搜档网
当前位置:搜档网 › 第一章计数原理1.2排列与组合1.2.1排列学案(无答案)新人教A版选修2_3

第一章计数原理1.2排列与组合1.2.1排列学案(无答案)新人教A版选修2_3

1.2. 1排列的概念

【教学目标】

1.了解排列、排列数的定义;掌握排列数公式及推导方法;

2.能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。

3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。

【教学重难点】

教学重点:排列的定义、排列数公式及其应用

教学难点:排列数公式的推导

【教学过程】

(预习教材P】厂Pis,找出疑惑之处)

合作探究一排列的定义:问题1从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的选法?

问题2从1,2, 3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的

三位数?

概念形成

1、元素:我们把问题屮被取的对彖叫做元素

2、排列:从n个__________ 元素中取出III(IIIC n)个元素,按照__________________ 排成一列,叫做从n个不同元素中取出m个元素的_____________________ .

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;

(2)m mn说明这里既没有重复元素又没有重复抽取同一元素的情况;

(3)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同例1.判断下列问题是否是排列问题:

(1)从2, 3, 5, 7, 11 ψ任取两数相乘可得多少个不同的积?

(2)从上面各数屮任取两数相除,可得多少个不同的商?

(3)某班共有50名同学,现要投票选举正副班长各一人,共有多少种可能的选举结果?

(4)某商场有四个大门,若从一个门进去,购买商品后再从另一个门出来,不同的出

入方式共有多少种?

练习:1.思考判断(正确的打“V”,错误的打“X”)

(1) a , b , c, d与a , d , b , C是不同的两个排列?0

同一个排列中,同一个元素不能重复出现 ()

(3)

在一个排列中,若交换两个元素的位置,则该排列不发生变化

2.下面问题中,是排列问题的是()

A.由1, 2, 3三个数字组成无重复数字的三位数

B.从40人屮选5人组成篮球队

C.从100人中选2人抽样调查

D.从1, 2, 3, 4, 5中选2个数组成集合

合作探究二排列数及排列数公式:

3、排列数:从n个不同元素屮,任取m(11)乞口)个元素的所有排列的个数叫做从n 个元素中取出m元素的排列数,用符号Am表示

议一议:“排列”和“排列数”有什么区别和联系?

4、排列数公式推导

探究:从n个不同元素中取出2个元素的排列数A八是多少?A3呢?Am呢?

排列数公式:笛二 ______________________________________ ( m,n 三N ” , πι乞n). 即学即练:

1. Vl-M(I)A4; (2 ) Ao 2 ; (3)皆力

2. 已知 AnI =10 9???

5,那么 πι= _________

3. k N ,且k 乞40,则(50-k) (51 -k) (52~k) (79-k)用排列数符号表示为()

A . A ; ,

B . AL

C . A7L

D . AL

5、全排列:n 个不同元素全部取出的一个排列,叫做

n 个不同元素的全排列。

此时在排列数公式中,m = n

全排列数:A I

=n (n-l)

(n-2)???2 ?仁n!(叫做n 的阶乘)

(3 )的结果我们看到,A 2和X ' ■ A 八有怎样的关系?

那么,这个结果有没有一般性呢?

排列数公式的另一种形式:

n! (n -

另外,我们规定0!二1?

想一想:排列数公式的两种不同形式,在应用屮应该怎样选择?

即学即练:口答(用阶乘表示):(1) 4A :

(2) A

(3) n (n -1) !

想一想:由前面联系中(2 ) A n

例2.求解下列问题:

2As 7As

计算E5-;

A -A

(2)解方程:A4xι =140A;?

求解下列问题:

5 4

⑴计算AJFT扌

A9 - A9

(2)方程3Aj =2A:+6A;的解为____________

【当堂检测】

n!…

1 ?右X ,则X= O

3!

Z A(B) V(C)A I(D) A3;

2?若Am =2As,则πι的值为O

(A) 5 (B) 3 (C)6 (D) 7

3?已知A?- 56,那么n = ___________ ;

4?一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?

答案:1、B; 2、A; 3、8 ;4、1680o

【归纳总结】1、是排列的特征;2、两个排列数公式的用途:乘积形式多用于计算,阶乘形式多用于化简或证明。

【作业】

1 ?下列各式中与排列数AnI相等的是()

(n - m) (C)晋,(D) AXJ

(A) (B) n(n — 1) (n — 2),,

(n -∏ι 1) !

2?若n € N 且n〈20 ,贝U (27 — n) (28 —nθ34"- n)等于(

(A) (C)心(D)心

3?若S=A l l Af A3 ................... -A11o.o,则S的个位数字是(

(A) 0 ( B) 3 ( C) 5 (D) 8

4.已知A2 则n二

=6A?-5 ,

5.计算2A8 'A s

A S -A5

6 ?解不等式:2V A

::42

A 2

A n 4

1. 2. 1排列⑵

【教学目标】

1.进一步理解排列的意义,并能用排列数公式进行运算;

2.能用所学的排列知识和具体方法正确解决简单的实际问题。

3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。

【教学重难点】

教学重点:排列应用题常用的方法:直接法(包括特殊元素处理法、特殊位置处理法、捆绑

法、插空法),间接法

教学难点:排列数公式的理解与运用

【教学过程】

一?课前预习

1. _________________ 排列的概念:从 _______________ 个不同元素中,任取个元素(这里的被

取元素各不相同)

按照一定的顺序排成一列,叫做从 ____________ 个不同元素中取出—个元素的一个排列.?

说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;

(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同

2.排列数的概念:从n个不同元素中,任取m (m乞n )个元素的所有排列的个数叫做从n 个元素屮取出m元素的排列数,用符号_________________ 表示.

二?课堂学习与研讨

例1. (1 )有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?

(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?

例2.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂

1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?

例3.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和

?位售票员,共有多少种不同的分配方案?

变式训练:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有()

(A) A 种(B)A4种(C)A4? A:种(D)A i种

例4.用O到9这10个数字,可以组成多少个没有重复数字的三位数?

【当堂检测】

1.用1, 2, 3, 4, 5这五个数字组成没有重复数字的三位数,其屮偶数共有()

(A)24个(B) 30 个(C) 40 个(D 60 个

2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其屮种子甲必须试种,那么不同的试种方法共有()

(A) 12 种(B) 18 种(C) 24 种(D) 96 种

3.某天上午要排语文、数学、体育、计算四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()

(A) 6 种(B) 9 种(C) 18 种(D) 24种

豊5站成一排照甲不站在排头的排法有)

相,<

A?24种 B . 72种 C. 96 种 D ?120

【归纳总结】

1、解有关排列的应用题时,先将问题归结为排列问题,然后确定原有元素和取出元素

的个数,即n、m的值.

2、解决相邻问题通常用捆绑的办法;不相邻问题通常用插入的办法

3、解有条件限制的排列问题思路:①正确选择原理;②处理好特殊元素和特殊位置,先让特殊元素占位,或特殊位置选元素;③再考虑其余元素或其余位置;④数字的排列问题,O不能排在首位

4、判断是否是排列问题关键在于取出的元素是否与顺序有关,若与顺序有关则是排列,否

则不是?

5、由于解排列应用题往往难以验证结果的正确性,所以一般应考虑用一种方法计算结果,用另 -种方法检查核对,辨别正误.

【作业】

1.( 1)由数字1, 2, 3, 4, 5可以组成多少个无重复数字的正整数?

(2)由数字1, 2, 3, 4, 5可以组成多少个无重复数字,并且比13000大的正整数?

2.学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位

置,2个曲艺节目要求排在第4、8的位置,共有多少种不同的排法?

3.某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?

(2)如果其屮某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

4.一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有多少种不同的排法?

1.2. 1 排列(3)

学习目标】

1. 切实学会用排列数公式计算和解决简单的实际问题;

2?会用“捆绑法”和“插入法”解决相邻和不相邻问题的应用题;

3?进一步培养分析问题、解决问题的能力,同时让学生学会一题多解

【重点难点】

重点:“捆绑法”和“插入法”应用的条件和方法?

教学难点:排列数公式的理解与运用

【学法指导】

预习课文和学案、分析例题、归纳方法

【学习过程】

课前练习:

I, 2, 3, 4, 5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为

( )(A) I : I ( B) 2: 3 ( C) 12 : 13 ( D) 21 : 23

2?有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不

能停在第一条轨道上,则五列火车的停车方法有()种?

A ? 78

B ? 72

C ? 120

D ? 96

3从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有_______________________ 种不同的种植方法。

二?课堂学习与研讨

例1?从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

例2. 7位同学站成一排,

(1 )甲、乙两同学必须相邻的排法共有多少种?

(2 )甲、乙和丙三个同学都相邻的排法共有多少种?

(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起

5)甲、乙两同学不能相邻的排法共有多少种?

(6)甲、乙、丙三个同学都不能相邻的排法共有多少种?

点评:

1)若要求某n个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。

2)若要求某n个元素间隔,常采用“插空法”。所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上?

例3^三个女生和五个男生排成一排.

(1)如果女生必须全排在一起,有多少种不同的排法?

(2)如果女生必须全分开,有多少种不同的排法?

(3)如果两端都不能排女生,有多少种不同的排法?

(4)如果两端不能都排女生,有多少种不同的排法?

(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?

解:

【当堂检测】

1停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数为

c. A

2 ?五种不同商品在货架上排成一排,其屮Λ g两种必须连排,而C, D两种不能连排,则不同的排法共有()

3.6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分

法有()

c. A3 A3 D.2A3 A3

4.某人射出8发子弹,命中4发,若命中的

.某人射出8发子弹,命中4发,若命中的4发屮仅有3发是连在一

起的,那么该人

的8发,按“命屮”与“不命屮”报告结果,不同的结果有

A. 720 种

【归纳总结】

1、解有关排列的应用题时,先将问题归结为排列问题,然后确定原有元素和取出元素

的个数,即n、m的值.

2、解决相邻问题通常用捆绑的办法;不相邻问题通常用插入的办法

3、解有条件限制的排列问题思路:①正确选择原理;②处理好特殊元素和特殊位置,

先让特殊元素占位,或特殊位置选元素;③再考虑其余元素或其余位置;④数字的排列问题,

4、判断是否是排列问题关键在于取出的元素是否与顺序有关,若与顺序有关则是排列, 否则不

是?

5、由于解排列应用题往往难以验证结果的正确性,所以一般应考虑用一种方法计算结果,用另一种方法检查核对,辨别正误.

【作业】

1. 7人站一排,甲不站排头,也不站排尾,不同的站法种数有多少种;甲不站排头,乙不站排尾,

不同站法种数有多少种?

2.一部电影在相邻5个城市轮流放映,每个城市都有3个放映点,如果规定必须在一个城市的各个放映点放映完以后才能转入另一个城市,则不同的轮映次序有多少种(只列式,不计算)?

4.某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂

2台,若要求同厂的产品分别集屮,且甲厂产品不放两端,则不同的陈列方式有多少种?

4.用数字0, 1, 2, 3, 4, 5组成没有重复数字的四位数,其屮(1)三个偶数字连在一起的四位数有多少个?(2)十位数字比个位数字大的有多少个?

0不能排在首位

概率统计 排列组合

概率统计 排列统计 班级: 姓名: 学号: 成绩: 一 、选择题:本大题共15小题,每小题4分,共60分。在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。 1.以下条件可以确定一个平面的是( )。 .A 空间三点 .B 一直线和一个点 .C 两条直线 .D 两平行直线 2.两条直线不平行是这两直线异面的( )。 .A 充分条件 .B 必要条件 .C 充要条件 .D 既不充分又不必要条件 3.由数字1,2,3,4,5组成没有重复数字,且数字1和2不相邻的五位数,那么这种五位数的个数是( )。 .A 72 .B 60 .C 48 .D 50 4.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )。 .A 24个 .B 30个 .C 40个 .D 60个 5.将12人分成两组,一组8人,一组4人的分法数为( )。 .A 812A .B 812C .C 841212+C C .D 841212 C C 6.抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( )。 .A 两个都是正面 .B 至少出现一个正面 .C 一个是正面一个是反面 .D 以上答案都不对 7.同时抛掷两颗骰子,总数出现9点的概率是( )。 . A 14 . B 15 . C 16 . D 1 9 8.样本:6,7,8,8,9,10的标准差是( )。 .A 2 . B . C 3 . D 9.下列变量中,不是随机变量的是( )。 .A 一射击手射击一次的环数 .B 水在一个标准大气压下100C 时会沸腾

.C 某城市夏季出现的暴雨次数 .D 某操作系统在某时间发生故障的次数 10.某射击手击中目标的概率是0.84,则目标没有被击中的概率是( )。 .A 0.16 .B 0.36 .C 0.06 .D 0.42 11.在12件产品中,有8件正品,4件次品,从中任取2件,2件都是次品的概率是( )。 . A 19 . B 1 10 .C 111 .D 112 12. 在10(x 的展开式中,6x 的系数为( )。 .A 61027C - .B 41027C .C 6109C .D 6 109C - 13.二项式8(1)x -的展开式中的第5项是( )。 .A 3 56x .B 3 2 56x - .C 470x .D 270x 14.设()6 26012631+…x a a x a x a x -=+++,则0126+=…a a a a +++( )。 .A 32 .B 64 .C 729 .D 56 15.已知某种奖券的中奖概率是50%,现买5张奖券,恰有2张中奖的概率是( )。 . A 25 . B 58 . C 516 . D 5 32 二、填空题:本大题共5小题,每小题4分,共20分。把答案填在题中横线上。 16.56101054 99 4P P P P -=- 。 17.甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为 。 18.已知互斥事件,A B 的概率3()4P A = ,1()6 P B =,则()P A B ?= 。 19.若把英语单词“bookkeeper ”的字母顺序写错了,则可能出现的错误共有 种。 20.若23 1818 x x C C -=,则x = 。 三、解答题:本大题共6小题,共70分。解答应写出推理、演算步骤。 21.5人排成一排,如果甲必须站在排头或排尾,而乙不能站排头或排尾,那么不同的排法总数是多少?(10分)

排列组合教案

数学广角 《课题一排列组合》教学设计 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析: 课标中指出数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。教学目标: 1使学生通过观察、猜测实验等活动,找出最简单的事物排列数和组合数。 2培养学生初步的观察能力、分析能力及推理能力 3初步培养学生有序的全面思考问题的意识。 情感态度与价值观:通过解决生活中的一些实际问题,感受数学与生活的密切联系培养学生积极思维的品质。 教学重点:有序排列的思想和方法 过程与方法:通过实践活动,经历找排列数与组合数的过程,体验排

列与组合的思想方法。 课时:1课时 教学设计 情景导入 师:同学们喜欢去广场吗?为什么? 走进新课 师:今天我们也要到一个有意思的地方,哪呢?课件(数学广角)对,那里没有好吃的,好玩的,但是那里有趣的数学问题等待我们开动我们聪明的小脑袋瓜儿解决他们,想去吗? 在去之前,我们先打扮一下自己,穿上漂亮的衣服,老师这有四件衣服(课件)你喜欢那套衣服,同学们有这么多的选择。那到底能搭配多少套呢?拿出手中的学具摆摆看。 学生分组讨论 汇报交流 同学们表现的真不错,你喜欢那一套,我们就在心理穿上你喜欢的衣服去数学广角了。 展开活动 1、开启大门 数学广角的大门是由1和2 这两个数字摆成的两位数,这道 门的密码可能是那些数? 生;12、21。 师:这两个数字有什么不同?

基本计数原理和排列组合

附 录 一.两个基本计数原理分类加法计数原理:做一件事情,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的方法,那么完成这 件事情共有N=m 1+m 2+…+m n 种不同的方法。 分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的办法……做第n 个步骤有m n 种不同的方法,那么完成这件 事情共有N=m 1×m 2×…×m n 种不同的方法。 两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法。考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。如果完成一件事情有n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理。 二.排列 以下陈述中如无特别说明,n、m 都表示正整数。一般的,从n 个不同的元素中任取m (m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。如果要求排列中诸元素互不相同,则称为选排列;反之,若排列中的元素可以有相同时,则称为可重复排列。可重复排列在生活中比较常见,如电话号码、证件号码、汽车牌照,等等。从n 个不同的元素中任取m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中任取m 个元素的排列数。用符号m n A 。为导出m n A 的计算公式,注意到对任一选排列,其第一位(从左到右计)可以放置编号1到n 的n 个元素的任意一个,共有n 种可能的结果;对于第一位的每一种放置结果,第二位可以放置剩下的n-1个元素中的任意一个,共有n-1种可能的结果;...,对于第m-1位的每一种放置结果,第m 位可以放置最后剩下的n-m+1个元素中的任何一个,共有n-m+1种可能结果。因此,根据乘法计数原理,有排列数公式: ) 1()2)(1(+---=m n n n n A m n (1.3)从n 个不同的元素全部取出的一个排列,叫做n 个不同元素的一个全排列,记作n n A ,也记之 为!n 。根据排列数的公式有 .12)1(!????-?=n n n (1.4)

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

(完整版)人教版高中数学《排列组合》教案

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

在概率的计算中的排列组合

预备知识 在概率的计算中经常要用到一些排列组合知识,也常常用到牛顿二项式定理。 这里罗列一些同学们在中学里已学过的有关公式,并适当作一点推广。 一. 两个原理 1. 乘法原理: 完成一项工作有m 个步骤,第一步有1n 种方法,第二步有2n 种方法,…, 第m 步有m n 种方法,且完成该项工作必须依次通过这m 个步骤, 则完成该项工作一共有 1n 2n …m n 种方法,这一原理称为乘法原理。 2. 加法原理: 完成一项工作有m 种方式,第一种方式有1n 种方法,第二种 方式有2n 种方法,…,第m 种方式有m n 种方法,且完成该项工作只需 选择这m 种方式中的一种,则完成这项工作一共有 1n +2n +…+m n 种方法,这一原理称为加法原理。 二. 排列: 从n 个元素里每次取出r 个元素,按一定顺序排成一列,称为 从n 个元素里每次取r 个元素的排列,这里n 和Z 。均为正整数(以 下同)。 当这n 个元素全不相同时,上述的排列称为无重复排列,我 们关心的是可以做成多少个排列,即排列数。 对于无重复排列,要求当 时 r n 称为选排列,而当 r =n 时称为全排列。我们记排列数分别为 即将全排列看成选排列的特例。 利用乘法原理不难得到 由阶乘的定义

由阶乘的定义 将上面的n个不同的元素改为n类不同的元素,每一类元素 都有无数多个。今从这n类元素中取出r个元素,这r个元素可 以有从同一类元素中的两个或两个以上,将取出的这r个元素dl 成一列,称为从n类元素中取出r个元素的可重复排列,排列数记 作,由乘法原理得 显然,此处r可以大于n 例3 将三封信投入4个信箱,问在下列两种情形下各有几 种投法? 1)每个信箱至多只许投入一封信; 2)每个信箱允许投入的信的数量不受限制。 解1)显然是无重复排列问题,投法的种数为 2)是可重复排列问题,投法的种数为 三、组合 从“个元素中每次取出r个元素,构成的一组,称为从n个元 素里每次取出r个元素的组合。 设这n个元素全不相同,即得所谓无重复组合,我们来求组合数,记作 将一个组合中的r个元素作全排列,全排列数为 , 所有组合中的元素作全排列,共有 个排列,这相当于从n个元素里每次取r个元素的选排列,排列总数为 故有

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

两个计数原理、排列与组合

全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制1道 小题或者1道解答题,分 值占5~17分. 2.考查内容 计数原理常与古典概型综 合考查;对二项式定理的 考查主要是利用通项公式 求特定项;对正态分布的 考查,可能单独考查也可 能在解答题中出现;以实 际问题为背景,考查分布 列、期望等是高考的热点 题型. 3.备考策略 从2019年高考试题可以 看出,概率统计试题的阅 读量和信息量都有所加 强,考查角度趋向于应用 概率统计知识对实际问题 作出决策. 第一节两个计数原理、排列与组合 [最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念

及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. 1.两个计数原理 分类加法计数原理 分步乘法计数原理 条件 完成一件事有两类不同方案,在 第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法 结论 完成这件事共有N =m +n 种不同的方法 完成这件事共有N =mn 种不同的方法 排列的定义 从n 个不同元素中取出 m (m ≤n )个元素 按照一定的顺序排成一列 组合的定义 合成一组 排列数 组合数 定义 从n 个不同元素中取出 m (m ≤n )个元素的所有不同排 列的个数 从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数 公式 A m n =n (n -1)(n -2)…(n -m + 1)= n ! (n -m )! C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m ! 性质 A n n =n !,0!=1 C m n =C n -m n ,C m n +C m -1n =C m n +1 一、思考辨析(正确的打“√”,错误的打“×”) (1)所有元素完全相同的两个排列为相同排列. ( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合复习学案精编WORD版

排列组合复习学案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

排列组合复习学案 1 重复排列“求幂运算” 重复排列问题要区分两类元素:一类可以重复,另一类不能重复。把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题。 例1 8名同学争夺3项冠军,获得冠军的可能性有() 2. 特殊元素(位置)用优先法:把有限制条件的元素(位置)称为特殊元素(位置),可优先将它(们)安排好,后再安排其它元素。对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 例2(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种(用数字作答)。 例3 5个“1”与2个“2”可以组成多少个不同的数列? 。 3. 相邻问题用捆绑法:对于要求某几个元素必须排在一起的问题,可用“捆绑法”“捆绑”为一个“大元素:与其他元素进行排列,然后相邻元素内部再进行排列。 例1.(1996年上海高考题)有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种(结果用数字表示)。

如:7个人排成一排,其中甲乙两人之间有且只有一人,问有多少种不同的排法?4. 相离问题用插空法:元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 5. 定序(顺序一定)问题用除法:对于在排列中,当某些元素次序一定时,可用此法。 6. 多排问题用直排法:对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。 7. 至少问题正难则反“排除法”:有些问题从正面考虑较为复杂而不易得出答案,这时,可以采用转化思想从问题的反面入手考虑,然后去掉不符合条件的方法种数往往会取得意想不到的效果。在应用此法时要注意做到不重不漏。 例1.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有() A. 150种 B. 147种 C. 144种 D. 141种 8.错位排列问题:错位排列问题是一个古老的问题,最先由贝努利(Bernoulli)提出,其通常提法是:n个有序元素,全部改变其位置的排列数是多少?所以称之为“错位”问题。 例2.五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?9. “隔板法”:常用于解决整数分解型排列、组合的问题。

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

计数原理与排列组合

计数原理与排列组合 计数原理一、知识导学 1.分类计数原理:完成一件事n类办法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D . [例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用). 解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3 2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数. [例5] 用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字不重复的三位奇数? (3)可以组成多少个数字不重复的小于1000的自然数? 解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个 四、典型习题导练 1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( ) A .43种 B .3 4种 C .18种 D .36种

基本公式排列组合二项式定理及概率统计

基本公式·排列组合二项式定理及概率统计 151排列数公式 : m n A =)1()1(+--m n n n ! ! )(m n -(n ,m ∈N * ,且m n ≤).规定1!0= 154组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C +规定0 =n C 155组合恒等式 (3)11m m n n n C C m --=; (4)∑=n r r n C 0=n 2; (5)121++++=++++r n r n r r r r r r C C C C C (6)n n r n n n n C C C C C 2210 =++++++ (7)420531 2-=+++=+++n n n n n n n C C C C C C (8)321 232-=++++n n n n n n n nC C C C (9)r m r n r m n r m n r m C C C C C C C +-=+++0110 (10)n n n n n n n C C C C C 2222212 0)()()() (=++++ 156排列数与组合数的关系:m m n n A m C =?! 157.单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列) (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位 置)1 1111----+= m n m m n A A A (着眼元素)种 (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种 ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ) ,把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有 k h h h A A 1+种 (3)两组元素各相同的插空 m 个大球n 个小球排成一列,小球必分开,问有多少种排法? 当1+>m n 时,无解;当1+≤m n 时,有 n m n n n m C A A 11 ++=种排法 (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C + 158.分配问题 (1)(平均分组有归属问题)将相异的 mn 个物件等分给m 个人,各得n 件,其分配方法数共有m n n n n n n mn n n mn n mn n C C C C C N ) !(22=?????=-- (2)(平均分组无归属问题)将相异的mn 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 m n n n n n n mn n n mn n mn n m m C C C C C N ) !(!!...22=????=-- (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得

12.1计数原理与简单排列组合问题

第十二章 计数原理 本章知识结构图 第一节 计数原理与简单排列组合问题 考纲解读 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 3.理解排列、组合的概念. 4.能用计数原理推导排列数、组合数公式. 命题趋势探究 1.本节为高考必考内容,一般有1~2道选择题或填空题. 2.题目主要以实际应用题形式出现. 3.试题的解法具有多样性,一般根据计数重复或遗漏来设计错误选项,在解答选择题时可通过正向(分类相加)和反向(总数减去对立数)互相检验,也可以通过排除法筛选正确选项. 知识点精讲 基本概念 1.分类加法计数原理 ○ 1有n 类方法 完成一件事 ○ 2任两类无公共方法(互斥) 共有N = ○ 3每类中每法可单独做好这件事 12n m m m ++???+ 种不同方法.如图12-1所示.

计 计 A 计计计计1 计计1 计计2 计计 m1 计计计计n 计计1 计计2 计计 m n m1计 m n计 计计计计A计计 m1+m2+m3+···+m n计计计计计计 图12-1 2.分步乘法计数原理 ○1必须走完n步,才能完成任务 完成一件事○2前一步怎么走对后一步怎么共有N 走无影响(独立) 12n m m m =??????种不同方法.如图12-2所示. m1计m n计 计计计计B计计m1×m2×m3×···×m n计计计计计 计 m2计m i计 图12-2 两个原理及其区别. 分类加法计数原理和“分类”有关,如果完成某件事情有n类办法,这n类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理. 分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理. 当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法. 3.排列与排列数 从n个不同元素中取出m(m≤n)个(不同)元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.从n个不同元素中选取m个元素(n≥m)的排列个数 共有A m n . ()()() A121 m n n n n n m =--???-+ g g g g (m个连续正整数之积,n为最大数). ()() A12321! n n n n n n =--???= g g g g g g 注

最新高考数学总复习------ 排列组合与概率统计

高考数学总复习------排列组合与概率统计 【重点知识回顾】 1.排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关. ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题. ⑶ 排列与组合的主要公式 ①排列数公式:)1()1()! (! +-???-=-= m n n n m n n A m n (m≤n) A n n =n! =n(n―1)(n―2) ...2·1. ②组合数公式:1 2)1() 1()1()!(!!??????-?+-???-=-= m m m n n n m n m n C m n (m≤n). ③组合数性质:①m n n m n C C -=(m≤n). ②n n n n n n C C C C 2210=+???+++ ③1 314202-=???++=???++n n n n n n C C C C C 2.二项式定理 ⑴ 二项式定理 (a +b)n =C 0n a n +C 1n a n - 1b+…+C r n a n - r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n a n - r b r . ⑵ 二项展开式的通项公式 二项展开式的第r+1项T r+1=C r n a n - r b r (r=0,1,…n)叫做二项展开式的通项公式。 ⑶ 二项式系数的性质 ①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即C r n = C r n n - (r=0,1,2,…,n). ②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2 n n ;若n 是奇数, 则中间两项(第21+n 项和第2 3 +n 项)的二项式系数相等,并且最大,其值为C 21 -n n = C 21 +n n . ③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C n n =2n . ④奇数项的二项式系数和等于偶数项的二项式系数和,

排列组合概率专题讲解

专题五: 排列、组合、二项式定理、概率与统计 【考点分析】 1. 突出运算能力的考查。高考中无论是排列、组合、二项式定理和概率题目,均是用数 值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。 2. 有关排列、组合的综合应用问题。这种问题重点考查逻辑思维能力,它一般有一至两 3. 个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有 多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。 4. 有关二项式定理的通项式和二项式系数性质的问题。这种问题重点考查运算能力,特 别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。 5. 有关概率的实际应用问题。这种问题既考察逻辑思维能力,又考查运算能力;它要求 对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。 6. 有关统计的实际应用问题。这种问题主要考查对一些基本概念、基本方法的理解和掌 握,它一般以一道选择题或填空题的形式出现,属于基础题。 【疑难点拨】 1. 知识体系: 2.知识重点: (1) 分类计数原理与分步计数原理。它是本章知识的灵魂和核心,贯穿于本章的始终。 (2) 排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。排列数公式 的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。 (3) 二项式定理及其推导过程、二项展开式系数的性质及其推导过程。二项式定理的 推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应用。 (4) 等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独 立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。互斥事件的概率加法公式对应着分类相加计数原理的应用,相互独立事件的概率乘法公式对应着分步相乘计数原理的应用。 (5) (理科)离散型随机变量的定义,离散型随机变量的分布列、期望和方差。 (6) 简单随机抽样、系统抽样、分层抽样,总体分布,正态分布,线性回归。

相关主题