搜档网
当前位置:搜档网 › DLT 606.3-1996火力发电厂热平衡导则

DLT 606.3-1996火力发电厂热平衡导则

DLT 606.3-1996火力发电厂热平衡导则
DLT 606.3-1996火力发电厂热平衡导则

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

火力发电厂节水导则

DL/T783—2001 前言 为积极贯彻国家关于“厉行节约用水”的方针政策,指导火力发电厂进一步做好节水工作,根据原电力工业部计综[1995]44号文《关于下达1995年制定、修订电力行业标准计划项目的通知》的安排,制定本标准。 本标准是在总结我国火力发电厂多年节水经验的基础上参照国内外有关技术标准制定的。 本标准的附录A是提示的附录。 本标准起草单位:山东电力集团公司 本标准主要起草人:张卫东、张令符、郭承泉、张明志、夏青扬、李秀国、胡延谦。 本标准由电力行业汽轮机标准化技术委员会负责解释。 2001年10月08日发布,2002年02月01日实施。

中华人民共和国电力行业标准 火力发电厂节水导则 DL/T783—2001 Guide for water saving of thermal power plant 1 范围 本标准规定了火力发电厂节约用水应遵守的技术原则、应达到的技术要求和需采取的主要技术措施,适用于火力发电厂规划、设计、施工和生产运行中的节水工作。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 CJ25.1—89 生活杂用水标准 CJJ 34—90 城市热力网设计规范 DL/T 606—1996 火力发电厂能量平衡导则 DL 5000—1994 火力发电厂设计技术规程 DL/T 5046—1995 火力发电厂废水治理设计技术规程 DL/T 5068—1996 火力发电厂化学设计技术规程 3 总则 3.1 火力发电厂节水工作的任务是:认真研究各系统用水、排水的要求和特点,分析影响节水的各种因素,制定和实施一系列有效的技术措施,使有限的水资源在火力发电厂发挥其最大的综合经济效益和社会效益。 3.2 火力发电厂节水工作应遵守和执行国家现行的有关法律、法规和标准,并应考虑发电厂所在地区的有关法规。 3.3 火力发电厂节水应根据厂址地区的水资源条件,因地制宜,合理控制耗水指标。做到既要满足电厂安全、经济、文明生产的需要,又应符合当地水利规划、水资源利用规划和水资源保护管理规划的要求。 3.4 火力发电厂节水应依靠科技进步,不断总结经验,积极慎重地推广应用国内外先进节水技术,采用成熟的节水新工艺、新系统和新设备,努力降低各系统的用水量;同时应积极开发排水的重复利用技术,使废水资源化,不断提高复用水率和废水回收率,并通过全厂水量平衡及水质调查,优化用水流程,改进废水处理方式。 3.5 火力发电厂的节水管理应贯穿规划、设计、施工和生产运行的全过程,并应加强部门间、专业间的密切配合和相互协调。 3.5.1 火力发电厂的规划和设计应把节约用水作为一项重要的技术原则,为施工和生产过程中做好节水工作创造条件。工程可行性研究报告中应提出节水的原则性技术措施;初步设计文件中应提出节水的具体措施和设计水耗指标,并对设计方案进行必要的技术经济比较和论证,同时说明系统运行后可能出现的问题及解决办法;施工图中应有节水措施的详细设计。火力发电厂施工组织设计文件中应有具体节水措施。 3.5.2 火力发电厂的施工和运行应全面贯彻并正确实施设计的各项节水技术措施和要求。设备、管道安装前应做好清理、保护和保养,安装过程中和安装后的清洗都要采用正确的程序和方法,机组启动前应做好水系统的调整和试验,保证达标投产;生产运行中应加强对各系统水量、水质的计量、监测和控制,并应加强对水系统设备、管道的检修和维护,做到汽水系统严密无泄漏,启动过程中汽水损失少,正常运行后经常处于最佳状态。生产中还应根据技术的发展、水源条件的变化和环保要求的日趋严格,进行必要的技术改造,使火力发电厂的节水水平不断提高。

热平衡计算

热平衡计算 热平衡计算 1.热平衡原理 要使通风房间温度保持不变,必须使室内的总得热量等于总失热量,即。 在通风过程中,室内空气通过与进风、排风、围护结构和室内各种高低温热源进行交换,为了使房间内的空气温度保持不变,必须使房间内的总得热量∑Qd与总失热量∑Qs相等,也就是要保持房间内的热平衡。即热平衡:∑Qd=∑Qs。 通风房间内的得热与热量如图3-2-7所示。随工业厂房的设备、产品及通风方式的不同,车间得热量、失热量差别较大。一般通过高于室温的生产设备、产品、采暖设备及送风系统等取得热量;通过围护结构、低于室温的生产材料及排风系统等损失热量。 图3-2-7 通风房间内的得热与热量模型 在使用机械通风,又使用再循环空气补偿部分车间热损失的车间中,热平衡的等量关系如图3-2-8所示。

图3-2-8 热平衡的等量关系 由图3-2-8的热平衡等量关系,即的通风房间热平衡方程式为: (3-2-16) 式中——围护结构、材料吸热的总失热量,kW; ——生产设备、产品及采暖散热设备的总放热量,kW; Lp——局部和全面排风风量,m3/s; Ljj——机械进风量,m3/s; Lzj——自然进风量,m3/s; Lhx——再循环空气量,m3/s; pu ——室内空气密度,kg/ m3; Pw——室外空气密度,kg/ m3; tu——室内排出空气湿度,℃; tjj——机械进风湿度,℃; to——再循环送风温度,℃; c——空气的质量比热,其值为1.01kj/kg·℃; tw——室外空气计算湿度,℃, tw的确定:在冬季,对于局部排风及稀释有害气体的全面通风,采用冬季采暖室外计算湿度。对于消除余热、余湿及稀释低毒性有害物质的全面通风,采用冬季通风室外计算温度是指历年最冷月平均温度的平均值。 通风房间的风量平衡、热平衡是风流运动与热交换的客观规律要求,设计时应根据通风要求保证满足设计要求的风量平衡与热平衡。如果实际运行时所达到的新平衡状态与设计要求的平

热电机组反平衡计算公式

热电机组反平衡计算公式 一、各项损失计算 1、排烟损失q2: q2=(k1+k2αy)×T y-t k 100×100-q4 100(%)(1-1) 式中:q2-----排烟损失百分数(%); k1、k2-----系数,查表1-1求得; T y----- 排烟温度(℃); t k----- 冷空气温度(℃); αy----- 锅炉排烟处的过剩空气系数; αy=α+Δα(1-2)式中:α----- 炉膛出口处的过剩空气系数; Δα----- 漏风系数; α= 21 21-氧量 (1-3) 热电流化床锅炉有两级过热器、两级省煤器、三级空预器,因此根据表1-2可算出: Δα=0.02×2+0.02×2+0.05×3=0.23 (1-4) 根据热电公司常用煤种,查表1-1,k1取0.4,k2取3.55 所以,排烟损失q2公式如下: q2=[0.4+3.55×(21 21-氧量+0.23)]× 排烟温度-环境温度 100× 100-q4 100(%)(1-5) 2、化学不完全燃烧损失q3(暂不考虑) 由于缺乏炉膛出口处烟气中二氧化碳、二氧化硫的体积百分数,无法计算化学不完全燃烧损失。该项损失一般在0.5%以下,暂不计入。 3、机械不完全燃烧损失q4

q 4= q 4hz + q 4lm + q 4fh (%) (1-5) 式中:q 4hz -----灰渣机械不完全燃烧损失; q 4lm -----漏煤机械不完全燃烧损失(流化床锅炉不存在该 项损失); q 4fh -----飞灰机械不完全燃烧损失; q 4hz =32826×A y .αhz .C hz Q D y .(100-C hz ) (%) (1-6) q 4fh =32826×A y .αfh .C fh Q D y .(100-C fh ) (%) (1-7) 式中:32826-----每公斤标煤所含热值及携带的物理热量,根据 7850kcal/kg 换算所得,kj/kg ; A y -- ---燃煤应用基灰份,%; Q D y -----燃煤应用基低位热值,kj/kg ; αhz 、αfh -----灰渣、飞灰的灰比,由于热电煤种变化较大, 取0.55/0.45,即αhz =0.55,αfh =0.45; C hz 、C fh -----灰渣、飞灰的可燃物质量百分数,%; 灰渣:每月化验一次,根据以往的化验结果, 平均取2%,即C hz =2%; 飞灰:每天取样,由煤分析化验,%; q 4hz =32826×灰份×0.55×2煤低位热值×98 =368.46×灰份煤低位热值 (%) (1-8) q 4fh =32826×灰份×0.45×飞灰可燃物煤低位热值×(100-飞灰可燃物) (%) (1-9) 所以,机械不完全燃烧损失q 4的公式是: q 4=q 4hz + q 4fh (1-10) 4、锅炉散热损失q 5 q 5= q 5e ×D e D G (%) (1-11) 式中:q 5e -----额定蒸发量的散热损失百分数,%; 查表:75t/h 锅炉q 5e =0.75% D e -----锅炉额定蒸发量(t/h ); D G -----锅炉实际蒸发量(t/h )。

干燥过程的物料平衡与热平衡计算

干燥过程的物料与热平衡计算 1、湿物料的含水率 湿物料的含水率通常用两种方法表示。 (1)湿基含水率:水分质量占湿物料质量的百分数,用ω表示。 100%?= 湿物料的总质量 水分质量 ω (2)干基含水率:由于干燥过程中,绝干物料的质量不变,故常取绝干物料为基准定义水分含量。把水分质量与绝干物料的质量之比定义为干基含水率,用χ表示。 100%?= 量 湿物料中绝干物料的质水分质量 χ (3)两种含水率的换算关系: χ χ ω+= 1 ω ω χ-= 1 2、湿物料的比热与焓 (1)湿物料的比热m C 湿物料的比热可用加与法写成如下形式: w s m C C C χ+= 式中:m C —湿物料的比热,()C kg J ?绝干物料/k ; s C —绝干物料的比热,()C kg J ?绝干物料/k ; w C —物料中所含水分的比热,取值4、186()C kg J ?水/k (2)湿物料的焓I ' 湿物料的焓I '包括单位质量绝干物料的焓与物料中所含水分的焓。(都就是以0C 为基准)。 ()θθχθχθm s w s C C C C I =+=+='186.4 式中:θ为湿物料的温度,C 。

3、空气的焓I 空气中的焓值就是指空气中含有的总热量。通常以干空气中的单位质量为基准称作比焓,工程中简称为焓。它就是指1kg 干空气的焓与它相对应的水蒸汽的焓的总与。 空气的焓值计算公式为: ()χ1.88t 24901.01t I ++= 或()χχ2490t 1.881.01I ++= 式中;I —空气(含湿)的焓,绝干空气kg/kg ; χ—空气的干基含湿量,绝干空气kg/kg ; 1、01—干空气的平均定压比热,K ?kJ/kg ; 1、88—水蒸汽的定压比热,K ?kJ/kg ; 2490—0C 水的汽化潜热,kJ/kg 。 由上式可以瞧出,()t 1.881.01χ+就是随温度变化的热量即显热。而χ2490则就是0C 时kg χ水的汽化潜热。它就是随含湿量而变化的,与温度无关,即“潜热”。 4、干燥系统的物料衡算 干燥系统的示意图如下: (1)水分蒸汽量W 按上述示意图作干燥过程中的0水量与物料平衡,假设干燥系统中无物料损失,则: 2211χχG LH G LH +=+ 水量平衡 G 1

电厂水平衡报告

(送审稿) 某 设计 院 二○○七年三月 某公司 空冷机组 水平衡测试报告

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13)

2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16) 3.1全厂水平衡测试结果 (16) 3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31)

4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35) 5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37) 5.2.2节水方案 (37) 5.2.3全厂废污水分类处理回用方案 (37) 5.2.4小结 (40) 5.3加强全厂关口流量计的维护和校验,消除非正常用排水 (40) 5.4全厂水平衡优化 (41) 6 结论 (43)

火力发电厂能量平衡导则 总则

火力发电厂能量平衡导则总则 一九八六年国务院颁发的《节约能源管理暂行条例》要求各单位开展企业能量平衡工作,各省、市主管能源部门还要求发放合格证书。我局在大连发电总厂搞了试点,在试点的基础上搞了《火力发电厂能量平衡普查方法》,并在直属火电厂中开展了此项工作,为适应各方面的要求,又搞了包括:燃料、热、水、电平衡在内的《火力发电厂能量平衡普查方法》。 一九九二年根据电力部(当时能源部)的要求,着手编写《火力发电厂能量平衡导则》,先后进行了三次较大的座谈讨论修改,目前电力部已正式批准下发,供各火电厂搞能量平衡工作遵循,借此机会向为本导则提出宝贵修改意见的:华东电管局薛玉兰、西北电管局胡慰才、河北省电力局丁焕翔等同志表示感谢。 在总则中对火电厂的能量平衡工作,做了一些原则性的规定,如:能量平衡普查的基本方法,开展能量平衡工作的程序,燃料、热、水、电的平衡边界,总结报告的格式,验收标准等。 1 能量平衡的定义 火力发电厂能量平衡是以火力发电厂为对象,研究直接用于发电、供热的主要能源的输入、输出和损失之间的平衡关系。 结合电厂的实际情况,便于直观分析问题,简化能平过程,没按《企业能量平衡通则》规定,把各种能源和高耗能源材料都折成标准煤的作法,把火力电厂的能量平衡分成四个部分:燃料、热、电、水四个平衡分别进行,使能量平衡工作更加清楚、条理,便于指导电厂的节能工作,对不是直接用于发电、供热的能源如汽车用油等不列入能量平衡范畴,使能量平衡工作简化。 2 能量平衡的目的 通过能量平衡普查,搞清火电厂各主要生产环节能源消耗情况、节能潜力所在,用于指导火电厂的节能技术改造、节能科学管理,提高各厂的能源利用率,普查中除了量的平衡之外,涉及一些能耗指标,通过这些指标与设计值,国内先进水平等比较,为节能工作确定方向。 3能量平衡的基本方法 能量平衡整个过程是围绕以下几方面工作展开的: 1)如何划出符合本厂实际情况的燃料、热、水、电平衡框图; 2)如何能把框图上需要填的数据准确的填上; 3)框图出来以后如何降低能源损失,还是通过指标对比分析,如与设计值,有关标准考 核值,或先进指标对比分析。 能量平衡框图需要填的数据,指标完成情况的来源,有累计计量表的按累计量表,有记录表的按记录表、无记录表的按指示表统计,无表的采取测量,有的还需通过试验获得,无论用什么方法获得的数据要求尽可能齐全、准确,使能量平衡的不明损失降到最低。 4 能量平衡工作的组织工作 能量平衡普查工作必须由主管生产的厂长(或总工)负责、牵头,负责人员的调配,计量仪器仪表,测量器具的备置,机组运行方式等,能量平衡大纲,总结报告的审批。 能量平衡工作分成四个组,燃料、热、电、水普查小组负责本专业能量平衡普查提纲的编制、测试直至提出专业能量平衡报告 能量平衡工作的归口应归到节能专工,负责全厂的能量平衡大纲的编制、培训、测试工作的协调,直至交出全厂的能平报告。 参加能平普查的人员必须进行培训,了解此项工作的方法、步骤。 能量平衡的边界划分 燃料平衡从电厂入厂燃料计量点至入炉煤计量点。

热平衡计算

热平衡计算 2007-08-21 14:25:57| 分类:暖通空调| 标签:|字号大中小订阅热平衡计算 1.热平衡原理 要使通风房间温度保持不变,必须使室内的总得热量等于总失热量,即。 在通风过程中,室内空气通过与进风、排风、围护结构和室内各种高低温热源进行交换,为了使房间内的空气温度保持不变,必须使房间内的总得热量∑Qd与总失热量∑Qs相等,也就是要保持房间内的热平衡。即热平衡:∑Qd=∑Qs。 通风房间内的得热与热量如图3-2-7所示。随工业厂房的设备、产品及通风方式的不同,车间得热量、失热量差别较大。一般通过高于室温的生产设备、产品、采暖设备及送风系统等取得热量;通过围护结构、低于室温的生产材料及排风系统等损失热量。 图3-2-7 通风房间内的得热与热量模型 在使用机械通风,又使用再循环空气补偿部分车间热损失的车间中,热平衡的等量关系如图3-2-8所示。

图3-2-8 热平衡的等量关系 由图3-2-8的热平衡等量关系,即的通风房间热平衡方程式为: (3-2-16) 式中——围护结构、材料吸热的总失热量,kW; ——生产设备、产品及采暖散热设备的总放热量,kW; Lp——局部和全面排风风量,m3/s; Ljj——机械进风量,m3/s; Lzj——自然进风量,m3/s; Lhx——再循环空气量,m3/s; pu ——室内空气密度,kg/ m3; Pw——室外空气密度,kg/ m3; tu——室内排出空气湿度,℃; tjj——机械进风湿度,℃; to——再循环送风温度,℃; c——空气的质量比热,其值为1.01kj/kg·℃; tw——室外空气计算湿度,℃, tw的确定:在冬季,对于局部排风及稀释有害气体的全面通风,采用冬季采暖室外计算湿度。对于消除余热、余湿及稀释低毒性有害物质的全面通风,采用冬季通风室外计算温度是指历年最冷月平均温度的平均值。 通风房间的风量平衡、热平衡是风流运动与热交换的客观规律要求,设计时应根据通风要求保证满足设计要求的风量平衡与热平衡。如果实际运行时所达到的新平衡状态与设计要求的平

电厂水平衡分析报告

(送审稿) 某设计院 二 ○○七年三月 某公司 空冷机组 水平衡测试报告

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13) 2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16)

3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31) 4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35) 5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37)

某电厂水平衡报告

某公司 空冷机组 水平衡测试报告 (送审稿) 某设计院 二○○七年三月

目录 1 前言 (1) 1.1任务来源 (1) 1.2电厂基本情况 (2) 1.2.1机组型号 (3) 1.2.2供排水系统 (3) 1.2.3已有的主要节水措施 (8) 2 水平衡测试工作概况 (10) 2.1水平衡测试的目的及原则 (10) 2.1.1水平衡测试目的 (10) 2.1.2水平衡测试的原则 (11) 2.1.3水平衡测试的主要技术依据 (11) 2.1.4水平衡测试术语、代号及公式 (12) 2.2水平衡测试的项目、测试方法及测试设备 (13) 2.2.1水平衡测试项目及内容 (13)

2.2.2水平衡测试方法 (14) 2.2.3测试仪器、设备 (14) 2.3测试期间机组运行状况说明 (15) 3 水平衡测试结果汇总 (16) 3.1全厂水平衡测试结果 (16) 3.1.1全厂水平衡测试数据 (16) 3.1.2全厂水平衡测试结果分析 (16) 3.1.3全厂用水情况分析 (17) 3.2主要分系统水量分配概况 (20) 3.2.1供水系统 (20) 3.2.2辅机冷却水系统 (21) 3.2.3化学除盐系统 (27) 3.2.4灰渣系统 (29) 3.2.5脱硫系统 (30) 3.2.6废污水处理系统 (31) 4 测试结果分析 (33) 4.1不平衡分析 (33) 4.2用水水平评价 (33) 5 节水建议 (35)

5.1搞好水务管理工作 (35) 5.1.1水务管理的概念及内容 (35) 5.1.2搞好水务管理工作的重点 (36) 5.2节水技术路线 (37) 5.2.1节水原则 (37) 5.2.2节水方案 (37) 5.2.3全厂废污水分类处理回用方案 (37) 5.2.4小结 (40) 5.3加强全厂关口流量计的维护和校验,消除非正常用排水 (40) 5.4全厂水平衡优化 (41) 6 结论 (43)

DLT606.3-1996 热平衡导则

火力发电厂热平衡导则 Guide for thermal energy balance of thermal power plant DL/T606.3—1996 前言 本标准是根据电力工业部1995年电力行业标准计划项目(第二批)(技综[1995]44号文)的安排,由东北电力集团公司制定的。能量平衡是火力发电厂节能工作的一项基础工作。火力发电厂能量平衡是考核火力发电厂能源利用水平的重要方法之一。 本标准是根据有关国家标准,并吸收火力发电厂在能量平衡工作中的经验和节能的科研成果而制定的。 根据火力发电厂生产的特点、生产过程和主要能耗,将火力发电厂能量平衡导则分为五个部分,即: DL/T606.1《火力发电厂能量平衡导则总则》 DL/T606.2《火力发电厂燃料平衡导则》 DL/T606.3《火力发电厂热平衡导则》 DL/T606.4《火力发电厂电能平衡导则》 DL/T606.5《火力发电厂水平衡导则》 在编排上有总则,但还尽可能地保持四种能量平衡各自的独立性,便于应用。本导则是第三部分DL/T606.3《火力发电厂热平衡导则》。 本导则附录A~D都是标准的附录,附录E是提示的附录。 本导则由中华人民共和国电力工业部提出。 本导则由电力工业部标准化领导小组归口。 本导则起草单位:电力工业部东北电力集团公司。 本导则主要起草人:张登敏、王雅贤、宋家升、常建华。 本导则由电力工业部标准化领导小组负责解释。DL/T606.3—1996 中华人民共和国电力行业标准 火力发电厂热平衡导则 DL/T 606.3—1996 Guide for thermal energy balance of thermal power plant 中华人民共和国电力工业部1997-02-24批准1997-06-01实施 1范围 本标准规定了火力发电厂热平衡的内容和方法。适用于蒸汽循环火力发电厂。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

回转窑系统热平衡计算资料

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg 熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:预分解窑 基准:1kg 熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。 图1 物料平衡图 图2 热量平衡图

2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh yh m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --?+= 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量 s gs s 100100W m m -?= 式中,m s —考虑飞损后生料实际消耗量,kg/kg 熟料;W s —生料中水分含量,%。 ⑤ 入预热器物料量 yh s m m +=入预热器物料量(kg/kg 熟料) (3)入窑系统空气量 ① 燃料燃烧理论空气量 )O 0.033(S 0.267H 0.089C ar ar ar ar LK -++='V LK LK 293.1V m '='

热电厂热力系统计算分析

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

鹤壁鹤淇发电有限责任公司(2660MW机组)全厂水平衡试

鹤壁鹤淇发电有限责任公司(2×660MW机组)全厂水平衡试验项目技术规范书 编制: 审核: 批准: 鹤壁鹤淇发电有限责任公司 2020年5月

资质要求 投标人专项资格要求 1.投标人应具有独立订立合同的法人资格。有CMA或CNAS资质证书。 2. 应具有完善的质量保证体系,必须持有国家认定的有资质机构颁发的ISO9000系列认证书或等同的质量保证体系认证证书; 3. 投标人应在5年内至少有2项300MW以上机组电厂水平衡测试业绩。投标人须随投标文件同时提供相关合同的复印件(封面、工程范围、签字页等),以证明投标人满足招标业绩要求。 4.最近三年内没有发生骗取中标、严重违约等行为。

技术规范书 1 .总则 1.1本技术规范适用于鹤壁鹤淇发电有限责任公司(2×660MW机组)全厂水平衡试验项目,水平衡试验结果将为鹤壁鹤淇发电有限责任公司(2×660MW机组)进一步开展全厂节水工作提供基础数据技术依据。 1.2本招标文件提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准及规范。投标方应保证提供符合本招标文件和相关的国际、国内工业标准的优质服务。 1.3如投标方没有对本招标文件书提出书面异议,招标方则可认为投标方提供的服务完全满足本技术协议的要求。 1.4本招标文件所引用的标准若与投标方所执行的标准发生矛盾时,按较严格的标准执行。 1.5投标方对报告数据结果负有全部责任。 1.6在合同签定后,招标方有权因规范、标准、规程发生变化而提出一些补充要求。 1.7 投标方提交的水平衡报告必须通过专家评审(有水利主管部门专家参加)。 2、水平衡试验工作要求 2.1公司用水概况 鹤淇电厂设计以城市中水作为循环水系统补给水源。水库水可作为循环水系统的应急备用水源。消防水源采用循环水排污水,脱硫工艺水采用循环水排污水。全厂水系统包括工业水系统、循环冷却水(含开式水)冷却系统、生活水及生活污水处理系统、闭式冷却水系统、消防水系统、锅炉补给水处理系统、工业废水处理系统、含煤废水系统、含油废水系统、脱硫工艺水及脱硫废水处理系统、热力循环系统。 2.2水平衡试验的目的及原则 2.2.1水平衡试验的目的 河南省水利厅和河南省发改委关于印发《河南省水平衡测试管理办法》的通知(豫水政资【2013】12号)文件明确要求:取用水单位应定期进行水平衡测试,挖掘节水潜力。凡月用水一万立方米以上的,每三年测试一次。

高炉热平衡计算方法

高炉热平衡计算方法 4.3热平衡计算过程 需要补充的原始条件: 鼓风温度1100℃;炉顶温度200℃;入炉矿石温度为80℃。 4.3.1 热量收入 (1)碳素氧化热 由C 氧化1m3 成CO 2放热 1222.433410.66 ?=17898.43 KJ/m3 由C 氧化成1m3 的CO 放热 1222.4 9797.11 ?=5250.50 KJ/m 3 碳素氧化热=288.45×19878.43+(435.04-2.22)×5250.50 =8006454.54 KJ (2)热风带入热 1100 ℃时干空气的比热容为1.429kJ / m 3·℃ ,水蒸气的比热为1.753 kJ / m 3·℃,热风带入热=[(1238.89-18.58)×1.429+18.58×1.753]×1100 =1954033.10 KJ (3)成渣热 炉料中以碳酸盐形式存在的CaO 和MgO ,在高炉内生成钙铝酸盐时,1kg 放出热量1130.49 kJ 混合矿的CaO=1666.82×0.0154× 44 56 =32.67 KJ 成渣热=32.67×1130.49=36933.10 kJ (4)混合矿带入的物理热 80 ℃时混合矿的比热容为1.0 KJ/Kg·℃ 混合矿带入的物理热=1666.82×1.0×80=133345.60 kJ (5)H 2氧化放热 1m3 H 2氧化成H 2O 放热10806.65 KJ H 2氧化放热=51.81×10806.65=559892.53 kJ (6)CH 4生成热 1Kg CH 4生成热=16 77874.4 =4865.29 KJ CH 4的生成热=10.78×22.416 ×4865.29=37462.73 KJ 冶炼1t 生铁总热为以上各热量的总和 Q 总收 =8006454.54

火力发电厂水平衡测试的方法和应用

火力发电厂水平衡测试的方法和应用 刘斌 (华能日照电厂 276826) 摘要:本文结合日照电厂在实际进行水平衡测试过程中的经验,对水平衡测试的方法和步骤进行了论述,通过日照电厂采取的节水实例进一步说明了水平衡测试在火力发电厂中节水的重要意义。 关键词:火力发电厂水平衡测试步骤应用 1引言 水是生命的源泉、农业的命脉、工业的血液。没有水,人类就不能生存,社会就不能发展。早在1977年,联合国就召开水会议,向全世界发出严正警告:水不久将成为一个深刻的社会危机,继石油危机之后的下一个危机便是水。把水看成取之不尽、用之不竭的时代已经过去,把水当成宝贵资源的时代已经到来。科学的预言很快就变成了严峻的现实。目前,世界上有一百多个国家和地区缺水。我国的水资源也很匮乏,尤其是我国北方缺水更为严重,全国共有450个城市,近300个城市缺水,严重缺水的城市有100多个,如青岛、大连、太原、西安、长春等。水的危机正在严重地威胁着火力发电厂的机组正常运行。有些电厂不得已通过高昂的投入采用海水淡化解决水资源紧缺的局面。为提高火力发电厂的经济效益,降低发电成本,强化用水管理,降低发电水耗率就显得更为重要。查清火力发电厂用水、取水和排水,达到合理用水科学管水,做好水平衡测试工作是唯一的途径。 2 水平衡测试目的 水平衡测试是对用水单位进行科学管理之有效的方法,也是进一步做好节约用水工作的基础。通过水平衡测试应达到以下目的: 1、掌握单位用水现状。如水系管网分布情况,各类用水设备、设施、仪器、仪表分布及运转状态,用水总量和各用水单元之间的定量关系,获取准确的实测数据。 2、对单位用水现状进行合理化分析。依据掌握的资料和获取的数据进行计算、分析、评价有关用水技术经济指标,找出薄弱环节和节水潜力,制订出切实可行的技术、管理措施和规划。 3、找出单位用水管网和设施的泄漏点,并采取修复措施,堵塞跑冒滴漏。 4、健全单位用水三级计量仪表。既能保证水平衡测试量化指标的准确性,又为今后的用水计量和考核提供技术保障。 5、可以较准确地把用水指标层层分解下达到各用水单元,把计划用水纳入各级承包责任制或目标管理计划,定期考核,调动各方面的节水积极性。 6、建立用水档案,在水平衡测试工作中,搜集的有关资料,原始记录和实测数据,按照有关要求,进行处理、分析和计算,形成一套完整详实的包括有图、表、文字材料在内的用水档案。 7、通过水平衡测试提高单位管理人员的节水意识,单位节水管理节水水平和业务技术素质。 8、为制定用水定额和计划用水量指标提供了较准确的基础数据。 3 电厂水平衡测试的方法步骤 3.1 宣传发动阶段 这一阶段首先要进行全厂性的宣传,进行水平衡测试知识的普及工作。宣传电厂进行水平衡的重要意义,进行水平衡的步骤方法。宣传的手段可以利用图表、图片、文字等形式,要做到通俗易

火电厂水平衡测试

火电厂水平衡测试 葛春鹏 (西:l匕电力试验研究院,陕西西安710054) [摘要]主要阐述在电厂水平衡测试过程中,如何关注组织管理、前期准备、测试方法、数据整理等几个方面的工作,才能确保水平衡测试任务的顺利实施,最终达到令人满意的效果,为电厂合理用水、科学管水提供可靠资料。 [关键词]水平衡;测试;注意要点 中图分类号,TU99L64文献标识码,B文章编号;1008—4835(2005)02一002】一02 0引言 火电厂是用水大户,一座装有两台600MW发电机组的电厂,如冷却水采用闭式循环方式,年用水量约为2000万m3左右。电厂所用生水通常取用江河湖泊、水库等地表水或地下水。电厂用水遍及电厂的各个部门,用水量较多的为冷却水系统的补充水、锅炉用水及水力除灰用水;同时电厂排水种类也较多,主要有灰场渣场排水、化学车间酸碱废水、主厂房的生产废水、输煤系统喷淋除尘污水、生活污水等。为节约用水及减少外排水的污染问题,提高水的重复利用率,常采取多种处理系统,故需要强化电厂用水管理,降低发电水耗率也就显得十分重要,查清火电厂用水、取水和排水,达到合理用水、科学管水,作好水平衡测试工作便成为其惟一的途径。火电厂水平衡测试就是以火电厂作为一个确定的用水体系,研究水的输入、输出和损失之间的平衡关系。通过对电厂各种取、用、排、耗水量的测定,查清火电厂用水状况,正确地评价火电厂的用水水平,找出节水潜力,制定切实可行的节水技术措施和规划,使火电厂的用水达到合理使用和科学管理。 1成立水平衡测试小组 1.1水平衡测试作为一项临时工作,电厂一般以合同协议的方式委托具有相关工作经验的单位来厂里进行具体指导和测试,电厂负责协调配合。由于电厂用水遍及电厂的各个部门,委托单位就必须与电厂相关专业人员进行合作才能顺利完成任务,这除了需要厂里高级领导层的统一调度、指挥外,相当程度上依赖于水平衡测试小组合作各方的协调能力。因此在组织工作方面需要成立一个水平衡测试小组,负责与委托单位合作,协调电厂各部门配合工作。 水平衡测试小组以主管总工程师为领导,抽选机、炉、电、燃、化专业人员参加,要求参加试验的人员熟悉专业系统,具有一定的运行经验和理论知识。 根据电厂实际情况,以锅炉燃料、环保或化学专业的技术主管为主要负责人,一方面负责与委托单位合作、联系及具体测试的一些相关事宜,另一方面负责与水平衡测试小组内各专业人员协调、组织各部门配合水平衡测试工作。 1.2水平衡测试以锅炉燃料技术主管牵头负责,环保专工、化学专工配合。抽选各专业部分人员参加测试工作。 1.3委托具有水平衡测试经验的专业技术人员编写水平衡测试大纲,并具体负责测试工作。 2水平衡测试的准备工作 水平衡测试的准备工作主要有:水平衡测试前的准备工作、建立水平衡体系及选定测点和水平衡测试计量仪表的配备。 水平衡测试前的准备工作主要有:编写水平衡测试大纲、现场调查、收集资料和准备测试用仪器、仪表、记录表格等项内容。其中现场调查又包括水源情况、 丽丽丽厕丽d蒜甓搿泓器0   万方数据

相关主题