搜档网
当前位置:搜档网 › 1、电流、电压和功率的测量

1、电流、电压和功率的测量

1、电流、电压和功率的测量
1、电流、电压和功率的测量

绪 论

一、课程内容 “感”——传感器,

“测”——测试技术: 电量测试 非电法

非电量测试 电测法

电测法优点:1°可扩展量程,提高精度

2°可扩展频带,提高精度 3°可实现遥测

4°可实现数字化、智能化、网络化

二、地位与作用

1.科学研究的手段 2.信息产业的源头 3.自动控制的前提

4.生产、生活、国防现代化的基础 三、传感器与敏感器

1.传感器

定义——把非电量转换为电量的器件或装置 类型——物理传感器 结构型 模拟式 物性型 数字式 化学传感器

生物传感器

2.敏感器

定义——把被测非电量转换为传感器可用非电量的器件或装置 x ——被测非电量 z ——传感器可用非电量 y ――传感器输出电量

敏感器传输函数 )(x z ψ= 传感器传输函数 )(z y ?=

敏感器传感器复合函数 )()]([)(x f x z y ===ψ??

四、测量仪表与系统

1.普通电测仪表 ① 模拟式电测仪表

② 数字式电测仪表

2.微机化测试系统

第一章 电流、电压和功率的测量

本章重点:动圈式磁电系测量机构(“表头”)的工作原理、直流电流表原理、

交流电流表原理、电流/电压转换法、直流电压表原理、交流电压测量方法、

电动系测量机构的工作原理、电动系功率表工作原理及使用方法。

本章难点:非正弦电压的波形换算、用时分割乘法器测量功率

1.1 电流的测量

1.1.1 电流表直接测量法

一、直流电流表

1、动圈式磁电系测量机构(“表头”)的工作原理——图1-1-1

“动圈”(即可以转动的线圈)由弹性支承悬挂在永久磁铁产生的磁场中,当 动圈中流过电流i 时,动圈在磁场中受到的电磁力矩为: Ci bNLBi bF M c ===

动圈转动时受到弹性支承作用的弹性力矩为:

θk M k =

动圈转动时受到与转动角速度成正比的阻尼力矩 dt

d D

M d θ

= c M 驱使动圈转动,而d M 、k M 则阻止线圈转动,因此根据转动定律有:

2

2dt

d J M M M d k c θ

=-- 将c M 、d M 、k M 代入上式得到动圈式磁电系测量机构的动态方程:

Ci k dt d d dt

d J =++θθθ22

若信号电流为直流I ,在达到稳定之后,上式左边前两项均为零,于是得到动圈式磁电系测量机构的静态方程:

0CI

S I k

θ=

= 式中S 0=C/k 称为动圈测量机构的静态灵敏度

2、以动圈式磁电系测量机构为“表头”的非电量测量仪表――图0-2(a) 图0-2(a)中传感器的灵敏度(输出电量与输入非电量之比)为S 1,测量电路把

传感器输出的电量转换成直流电流,其灵敏度(输出直流电流与输入电量之比)为S 2,则表头指针偏转角θ与被测非电量x 成线性正比关系。

S x θ=?

式中 012S S S S =为图0-2(a)所示非电量x 的电测仪表的总灵敏度。

2、多量程电流表原理――图1-1—3(b)

单量程交流电流表配接分流电阻即构成多量程交流电流表

若电流表有三挡量程:1I 、2I 、3I ,则量程分流电阻1R 、2R 、3R 满足如下关系式:

)(32111g g R R R R I R I +++= )()(321212g g R R R R I R R I +++=+ )()(3213213g g R R R R I R R R I +++=++

即 (量程满偏电流)×(量程分流电阻)=(表头满偏电流)×(环路总阻) 使用多量程的电流表时,首先应使用最大的电流量程;然后减小量程,直到得到明显的偏转。为了提高观察的准确度,应使用给出的读数尽可能接近满刻度的量程。

二、交流电流表――图1-1—4

直流电流表配接半波整流电路或全波整流电路即构成交流电流表 单量程交流电流表配接分流电阻即构成多量程交流电流表 三、测量误差 图1-1-5

被测电流实际值 图1-1-5(a ) R

E

R R E I c x =+=0

电流表读数值 图1-1-5(b ) x x I r R E I 0

=+=

γ

测量误差 00

11=+-=+=-=r r

R

r

R r I I I x x

x

结论:电流表内阻越小越好

1.1.2 电流——电压转换法

一、取样电阻法――在被测电流回路中串入很小的标准电阻r 图1-1-6(a ): )1(32R R r I U x x +??= )1(3

2R R

r I U x x += 图1-1-6(b ):

11I R r I x =? 所以 1

1R r

I I x ?

=

1

2

21R R r

I R I U x x ?== 所以

1

2R R

r I U x x ?= 图1-1-6(c ): R 1>>r )2

1(2223

1211R R R R R r R r I U x x +?+??

-=

)1(223

2121R R

R R r I r R x +?

->>

K r I U x x ?= K ——差放放大倍数 )1(23

212R R

R R K += 比较:图1-1-6(c )的误差大些, 图中r 并联了差动放大器输入阻抗2R 1,对I x

有分流作用。图1-1-6(a )(b )运放输入电流为零,对r 上电流无分流作用。

公式(1-1-16)的证明:

???

?

??

???=+-=-=--+-=-=--+++--ΛΛΛΛΛΛΛΛΛΛΛU U R U R U U R U U R U U R U U R U U R U U R U U x

2124

334241223343231

1 ②-①式相减得

2

23433424

31122R U R U U R U U R U U R U U x +-+-=-=- 2

23243)1

21)(

(R U R R R U U x =++- 所以 )1)((23

2

43R R U U U x +

-= ③ )(432

1

12U U R R U U -=

-° ④ ③÷④式得:

)1(23

21212R R

R R U U U K x +=-=

因差动放大器的输入阻抗为2R 1 所以 1

1

12122)2//(R r R r I R r I U U x

x +?==-

时r R >>12 r I R r R r I U U x x ?≈+?

?=-1

1

2122

所以 K r I K U U U x x ??-=?--=)(21

K r I U x x ?= 式中 )1(23

221R R

R R K += 二、反馈电阻法——被测电流回路中串入电压并联负反馈电路

1.I x 流过反馈电阻 图1-1-7(a )

n x x R I U ?= 一般Ω<<Ωμ110n R

2.I x 流过反馈T 网 图1-1-7(b ) 331R I R I V x A -=?-=

所以 3

1

3R R I I x

= 因为 2322)(R I I V R I V V x A A x ?+-=-= 231

1)1(R R R I R I x x ?+--= )(3

2

121R R R R R I x +

+-= 所以 2133

2121R R R R R R R R I U x x +∞

=++=

比较:取样电阻法比较适合测量较大电流

反馈电阻法比较适合测量较小电流

1.1.3 电流/频率转换法――图1-1-8 C

V I f DD x x 3≈ 1.1.4 电流/磁场转换法(见5.5节) 1.1.5

电流互感器法

图1-1-9 原边 11,N i 2

1

21122211N N V V i i V i V i ==∴

?=?Θ 付边 22,N i 21

12N N i i ?= 1

221i i N N << 图1-1-10(a ) 12210R R

r N N I U ???= (b ) R N N I U ??=2

1

0 1.2 电压测量

1.2.1 直流电压的测量

一、普通直流电压表 1.组成原理――图1-2-1

I m —电流表量程 U m —电压表量程 v m n e m m R I R R I U =+=)(

v R —内阻 n e v R R R +=

灵敏度(Ω/V 数) m

v I K 1

= 所以 m V V U K R ?= 2.测量误差――图1-2-2

电压表读数 000R R R R U V

V

+=

测量误差 V

R R R E E U V +-=-=00

000 消除误差办法: 1°使0R R V >> 2°二量程测量法

设量程1m U 时的读数为01U ,则0201

020)

1(U U U k k E ?--=

量程2m U 时的读数为02U ,式中12/m m U U K = 例1 习题2

解 V K K V /20Ω= V U m 51=的Ω=?Ω==K K U K R m V V 10052011 因为Ω==K R V E 100,500,测量读数V R R R E U V V 5.2100

100100

5010

01=+?=+=

同理可计算得V U m 252=时,Ω=K R V 5002,V U 17.402= 55

25

12===

m m U U K 01.545.217

.451

5101

020=?--=-

-=U U K k E 伏 二、直流电子电压表 1.组成框图 图1-2-3

2.实例——MF-65型电子电压表 图1-2-4 K

R

I U K R I U R KU R U I F m m F x F x F i ?=?=?==

00 三、直流数字电压表 图1-2-5 1.2.2 交流电压的表征及测量方法

一、交流电压)(t u 的表征

1.峰值p U

2.平均值 ?=T dt t u T U 0|)(|1(全波整流平均值)直流分量 ?=T

dt t u T U 0)(1

3.有效值(均方根值) ?

=

T

dt t u T

U 0

2

)(1

?

?=T

T R

U dt R t u 0

2

2)( 4.波形因数 U U K F /= 波峰因数 U U K p p /= 二、交流电压的测量方法

所有电压表几乎都按正弦波有效值定度 1.检波类型

①平均值检波——输出直流电压等于输入交流电压平均值 ②有效值检波——输出直流电压等于输入交流电压有效值 ③峰值检波——输出直流电压等于输入交流电压峰值 2.模拟交流电压表组成方式

①检波—放大式 图1-2-7(a ) (超高频电压表)频带度,灵敏度低 ②放大—检波式 图1-2-7(b ) 视频毫伏表,频带窄灵敏度高

③外差式 图1-2-8 高频微伏表,选频电平表,频带宽,灵敏度高 1.2.3 低频交流电压的测量——多采用均值电压表测量

一、均值电压表的特点 1°放大——检波式组成结构

2°采用平均值检波——两电压的读数相同,即两电压的平均值相同 3°按正弦电压有效值刻度(有效值为U 的正弦电压的读数也为U ) 二、测量数据换算——波形换算(从读数值a U 求平均值U 和有效值U ) 被测信号 平均值U 有效值U U U K F /= 正弦信号 a a U U U 9.011.1/==正弦 a U U =正弦 F K U U /= 非正弦信号 a U U U 9.0==正弦非正弦 a F F U K K U U ?=?=9.0非正弦非正弦 例(P27题4) 解:据题知V U a 10=

被测信号 平均值U 有效值U

正弦波 V U U a 911.1/== V U U a 10==

三角波 V U 9= V K U U F 35.1015.19=?== 方波 V U 9= V U 919=?= 二、采用有效值电压表测量 1.有效值电压表特点:

1°放大——检波式组成结构

2°采用有效值检波(两电压读数相同,即两者有效值相同) 3°按正弦电压有效值刻度

2.测量数据换算——从读数值U a 求平均值U 和有效值U 被波信号 有效值U 平均值U

正弦信号 a U U = a a U U U 9.011.1/== 非正弦信号 a U U = F K U U /= 1.2.4 高频交流电压的测量——采用峰值电压表

一、峰值电压表特点 1.检波——放大式组成结构

2.采用峰值检波(两电压读数相同即两者峰值相同)

3.采用正弦有效值刻度(有效值为U 的正弦电压的读数也为U ) 二、测量数据换算——从读数值U a 求有效值U 和峰值U p 被波信号 有效值U 峰值U p 正弦信号 U=U a a p U U U 22== 非正弦信号 p p K U U /= a p U U 2=

1.3 功率的测量 功率的概念

一、直流功率 P=UV 二、交流功率

?j e I Z I U

??=?=|2|&&& ||Z I U ?= t I i ωsin 2=

)sin(2)sin(|2|22?ω?ω+?=+?=

?=t U t I i u

1.瞬时功率 )2cos(cos )()()(?ω?+-?=?=t UI I U t i t u t p 2.有功功率 ??+-==

=T T

dt t UI T

dt t p T t p p 00)]2cos([cos 1)(1)(?ω? ?cos UI = 3.无功功率 ?sin ?=UI Q

4.视在功率 UI S = 所以 2

2

2

Q P S +=

有功功率?cos UI P = 无功功率?sin UI P = 纯电阻R ?=0? R U R I UI /2

2== 0

纯电感L ?=90? 0 2

90sin )(LI I LI ωω=?? 纯电容C ?=90? 0 2

)90sin()(cU c U U ωω-=?-??

1.3.1 用电动系功率表测量功率

一、电动系测量机构的工作原理 固定线圈产生的磁场: B 1=K 1·i 1 活动线圈产生的偏转:

① 转动力矩21222i ki i B k m t ?=?=,t m 平均值??=T

dt i ki T

M 0211 ?ωω+==

t I i t I i sin 2,sin 22211时?cos 211I I K M ??=

②弹性力矩 α?=D M f

平衡不动时,M M f =

所以 ?αcos 21I I D

K

?=

二、电动系功率表工作原理 负载阻抗 ?

j e

|2|2=

负载电流 I &

负载电压 |2|,?=?=I U Z I U &&

负载有功功率 ?cos UI P x =

功率表电流线圈电流 I I =1 (固定、粗导线) 功率表电压线圈电流 f R U I /2=(活动、细导线) 功率表指针偏角 x f

f P DR K

UI DR K I I D K ?=?==

??αcos cos 21 令 K

DR C f =

所以 α?=C P x

功率表读数 x x N C P ?= C ——分格常数(每格代表的瓦特数 N x ——指针偏转格数 max

max

max max max N I U N P C ?==

max N ——功率表满刻度格数 max U ——功率表额定电压 m ax I ——功率表额定电流

三、电动系功率表使用注意点

1.正确选择量程——电压、电流、功率三者均不应超过量限 2.正确接线 图1-3-2

1°电流线圈与负载串联,电压线圈与负载并联 2°两线圈﹡端同接高电位端(或同接低电位端) 3°两线圈﹡端同接电流引入端(或同接电流引出端)

(a )(b )适于吸收功率测量——正转表示Z 吸收功率 (c )(d )适于发出功率测量——反转表示Z 发出功率 4°(a )(c )适于Z>>Z A Z A ——电流线圈阻抗 (b )(d )适于Z<

3u 为节拍方波c IE :

||||max R x c U u E +> 0>c u 时,S 1接+U R ,S 2接+U Y 0

?

+=T

t t dt t u 00

0)(3

?++++

=+T t t x c c dt R u R u R u c t u T t u 00)(1)()(3

3

22100 因为 0)(0=t u c ,0)(0=+T t u c ,000

3=?

+T

t t dt u

所以

?+=+T

t t x dt R u R u 000)(

2

2

1

?

+=T

t t x x R T u dt R u 00

1

1

?

??++++-+=T

t t T t t T t T t R R dt u dt u R dt R u 00

1

00

01

0])([1222

R R R U R T T R T U T U ?-=-=

2

2

1221

所以

R x U R T T R T u ?-=2121 所以 R

x

U R u R T T T 1212=- y x R

y y s u u U R R T

T u T u u e ?-

=-=

=12

2

10 设 N x y R i u ?= 所以 x x R

N

u i U R R R e ??-=120 令 R

N

p U R R R K ?-=12 x x x u i t P ?=)( 所以 )(0t P K e x p =

因ω

π

2<<

T (ω——被测信号角频率),故0e 与瞬时电压电流乘积即瞬时功率)(t P x 成正

比, 因为 )2cos(cos )(?ω?+-=t I U I U t P x x x x x 所以 ?cos 00x x p I U K e U ?=

低通1对s u 取平均,载频应小于

T

1

,低通2对0e 取平均截频应小于f 222=πω,因为

ω

π

2<<

T ,所以

π

ω

221>

T ,故低通1可省去 1.3.3 用霍尔功率变换器测量功率

特点:1°负载电流i 产生截尔元件所需的作用磁场 t I K i K B A B A B ωsin 2?=?= 2°负载电压A u 产生霍尔元件所需的激励电流 )sin(2?ω+?=?=t U K U K i I I H 3°霍尔元件输出电压为

)sin(sin sin 2?ωωω+????=??=t t t UI K K K B i K u I B H H H H )]2cos([cos ?ω?+-???=t UI K K K I B H )2cos(cos ?ω?+-??=t KUI I KU 4°低通滤波器输出电压为

?cos 0??==I KU u U H B I H K K K K ??=

电流电压功率之间的关系及公式

电流电压功率之间的关 系及公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F? W=I2乘以R? V=IR W=V2/R 电流=电压/电阻? 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N (瓦特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I,

P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P 还有P=I2RP=IUR=U/I最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号:I 符号名称:安培(安) 单位:A 公式: 电流=电压/电阻I=U/R 单位换算:1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式=电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式=?*线电压U*线电流I(星形接法) =?3*相电压U*相电I(角形接法)

三相电机类电功率的计算公式=?*线电压U*线电流I*功率因数 COSΦ 星形电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P P=I2R? 4、串联电路? P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2? 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2? W1:W2=R1:R2=U1:U2? P1:P2=R1:R2=U1:U2? 总功率等于各功率之和:

实验4三相电路电压、电流及功率的测量(精)

实验四三相电路电压、电流的测量 一.实验目的 1、练习三相负载的星形联接和三角形联接; 2、了解三相电路线电压与相电压,线电流与相电流之间的关系; 3、了解三相四线制供电系统中,中线的作用; 4、观察线路故障时的情况; 5、学会用功率表测量三相电路功率的方法。 二.原理说明 1.三相电压、电流的测量 电源用三相四线制向负载供电,三相负载可接成星形(又称‘Y’形)或三角形 (又称‘Δ’形)。 当三相对称负载作‘Y’形联接时,线电压UL是相电压UP的倍,线电流IL等于相电流IP,即:UL=3UP, IL=IP,流过中线的电流IN=0;作‘Δ’形联接时,线电压UL等于相电压UP,线电流IL是相电流IP的3倍,即:IL=IP, UL=UP 不对称三相负载作‘Y’联接时,必须采用‘YO’接法,中线必须牢固联接,以保证三相不对称负载的每相电压等于电源的相电压(三相对称电压)。若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏,负载重的一相相电压又过低,使负载不能正常工作;对于不对称负载作‘Δ’ 联接时,IL≠3Ip,但只要电源的线电压UL对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 本实验中,用三相调压器调压输出作为三相交流电源,用三组白炽灯作为三相负载,线电流、相电流、中线电流用电流插头和插座测量。 2.三相功率的测量 (1)三相四线制供电,负载星形联接(即Y0接法) 对于三相不对称负载,用三个单相功率表测量,测量电路如图4-1所示,三个单相功率表的读数为W1、W2、W3,则三相功率P=W1+W2+W3, 这种测量方法称为三瓦特表法;对于三相 对称负载,用一个单相功率表测量即可,若功率表的读数为W ,则三相功率P=3W,称为一瓦特表法。 (2)三相三线制供电 三相三线制供电系统中,不论三相负载是否对称,也不论负载是‘Y’接还是‘Δ’接,

电流电压功率之间的关系及公式

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

初中九年级(初三)物理 第一章电流、电压和功率的测量

第一章 电流、电压和功率的测量 1.1 电流的测量 1.1.1 电流表直接测量法 一、直流电流表 1、动圈式磁电系测量机构(“表头”)的工作原理——图1-1-1 “动圈”(即可以转动的线圈)由弹性支承悬挂在永久磁铁产生的磁场中,当 动圈中流过电流i 时,动圈在磁场中受到的电磁力矩为: Ci bNLBi bF M c === 动圈转动时受到弹性支承作用的弹性力矩为: θk M k = 动圈转动时受到与转动角速度成正比的阻尼力矩 dt d D M d θ = c M 驱使动圈转动,而d M 、k M 则阻止线圈转动,因此根据转动定律有: 2 2dt d J M M M d k c θ =-- 将c M 、d M 、k M 代入上式得到动圈式磁电系测量机构的动态方程: Ci k dt d d dt d J =++θθθ22 若信号电流为直流I ,在达到稳定之后,上式左边前两项均为零,于是得到动圈式磁电系测量机构的静态方程: 0CI S I k θ= = 式中S 0=C/k 称为动圈测量机构的静态灵敏度 2、以动圈式磁电系测量机构为“表头”的非电量测量仪表――图0-2(a) 图0-2(a)中传感器的灵敏度(输出电量与输入非电量之比)为S 1,测量电路把 传感器输出的电量转换成直流电流,其灵敏度(输出直流电流与输入电量之比)为S 2,则表头指针偏转角θ与被测非电量x 成线性正比关系。 S x θ=? 式中 012S S S S =为图0-2(a)所示非电量x 的电测仪表的总灵敏度。 2、多量程电流表原理――图1-1—3(b) 单量程交流电流表配接分流电阻即构成多量程交流电流表 若电流表有三挡量程:1I 、2I 、3I ,则量程分流电阻1R 、2R 、3R 满足如下关系式:

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

测量电功率实验的目的和原理

?测量电功率实验的目的和原理: 1. 实验目的: 1)测定小灯泡额定电压下的电功率; 2)测定小灯泡略高于额定电压下的电功率; 3)测定小灯泡略低于额定电压下的电功率。 2. 实验原理:P=UI 应测量的物理量:小灯泡两端的电压U,和通过的电流I。 3. 实验方法:伏安法 ?伏安法测小灯泡的电功率:

?伏安法测电阻与测功率的异同点: ?补充: (1)伏安法测功率。滑动变阻器的作用是保护电路和控制灯泡两端电压。多次测量的目的是为了测量不同电压下小灯泡的实际功率,不 是为了多次测量求平均值。所以设计的表格中没有“平均功率”这一栏。 (2)伏安法测定值电阻时,滑动变阻器的作用是保护电路和改变电路中的电流和电阻两端电压,因电阻阻值不变,这是为了多测几组对 应的电压、电流值,多测几次电阻值,用多次测量求平均值来减小误差。 (3)伏安法测小灯泡电阻时,由于灯丝电阻大小与温度有关。在不同的工作状态下,小灯泡温度不同。灯丝电阻也不同。因此测灯丝电 阻时滑动变阻器的作用是为了保护电路和改变电路中的电流,不是为了多次测量求平均值。 ?“伏安法测功率”中常见故障及排除: “伏安法测功率”是电学中的重要实验。同学们在实验过程中,容易出现一些实验故障,对出现的实验故障又束手无策,因此,能够找出实验故障是做好实验的“法宝”。下面就同学们在实验中易出现的故障从以下几方面进行分析。 1.器材选择不当导致故障 故障一:电流表、电压表指针偏转的角度小。 [分析原因]①电压表、电流表量程选择过大;②电源电压不高。 [排除方法]选择小量程,如果故障还存在,只有调高电源电压。实验中若电表指针偏转的角度太小,估读电流或电压时由于视觉造成的误差将增大。为了减小实验误差,选择量程时既不能使电表指针超过最大刻度,又要考虑到每次测量时应该使电表指针偏过刻度盘的中线。 2.器材连接过程中存在故障 故障二:电压表、电流表指针反向偏转。 [分析原因]两表的“+”“-”接线柱接反了,当电流从“一”接线柱流入时,指针反向偏转,甚至出现指针打弯、损坏电表的情况。 [排除方法]将两电表的“+”“-”接线柱对调。

功率电压电流公式 功率电压电流公式大全

1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方)U:电压,V; I:电流,A; P:有功功率,W; R:电阻 纯电感无功功率 Q=I2*Xl (式中2为平方) Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率 Q=I2*Xc (式中2为平方) Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大 值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为 初相。 8、交流电路最大值与在效 值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接 I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线 ×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电 压,V; N1、N2:一次、二次线圈 圈数; I2、I1:二次、一次电流, A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方 (式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联 电路 I=U/Z Z=[R2+(XL-Xc)2]和的开 平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

电工-02 电压和功率测量

实验-02 电压和功率测量:电压丢哪儿了? 一、实验目的: 1.功率表的使用:如何用功率表测量二端器件的有功功率? 2.进一步熟悉调压器、指针电压表、电流表 3.掌握功率测量方法,用功率表测量或测量电压、电流计算出功率 4学习、掌握仪表符号代表的意义.0.5级表的误差为0.5% 5.特别提醒.注意自耦调压器、功率表的接法,电压表内阻的影响…… 二、实验设备: 自耦调压器、指针电压表、电流表、功率表、40W灯泡 三、实验线路和原理 1、按图接好线路,电压调至V=250V(以电压表测试为准), 2、先用指针表150V档测U1,U2记录测量结果入表 3、重复上述实验过程,这次改用数字万用表测量电压,数据计入表中。 四、实验内容小结 1.指针电压表精度为1级,内阻R0=5000Ω(150V),300V档R0=20000(Ω) 2.指针表150V档测量灯泡电压时有什么现象?用数据解释“电压丢哪儿了”? 与电压表并联的灯泡亮度明显小于另一灯泡,被测灯泡的电压小于125V;U1+U2<250; 按照串联分压理论,两个相同的灯泡,各自应分得125V电压,按照上节课所测40W白炽灯的伏安特性曲线可得,125V时电阻为900Ω,而电压表的内阻为5000Ω,根据并联电阻求法可得=762Ω,并联后与40W灯泡分压可得:U1=

3.数字万用表、指针电压表哪个精度更高?不用万用表怎么测准灯泡上的电压? 万能电压表的精度更高,因为万能电压表的电阻相对于白炽灯来说很大,根据并联电阻求法可知,当一电阻相对于另一电阻很大时则并联电阻和小电阻阻值差不多,对分压影响不打。而指针电压表电阻相当于白炽灯不是特别大,则电阻偏小,分压也会变小。故不如万能电压表精确。 用一个已知阻值的大电阻(远远大于待测电阻)与灵敏电流计串联后再与待测电阻并联,所测电压即为电阻阻值与灵敏电流计电流示数乘积。

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

电信号测量(功率电压电流)

产品特征 显示被测量的变化趋势、读数方便采用夹持式安装方式 技术参数 99T1-A 、V 外型及安装尺寸 96C-A 、V ,96T -A 、V 和96L-Hz 外型及安装尺寸 单位: mm

72L-COS φ外型及安装尺寸 96L-W 、var 外型及安装尺寸 96L-COS φ外型及安装尺寸 72C-A 、V ,72T -A 、V 和72L-Hz 外型及安装尺寸 72L-W 、var 外型及安装尺寸

99T1-A 、V 接线图 接线图 96C-A 、V ,72C-A 、V 接线图

注:带‘*’ 标记的端子为电流进线端96T -A 、V ,72T -A 、V 接线图 96L-Hz ,72L-Hz 接线图 72L-W 、var 接线图

96L-W 、var 接线图 96L-COS Φ接线图 注:带* 标记的端子为电流进线端 注:带*标记的端子为电流进线端

量程参数表(详细信息请参阅固定式直接作用模拟指示电测量仪表附表汇总) 选型指南 备注 1:表内72T -A 和96T -A 交流电流表的所有规格均为2倍电流的过载型 2:交流电流表中,99型的直接接入电流范围为0.5A ~20A ,72型与96型的直接接入电流范围为 1A ~5A 和10A ~100A 3:表中交流电流表0.5A ~20A 用于99T1-A 型, 准确度等级为2.5级,交流电压表99T1-V 型准确 度等级为2.5级 (72型和96型电压表为1.5级)订货示例: 如客户需要99型指针板表,输入方式为交流,类型为电流表,则相对应的订货编码为:99T1A*

功率表测功率

功率表如何测功率 F0403014 眭博聪 5040309405 摘要:分析功率表的结构,工作原理及其应用 关键字:功率,功率因素cosφ 前言:在学到三相电路功率测量时,用到了一个新的测量仪表——功率表。但是对于其工作原理,它是怎么可以直接显示功率的大小,为什么要这样接线不甚了解,也为此查阅了些资料。本文介绍了功率表的结构,工作原理等情况。 正文: 功率表是测量直流,交流电路中功率的机械式指示电表。直流电路和交流电路中的功率分别为P=UI。 直流电路和交流电路中的功率分別为P=UI和P=UIcosφ﹐U,I 为负载电压和电流,φ为电流相量与相量间夹角﹐cosφ为功率因数。虽然各系电表的测量机构都有可能构成测量功率的电表﹐但最适于制成功率表的是电动系电表和铁磁电动系电表的测量机构。 功率表的结构: 由于功率表的种类很多,这里只以单相电动系功率表进行分析。 单相电动系功率表的接线原理见图。 这种电表测量机构的转动力矩M与I1I2cosθ有关﹐I1为静圈电流,I2为动圈电流﹐θ为两 电流相量间夹角。使负载电流I通过静圈﹐即I1=I。将负载电压加于动圈及与动圈串联的大电阻R上﹐则动圈中电流I2=U/R。这样θ=φ﹐而转动力矩M=kI1I2cosφ﹐这反映了功率P的大小。 改变与动圈串联的电阻值﹐可改变电压量程﹐将静圈的两线圈由串联改为并联﹐可扩大电流量程。功率表的表盘一般按额定电压与额定电流相乘﹐并使功率因数cosφ=1來标值。如电压量程为300V﹑电流量程为5A的功率表﹐表盘的满刻度值为300×5×1=1500W。也有制成功率因数为 0.1的低功率因数功率表﹐其满刻度值为300×5×0.1=150W。功率表的量程不能简单地只提功率量程﹐而应同時指明电压﹑电流量程及功率因数数值。 功率表的接线: 功率表的正确接法必须遵守“发电机端”的接线规则。 1)功率表标有“*”号的电流端必须接至电源的一端,而另一端则接至负载端。电流线

三相电路的相序、电压、电流及功率测量(精)

专业:电气工程及自动化 姓名: 实验报告 学号:日期:11月3日地点:东三 -202 课程名称:电路与电子技术实验Ⅰ指导老师:李玉玲成绩: __________________ 实验名称:实验13 三相电路的相序、电压、电流及功率测量实验类型:_______ 同组学生姓名:__ 一、实验目的和要求 1、学会三相电源相序的判定方法。

2、学会三相负载Y形和△形联结的连接方法,掌握这两种接法下,线电压和相电压、线电流和相电流的测量方法。 3、熟悉一瓦表法、二瓦表法测量三相电路的有功和无功功率的原理与接线方法。 4、掌握功率表的接线和使用方法。 二、实验内容和原理 原理: 1、确定三相电源相序的仪器称为相序指示器,它实际上是一个星形连接的不对称负载, 一项中接有电容C,另两相分别接入大小相等的电阻R。 所以把图示负载电路接到对称三相电源上,且认定接电容的一相为U相,那么,其余两 相中相电压较高的一相必是V相,相电压较低的一相是W相。V、W两项电压的相差程度取 决于电容的数值。一般为便于观测,V、W两相用相同的白炽灯代替R。 2、将三相负载各项的一端连接成中线点N,A、B、C分别接至三相电源,即为Y形联结。 这是相电流等于线电流。如果电源为对称三相电源,在负载对称时,线电压有效值是相电压有 效值的倍,相位超前角30度,即。这时各相电流也对称,电源中性点与负 载中性点之间的电压为零。即使用中性线将两中性点连接起来,中性线电流也等于零。如果负载不对称,即中性线就有电流流过,这时如将中性线断开,三相负载的各相相电压将不再对称。各相灯泡会出现亮暗不一致的现象,这就是中性点位移引起各相电压不等的结果。 3、△接法时,线电压等于相电压,但线电流为两相电流的矢量和,若负载对称,则 。 4、三相电路功率测量 (1)一瓦表法测有功功率

电流、电压、功率的关系及公式

电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是: V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= *线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= *线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2

变频器中的频率、电压、转速、电流、功率,转矩的关系

变频器中的频率、电压、转速、电流、功率,转矩的关系 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。 频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。 一、引言 随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。 基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。为此,本文结合变频调速的基本控制方式及负载的机械特性与基准电压、基准频率参数的关系,列举实例,详细说明基准电压与基准频率参数的设定方法。 二、变频调速的基本控制方式与基准电压、基准频率的关系 电机用变频器调速时有两种情况‐‐基频(基准频率)以下调速和基频以上调速(见图1)。必须考虑的重要因素是:尽量保持电机主磁通为额定值不变。如果磁通过弱(电压过低),电机铁心不能得到充分利用,电磁转矩变小,负载能力下降。如果磁通过强(电压过高),电机处于过励磁状态,电机因励磁电流过大而严重发热。根据电机原理可知,三相异步电机定子每相电动势的有效值 : E1=4.44f1N1Φm 式中 :E1‐‐定子每相由气隙磁通感应的电动势的有效值,V ;f1‐‐定子频率,Hz;N1——定子每相绕组有效匝数 ;Φm‐每极磁通量 由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证Φm不变,只要U1/f1始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转 矩调速。从图1可以看出,基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两 者的比值不变。 在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过 电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒 功率调速区。由图1可见,基准频率为恒功率调速区的最低频率,是恒转矩调速区与恒功率调速区的转折

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

电机转矩功率转速电压电流之间的关系及计算公式完整版

电机转矩功率转速电压电流之间的关系及计算 公式 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式 【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---————公式【3】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n30000/3.1415926*P=T*n9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI 乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】 ==》Tn/9.55=UI————公式【8】 ==》T=9.55UI/n————公式【9】 ==》U=Tn/9.55I————公式【10】 ==》I=9.55U/Tn————公式【11】 方程式【7】、【8】、【9】、【10】、【11】中: P—功率的单位(kW);

测量电功率的特殊方法

测量电功率特殊方法 同学们都熟悉用如图1的方法测量小灯泡的电功率,这是测量电功率 的标准方法,除过这种方法外,还有几种测量电功率得特殊方法,这里就 结合几道考题予以介绍。 例1、要测出一只额定电压为3.8V的小灯泡的额定功率,器材有:电 源(电压恒为6V)、阻值合适的滑动变阻器一个、开关一个、导线若干、电流表一块、电压表一块,其中电流表的量程完好,电压表的量程只有0~3V档可用。请设计电路,并回答:闭合开关,调节滑动变阻器,使电压表的示数达到___V时,小灯泡恰好正常发光。若此时电流表的示数为0.3A,则小灯泡的额定功率为___W。 解析:显然,小灯泡的额定电压3.8V大于电压表的最大量程3V,所以我们不能用电压表直接测量小灯泡两端的电压;但是,由于电源电压已知,我们可考虑通过测量滑动变阻器两端的电压间接测量出小灯泡两端的电压。因为电源电压为6V,小灯 泡的额定电压为3.8V,这时滑动变阻器两端的电压为2.2V,而2.2V正 好小于3V,所以可以这样来测量。因此可得如图2的电路图。然而, 由于电压表测量的是滑动变阻器两端的电压,所以,要测量小灯泡的额 定功率,电压表的示数应为2.2V。而小灯泡的额定功率应为其额定电压 (一定要注意是 3.8V而不是 2.2V)和此时电流的乘积,所以有: 3.0 .1 ? = =。 8.3= W A V P14 UI 可以看出,用这样的电路测量电功率时,当电流表示数变大时电压表示数变小;而当电流表示数变小时电压表示数变大。有时命题者也依此命题,请同学们注意。 例2、在一次测定小灯泡额定功率的实验中,老师给出了如下器材:额定电压为U0的小灯泡、电源(电压未知)、一个阻值为R的电阻、一个滑动变阻器、一只电流表、一只电压表、一个单刀双掷开关和若干导线。实验时不能忽略灯丝的电阻随温度的变化。 ⑴小张同学设计的实验电路图如图3,请你根据这个电路图写出测量小灯泡额定功率的主要步骤和需要测量的物理量(物理量用字母表示)。 ⑵本实验中,小灯泡额定功率的表达式P=_______。 ⑶若在给出的器材中只将其中的一只电流表改为一只电压表,请 你重新设计一个实验电路图,测量小灯泡的额定功率(只画出电路图, 不需要说明测量步骤)。 解析:⑴由于题目中只给了电流表,所以设法使小灯泡两端的电 压等于其额定电压是解决问题的关键。从电路图可以看出,小灯泡与定值电阻并联,它们两端的电压相等,而定值电阻两端的电压为U=I R R,这样,如果将S掷向1时,当电流表的示数为U0/R时,它们两端的电压就为小灯泡的额定电压U0。因此,我们可以这样测量小灯泡的额定功率:a、计算当R两端的电压为U0时,通过它的电流为U0/R;b、S掷向接线柱1,调节滑动变阻器,使电流表的示数为U0/R;c、保持滑动变阻器滑片不动,S掷向接线柱2,读出电流表示数I。 ⑵这一步我们来推导P的表达式:显然,L和R是并联的,当S 接1时,电流表测量的是R的电流,大小为U0/R;当S接2时,电流 表测量的是R和L的总电流I所以,通过L的电流为I-U0/R。而我们 前面已经看到这时L两端的正好是小灯泡的额定电压U0,所以小灯泡

电流电压电阻功率的关系

电流电压电阻功率的关 系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电流、电压、电阻、功率的关系功率(瓦)=电流(安培)x电压(伏特); 功率=电压*电流 12V*1A=12W 电流=电压/电阻 12V/40Ω= 电压/电流=电阻 功率符号P单位W 电压符号U单位V 电阻符号R单位Ω 电流符号I单位A 关系式 ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U2=U

总电阻等于各电阻之积除以各电阻之和 R=(R1R2)/(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方 Pe/Ps=(Ue/Us)的平方2.有关电路的公式 ⑴电阻 R ①电阻等于材料密度乘以(长度除以横截面积) R=ρ×(L/S) ②电阻等于电压除以电流 R=U/I ③电阻等于电压平方除以电功率 R=U²/P ⑵电功 W 电功等于电流乘电压乘时间 W=UIT(普式公式) 电功等于电功率乘以时间 W=PT 电功等于电荷乘电压 W=QU 电功等于电流平方乘电阻乘时间 W=I²RT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间 W=U²T/R(同上) ⑶电功率 P ①电功率等于电压乘以电流 P=UI ②电功率等于电流平方乘以电阻 P=I²R(纯电阻电路)

相关主题