学生的构造性思维的训练,对培养学生的创新意识、创新能力大有裨益.同时构造性思维的形成是培养创造性思维能力的一种途径.它是在数学教学中用数、形结合,沟通问题条件与结论,构造出数学模型,从而达到解决问题目的的一种解题数学法.这种方法要求综合应用各种知识,把各科知识有机结合,根据问题的条件、结论、性质及特征,横向联系,纵向渗透,构造出辅助图形或辅助关系式、使问题思路清晰,解法巧妙.有一些数学问题在常规下束手无策,而构造法使问题得到别开生面、简洁而新颖的解法. 数学中的许多问题,往往可以通过构造辅助函数,利用间接方法得到解决.这一方法应用的广泛性,在于其灵活性. 例如,证明拉格朗日定理时,通常都是采用引入一个辅助函数,把适合拉格朗日定理的函数转换成适合罗尔定理的函数的方法.在这里,辅助函数是使问题转化的桥梁. 构造辅助问题,并非是为了它本身,而是要通过辅助问题帮助我们解决原来的问题.那个原来的问题才是我们要达到的目标,而辅助问题只是我们试图达到的手段,是原来问题转化的桥梁.针对所要解决的问题构造一个辅助问题,则原来问题的求解或证明,就转化为对一个函数的性质的研究,可以运用函数的定义域、值域、单调性、最大最小值、连续和微分积分等性质来帮助解决,运算过程就比较简单了. 微分中值定理是沟通函数及导数之间的桥梁,是研究函数性质的有力工具.而各种辅助函数又往往有所不同,这些辅助函数之间有没有内在的联系呢?引入这些辅助函数有没有一般规律呢?为解答上面的问题,给出辅助函数的一般表达式: F(x)=f(x)— ()() f b f a b a - - x c + 此式可以作为证明拉格朗日中值定理所引用的辅助函数,其中c为任意常.容易验证,当f(x)满足拉格朗日中值定理的条件时,相应的F(x)满足罗尔定理的条件.由于它们都含有任意的常数c ,所以具有某种一般性,是辅助函数的最简单的一种形式.每给出一个c的具体的辅助函数,对应一个具体的证法.不难看出将F(x)与某些函数复合所得的函数,也可以作为辅助函数.

趣味数学小故事集锦(1)

趣味数学小故事集锦 1、0和它的数字兄弟 有一天,森林里面来了一群特殊的“客人”。它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来一个瘦子,它说:“我是1,像支铅笔细又长”。接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像只耳朵听声音。”“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割青草。”“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。” 0耷拉着脑袋说“我最小。”“对,就是这个表示什么都没有的0。”9用冷淡的口气说道。9刚说完,动物们和它的数字兄弟都笑了。0更加不好意思了,动物们看到0这么没有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。突然一只大象在里面挣扎了很久,用了很大的力气总想爬上来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。可是,怎么也爬不上来,它只好在里面大声“救命呀!救命呀!”动物们听到了,就纷纷跑到洞口边,想把大象救出来。数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量,费了九牛二虎之力,也没有把大象拉上来。这个时候,只听见后面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉强的同意它也来帮忙。它们重新组成数字9876543210,它们的力量一下子就增大10倍。哈哈……,一下子就把大象拉上来了。动物们都很感谢数字兄弟,同时也为冷落了0感到愧疚,它们都来到0的身边,愿意和0做朋友。数字兄弟也开始重视0了,愿意和它一起玩耍。从此以后,0再也不自卑了,它觉得自己还是很有用的。 2、美丽的植树图案

常见的几个函数

几种常见的函数及其应用 1.迭代函数 例1 若()f x = 1()()f x f x =,1()(())n n f x f f x +=,求()n f x 的表达式。 例2已知()1x f x x = +,0x ≥,若1()()f x f x =,1()(())n n f x f f x +=,n N +∈,则 2014()f x 的表达式为 . 2.高斯函数:(取整函数)用[]x 表示不超过x 的最大整数,例如[]1.21=,[]00=, []1.42-=-,则()f x 例 设x R ∈,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立.... ,则正整数n 的最大值是 A .3 B .4 C .5 D .6 8.(2013湖北卷文科)x 为实数,[]x 表示不超过x 的最大整数,则函数 ()[]f x x x =-在R 上为 A.奇函数 B.偶函数 C.增函数 D.周期函数 3.取小数部分函数 例 对任意x R ∈,函数{}[]()f x x x x ==-,例如{}[]1.2 1.2 1.2 1.210.2=-=-=, {}333330=-=-=,{}[]1.2 1.2 1.2 1.2(2)0.8-=---=---=,则()f x 的图像是 4.符号函数:10()sgn 0010x f x x x x >?? ===??-

例 设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >?? ==??-

相关主题