搜档网
当前位置:搜档网 › 补充:导函数(三)

补充:导函数(三)

补充:导函数(三)
补充:导函数(三)

江苏省技工院校 教 案 首 页

授课日期

班 级

课题: 6.2导数(三) 教学目的要求:

(1)理解导函数的定义。 (2)掌握导函数的求法。

教学重点、难点:

教学重点: 导函数的定义。

教学难点:导函数的求法。

授课方法: 讲授法 问题教学法 范例教学法 练习法 教学参考及教具(含多媒体教学设备): 教材、教参、讲义 授课执行情况及分析: 板书设计或授课提纲

导函数(三)

如果函数

)(x f y =在开区间I 内的每点处都可导,就称函数)(x f 在开区

间I 内可导。对于任一I x ∈,都对应着

)(x f 的一个确定的导数值,这个

函数叫做原函数)(x f 的导函数,简称导数。记作dx

df dx dy x f y ,),

(,''。即h

x f h x f x x f x x f x y y h x x )()(lim )()(lim lim

000-+=?-?+=??='→→?→?

教学环节主要教学内容及师生互动

组织教学检查复习导入课题一、检查复习

让学生到黑板默写公式

二、教授新课

即令h x

=?,定义式(1)也可简单的写成如下的形式:

00

00

()()

()lim

h

f x h f x

f x

h

+-

'=(2)

又有人认为

+

x h不够漂亮,不妨用一个x来表示,即0

x x h

=+,由于

x是固定的,那么0

h→等价于0

x x

→,上述定义式(2)就可等价的写成下面的形式:

()()

()lim

x x

f x f x

f x

x x

-

'=

-

(3)这么多表示方法,这么多记号,说明一个问题:导数的概念很重要。

(三)、例题讲解:

点导数例题

例2、讨论函数||

y x

=在0

x=处是否可导?

解:根据导数定义及求导数的步

骤,易判断函数在0

x=处的可

导性。

第一步求增量:||

y x

?=?

第二步算比值:

||

y x

x x

??

=

??

讲授新课课堂小结布置作业

第三步取极限:

00

||

lim lim

x x

y x

x x

?→?→

??

=

??

要将绝对值符号去掉,必须讨论x

?的符号问题:

00

||

lim lim1

x x

x x

x x

--

?→?→

?-?

==-

??

00

||

lim lim1

x x

x x

x x

++

?→?→

??

==

??

4、导函数

定义3:如果函数)

(x

f

y=在开区间I内的每点处都

可导,就称函数)

(x

f在开区间I内可导。对于任一I

x∈,

都对应着)

(x

f的一个确定的导数值,这个函数叫做原函数)

(x

f的导函数,简称导数。记作

dx

df

dx

dy

x

f

y,

),

(

,'

'。即

h

x

f

h

x

f

x

x

f

x

x

f

x

y

y

h

x

x

)

(

)

(

lim

)

(

)

(

lim

lim

-

+

=

?

-

?

+

=

?

?

=

'

?

?

这里,将函数在某点处可导的性质推广到了在一个区间

上的可导性,将点导数的概念推广到了导函数的概念上。下

面来看幂函数求导数的例题。

例4、设函数(),(0,)

y f x x x

α

==∈+∞,求y'。

解:

00

()()()

lim lim

h h

f x h f x x h x

y

h h

αα

→→

+-+-

'==

10(1)1lim h h x x h x α

α-→+-=(等价无穷小:(1)1h h x x

αα+- ) 10lim h h

x x h

x

αα-→==1x αα-=

即:1()x x α

αα-'=。

(四)、课堂小结:

如果

x

x f x x f x ?-?+→?)()(lim 000

-

存在,则称该极限为左

导数,记为)(0x f -';如果x

x f x x f x ?-?++

→?)()(lim 000

存在,

则称该极限为右导数,记为)(0x f +'。

左导数、右导数统称为单侧导数。

定理1:函数在点0x 处可导?左导数)(0x f -'和右导数

)(0x f +'都存在且相等。

(五)、布置作业

作业与

练习

教学后记

函数的最大值与导数.doc

第1课时 课型:新授课 主备人:武果果 一、学习目标 1?借助函数图像,直观的理解函数的最大值和最小值概念; 2. 弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数于(兀)必有最大 值和最小值的充分条件; 3. 会利用导数求连续函数/(兀)在闭区间["]上的最大值和最小值。 二、 考情分析 1. 考纲要求:会求闭区间上函数的最大值与最小值; 2?考情分析:运用导数研究函数的最值; 3?备考要求:注重导数在研究函数极值与最值中的工具性作用。 三、 课前自主学习 1?导入学习 复习:(1)极大(小)值概念: ____________________________________________________ (2)求函数极值的方法: ________________________________________________ 实例导入:预习课本心完成下面问题: ⑴你能找出函数 尸/(兀)在区间上的极大值、极小值、最大值、最小值吗? (2)函数y = /(x)在开区间仏b)上的极大值、极小值、最大值、最小值存在吗? ⑶若函数)/(x)在区间[d,b ]上不连续还存在极大值、极小值、最大值、最小值吗? 新知:函数y = 在闭区间[⑦切上的最值: 一般地,如果在区间[⑦切上函数y = /(x)的图像是一条 ________ 的曲线,那么它必有最 大值和最小值. 例1?求函数/*(%) = 6 + 12x-x 3在【-亍3]上的最大值与最小值。 选2?2 § 13.3函数的最大(小)值与导数

解-7/(X)=6+12X-A3???广(0 = 由厂(兀) = 0,解得兀= 当X变化时,f(x)与#(尢)的变化情况如下表: ???函数心在[-事3]上的最大值是____ ;最小值是_______ 结论:求函数y = /(x)在[d,b]上的最值的步骤: ⑴.求函数y = /(%)在(d,b)内的_______ ; ⑵.将函数〉,= /&)的 _____ 与____________ 比较,其中最大的一个是最大值,最小的一个 是________ O 2. 自我检测 练习(1)?已知a为实数,/(x) = (x2-4)(x-a),若广(-1) = 0,求/⑴在 [-2, 2]上的最大值和最小值. 7i n (2).求函数/(x) =-2cosx-x在区间[-亍,-]上的最大值与最小值。

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

最新导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数 ()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函 数y=f (x )的 图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若 函 数 2()f x x bx c =++的图象的顶点在第 四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图 像,判断原函数图像。 5. (2007年广东佛山)设)(x f '是函数)(x f 的导函数,)(x f y '=的图 象如右图所示,则)(x f y =的图象最有可能的是( ) 知函数 象可能是 7. 函数)(x f 的定 义域 为开区间( ,3)2 - ,导函数) (x f '在 3 (,3)2 -内的图象如图所示,则函数)(x f 的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 8. (2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的 图象可能是 ( ) A . B . C . D .

9.若函数)(' x f y =在区间),(21x x 内是单调递减函数,则函数)(x f y =在区间),(21x x 内的图像可以是( ) A B C D 10.(选做)已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是 ( ) 类型四:根据实际问题判断图像。 9. (2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h 随时间t 变化的可能图象是( ) 10.如图,直线l 和圆c ,当l 从0l 开始在平面上绕点o 按逆时针方向匀速转动(转动角度不超过? 90)时,它扫过的园内阴影部分的面积S 是时间t 的函数,这个函数的图 像大致是( ) 11.如图, 水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图 象. 10. 已知函数 )(x f y =的导函数)(x f y '=的图像如下, 则( ) 函数)(x f 有1个极大值点,1个极小值点 函数 )(x f 有2个极大值点,2个极小值点 函数)(x f 有3个极大值点,1个极小值点 函数)(x f 有1个极大值点,3个极小值点 11. (2008珠海质检理)函数)(x f 的定义域为 ),(b a , 其导函数),()(b a x f 在'内的图象如图所示,则函数)(x f 在区间),(b a 内极小值点的个 数 是( ) (A).1 (B).2 (C).3 (D).4 12. 已知函数3 2 ()f x ax bx cx =++在点0x 处取得极大值5, 其 导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求: (Ⅰ)0x 的值; (Ⅱ),,a b c 的值. 13. 函数()y f x =在定义域3 (,3)2 - 内可导, 其图象如图,记 ()y f x =的导函数为/()y f x =,则不等式 /()0 f x ≤的解集为_____________ 14. 如图为函数32()f x ax bx cx d =+++的图象, '()f x 为函 数()f x 的导函数,则不等式'()0x f x ?<的解集为_____ _ 15. 【湛江市·文】函数2 2 1ln )(x x x f - =的图象大致是 A . B . C . D . 16. 【珠海·文】如图是二次函数a bx x x f +-=2 )(的部分图象,则函数)(ln )(x f x x g '+=的零点所在的区 间是 ( )

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

导函数图像与原函数图像关系(我)

导函数图像类型题 类型一:已知原函数图像,判断导函数图像。 1. (福建卷11)如果函数)(x f y =的图象如右图,那么导 函数()y f x '=的图象可能是 ( ) 2. 设函数f (x )在定义域内可导,y=f (x )的图象如下左图所示,则导函数y=f '(x )的图象可能为( ) 3. 函数()y f x =的图像如下右图所示,则()y f x '=的图像可能是 ( ) 4. 若函数2 ()f x x bx c =++的图象的顶点在第四象限,则其导函数'()f x 的图象是( ) 类型二:已知导函数图像,判断原函数图像。

5.(2007年广东佛山)设) (x f'是函数) (x f的导函数,) (x f y' =的图 象如右图所示,则) (x f y=的图象最有可能的是() 6.(2010年3月广东省深圳市高三年级第一次调研考试文科)已 知函数f x ()的导函数2 f x ax bx c '=++ ()的图象如右图,则 f x()的图象可能是( ) 7.函数) (x f的定义域为开区间 3 (,3) 2 -,导函数) (x f'在 3 (,3) 2 -内的图象如图所示,则函数) (x f的单调增区间是_____________ 类型三:利用导数的几何意义判断图像。 O 1 2 x y x y y O 1 2 y O 1 2 x O 1 2 x D O 1 2 x y ) (x f y' = x o y

8.( 2009湖南卷文) 若函数() y f x =的导函数 ...在区间[,] a b上是增函数,则函数() y f x =在区间[,] a b上的图象可能是( ) A .B.C.D. 9.若函数) ('x f y=在区间) , ( 2 1 x x内是单调递减函数,则函数) (x f y=在区间) , ( 2 1 x x内的图像可以是() A B C D 10.(选做)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),y=g(x)的图象可能是 () 类型四:根据实际问题判断图像。 9.(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某一容器的三视图,现向容器 中匀速注水,容器中水面的高度h随时间t变化的可能图象是() o x o x y b a o x y o x y b y

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

导数与函数的极值与最值

y=xf '(x) -1 11 -1 o y x 导数与函数的单调性 题型1.导数与函数图象(,0)(>'x f 函数单调递增;,0)(<'x f 函数单调递减;即导数看正负,函数看增减。 1. 设函数()x f 在定义域内可导,()x f y =的图象如图2所示,则导函数()x f '可能为D 2. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是C 3. )(x f '是)(x f 的导函数,)(x f '的图象如图所示,则)(x f 的图象只可能是D A B C D 4.已知函数)(x f x y '=的图像如右图所示,下面四个图象中)(x f y =的图象大致是(C ) 31 -2 1-122-2o y x 1-2 1 -122o y x 4 2 1 -2 o y x 42 2 -2 o y x 5. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是D x y O A x y O B x y O C y O D x x y O o y x -33 y x O y x O y x O y x O A . B . C . D . 6题图

6.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式 '()0x f x ?<的解集为__()() 3,03,?∞-__. 7.已知()f x 在R 上是可导函数,则 ()f x 的图象如图所示,则不 等 式 ()()2 230 x x f x '-->的解集为 ____________ 题型2.利用导数求单调区间(1.定义域2.求导3.令,0)(>'x f 求增区间;令,0)(<'x f 求减区间) 1. 函数13)(23+-=x x x f 是减函数的区间为 D A.),2(+∞ B.)2,(-∞ C.)0,(-∞ D.(0,2) 2. 函数x x x f ln 3)(+=的单调递增区间是C A.)1,0(e B.),(+∞e C.),1(+∞e D.(e 1 ,e ) 3. 函数x x y ln 82-=在区间)1,2 1 ()41,0(和内分别为 A A.单调递减,单调递增 B.单调递增,单调递增 C.单调递增,单调递减 D.单调递减,单调递减 题型3.由单调区间求参数取值范围(函数在区间(),a b 上增,,0)(≥'x f 恒成立; 函数在区间(),a b 上减,,0)(≤'x f 恒成立;) 1. 已知()321 233 y x bx b x =++++是R 上的单调增函数,则b 的范围D A.1b <-或2b > B.1b ≤-或2b ≥ C.21b -<< D.12b -≤≤ 2. 若m mx x x x f +++-=23)((m 为常数)在(-1,1)上是增函数,则m 的取值范围是D A.[)∞+,1 B.[]3,1 C.[]5,1 D. [)∞+,5 练2.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D 练3.)(3 24)(3 2R x x ax x x f ∈-+=在区间[-1, 1]上是增函数。则a 的范围是____}{11/≤≤-a a 3.(江西理科19)设.22 1 31)(23ax x x x f ++-= 若)(x f 在),3 2 (+∞上存在单调递增区间,求a 的取值范围; 解:已知()ax x x x f 221 3123++-=,()a x x x f 22++-='∴,函数()x f 在),3 2(+∞上存在单调递 增区间,即导函数在),3 2 (+∞上存在函数值大于零的部分,

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

导数与函数的极值最值

导数与函数的极值、最值 最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值. (2)求可导函数极值的步骤: ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 2.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值. (2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 诊断自测 1.判断正误(在括号内打“√”或“×”)精彩PPT展示 (1)函数在某区间上或定义域内极大值是唯一的.(×)

(2)函数的极大值不一定比极小值大.(√) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√) 2.函数f(x)=-x3+3x+1有() A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 解析因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x =±1,于是,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,-1)-1(-1,1)1(1,+∞) f′(x)-0+0- f(x)极大值极小值 所以f(x)的极小值为f(-1)=-1,f(x)的极大值为f(1)=3. 答案 D 3.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x) 的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 解析由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x <2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值. 答案 D 4.(2015·陕西卷)函数y=x e x在其极值点处的切线方程为________. 解析由y=x e x可得y′=e x+x e x=e x(x+1),从而可得y=x e x在(-∞,-1)上递减,在(-1,+∞)上递增,所以当x=-1时,y=x e x取得极小值-e-1,因为y′|x

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶 对称,研究前面的四个命题还是否成立。研究方法可以类函数的性质拓展为关于直线x a 比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原函数的图像画出导函数的示意图吗? 一.探究由原函数的奇偶性能否推出导函数的奇偶性。

函数可积与存在原函数的关系

函数可积与存在原函数的关系 本文在区间[a,b]上讨论函数存在定积分与存在原函数的关系。得出的结果是两者之间没有必然联系,存在定积分不一定存在原函数,存在原函数也不一定存在定积分。本文主要给出两个反例。 一、 存在定积分但不存在原函数的例子 定义函数如下: ???=?∈=2 /1,1]1,2/1()2/1,0[,0)(x x x f 该函数显然有界,x =1/2为其唯一的间断点(而且是第一类的),因而可积,0d )(1 0=?x x f 。但因为其有第一类间断点,所以不存在原函数(这个结论是利用 导函数连续性定理得出来的,关于这个定理见本文附录)。 可能有人会想到积分上限函数,它的积分上限函数不是原函数吗?我们看看它的积分上限函数,容易求得 0d )()(0≡=?x t t f x F 显然它的导数并不是f (x ),而是f (x )在x =1/2处作连续开拓后的函数。关于积分上限函数和原函数之间的关系问题,在学了实变函数这门课后将会变得很简单,这里不再深入讨论。 二、 存在原函数但不存在定积分的例子。

定义函数如下: ?????=≤<-=0 ,010,1cos 21sin 2)(22x x x x x x x f 首先证明,这个函数存在原函数,我们指出,下面这个函数就是它的原函数: ?????=≤<=0 ,010,1sin )(22x x x x x F 为此目的,只需证明)()('x f x F =对任何x ∈[0,1]成立,而0δ,函数)(x f 在区间(0,δ)无界,在这个区间上,21sin 2x x 是无穷小量和有界量的乘积,是无穷小量,但21cos 2x x -这一项却是在正无穷与负无穷之间反复振动的量,例如取πn x x n 21 ==,则其值为πn 22 1-,但若取π)12(1 +==n y x n ,则其值为π)12(2 1+n ,只要n 充分大,便可使),0(,δ∈n n y x ,同时)(,)(n n y f x f 却可以大于任何预先给定的正数。这就是说,任意0>δ,函数)(x f 在区间(0,δ)无界,从而在闭区间[0,1]无界,而我们知道闭区间上的无界函数是不可积的,所以)(x f 的定积分不存在。 综合上面的结果,函数在闭区间上存在定积分与存在原函数没有必然联系。

导数与函数的极值、最值

导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是( ) A.y =x 3 B.y =ln(-x ) C.y =x e -x D.y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为( ) A.2 B.3 C.6 D.9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ???? a + b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(- 2,0)时,f (x )的最小值为1,则a 的值等于( ) A.14 B.13 C.12 D.1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0. ∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D

4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )图象的是( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中, f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·肇庆模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________. 解析 f ′(x )=3x 2+2ax +3. 依题意知,-3是方程f ′(x )=0的根 所以3×(-3)2+2a ×(-3)+3=0,解得a =5. 经检验,a =5时,f (x )在x =-3处取得极值. 答案 5 7.(2016·北京卷改编)设函数f (x )=???x 3 -3x ,x ≤0, -2x ,x >0,则f (x )的最大值为 ________. 解析 当x >0时,f (x )=-2x <0;

利用导数研究函数的极值和最值问题

利用导数研究函数的极值和最值问题 1.利用导数研究函数的极值的一般步骤: (1)确定函数的定义域. (2)求)(x f '. (3)①若求极值,则先求方程 0)(='x f 的全部实根,再检验)(x f '在方程根的左右两侧值的符号,求出极值.(当根中有参数时,要注意讨论根是否在定义域内) ②若已知极值大小或存在情况,则转化为已知方程 0)(='x f 的根的大小或存在情况,从而求解. 2.求连续函数)(x f y =在[]b a , 上的最大值与最小值的步骤: (1)求函数 )(x f y =在()b a ,内的极值; (2)将函数 )(x f y =的各极值与端点处的函数值 )(a f , )(b f 比较,其中最大的一个 是最大值,最小的一个是最小值. 例1.(2018北京,18,13分)设函数()[] x e a x a ax x f 3414)(2+++-=. (1)若曲线)(x f y =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若)(x f 在2=x 处取得极小值,求a 的取值范围. 解析 (1)因为()[] x e a x a ax x f 3414)(2+++-=, 所以()[] x e x a ax x f 212)(2++-=',()e a f -='1)1(. 由题设知f '(1)=0,即()01=-e a ,解得1=a . 此时03)1(≠=e f .所以a 的值为1.

(2)由(1)得()[] ()()x x e x ax e x a ax x f 21212)(2--=++-='. 若21>a ,则当?? ? ??∈2,1a x 时0)(<'x f ; 当()+∞∈,2x 时,0)(>'x f .所以)(x f 在2=x 处取得极小值. 若21'x f , 所以2不是)(x f 的极小值点. 综上可知,a 的取值范围是?? ? ??∞+,21 。 方法总结:函数极值问题的常见类型及解题策略 (1)已知导函数图象判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧导数的符号. (2)已知函数求极值.求f '(x)→求方程f '(x)=0的根→列表检验f '(x)在f '(x)=0的根的附近两侧的符号→下结论. (3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f '(x0)=0,且在该点左、右两侧导数值的符号相反. 例2.(2017北京,19,13分)已知函数x x e x f x -=cos )(. (1)求曲线)(x f y =在点())0(,0f 处的切线方程; (2)求函数)(x f 在区间?? ????2,0π上的最大值和最小值. 解析 本题考查导数的几何意义,考查利用导数研究函数的单调性、最值. (1)因为x x e x f x -=cos )(, 所以()1sin cos )(--='x x e x f x ,0)0(='f .

相关主题