搜档网
当前位置:搜档网 › 一种新的被动式可见光与红外偏振成像系统

一种新的被动式可见光与红外偏振成像系统

一种新的被动式可见光与红外偏振成像系统

先进机载光电红外成像系统

先进机载光电红外成像系统 目前,光电/红外成像系统在不断发展,集成商将日益增多的更高性能传感器装备到稳定转塔上,广泛用于各种军用平台。其中,机载光电/红外成像系统取得长足进步,国外已研制出多种先进机载光电/红外成像系统,很好地完成空中情报、监视与侦察任务。 大多数最新光电/红外系统的典型装置包括高清(HD)电视摄像机、高清近红外(NIR)和中波红外传感器、短波红外(SWIR)传感器以及多种类型激光器(激光指向器、激光照射器、激光测距机和激光指示器)。这些最新光电/红外系统还可与多摄像机大范围运动图像技术相集成,提供一种持久性多情报任务系统。 多年来,对光电/红外传感器系统的主要批评之一就是这些系统的视场太小,常常被比喻成“透过饮料管”观察战场。对于远程观察和单个目标交战,尤其是远程应用,这种窄视场是不错的选择。然而,对于大范围(广域)持久观察任务,这一视场是不够用的。越来越多的集成式多传感器广域运动成像(WAMI)系统逐渐解决了这一问题,通过可将多个传感器图像无缝拼接在一起的软件,这种系统实现了广域运动成像。其中最新系统之一是埃尔比特系统公司SkEye广域持久监视(WAPS)系统,用于诸如中空长航时(MALE)无人机的空中情报、监视和侦察(ISR)平台。 以下将给出目前最新的几种机载光电/红外成像系统,详细介绍系统组成单元及技术特点,并综述这一领域的关键技术和发展趋势。 1. 先进光电/红外成像系统

随着光电/红外传感器技术的不断进步,以及广域监视、全景成像和图像/视频处理等先进技术的发展,目前出现了一批先进的机载光电/红外成像系统,它们在前任机载光电/红外成像系统的基础上,加入最新相关技术,使新型机载光电/红外成像系统不仅可以通过组合多个高清多光谱传感器和激光器完成远程分辨、跟踪和交战多个目标以及情报、监视与侦察任务,而且可以通过广域运动成像等新技术,实现近实时广域探测、识别和认清难以发现的目标,而无需大量后期任务处理,用于诸如中空长航时(MALE)无人机的空中情报、监视和侦察(ISR)平台。 以下分别介绍目前国外最新的4种机载光电/红外成像系统。 1.1 L3 WESCAM公司MX-25/ 25D L3 WESCAM公司MX系列光电/红外/激光系统。 L3 WESCAM公司的MX系列目前推出了全数字、高清MX-25/25D超远程多传感器多光谱成像与目标瞄准系统,可搭载在固定翼飞机、无人机和浮空气球上,执行高空长航时情报、监视与侦察以及目标指示任务(MX-25D)。其中,MX-25可选择组合7个传感器,MX-25D可选择组合9个传感器。 MX-25/MX-25D的技术特点包括采用真正的高清摄像机、先进的图像处理技术、固态IMU(惯性测量单元)内置技术(5轴主动稳定)、短波红外成像技术、多个激光器负载和激光目标指示器以及MX-GEO第三代软件包,并具有MX系列产品的通用性。 1.2 Safran(赛峰)集团新一代EUROFLIR 410 Safran(赛峰)集团在2017年巴黎航展上公布了其新一代EUROFLIR410,这是意欲装备各种类型空中平台(特种任务飞机、直升机、飞艇和无人机等)的单个在线可更换单元(LRU)高性能稳定多传感器转塔,可用于情报、监视与侦察(ISR)、目标瞄准、防护、干预及搜救等各项任务。 早期版本的EUROFLIR410已经服役于NH工业公司NH90直升机和法国海军空中客车AS565黑豹(Panther)直升机。EUROFLIR410是直径16in、重量约53kg的大型转塔,是采用大量传感器的高集成度模块化系统,因此,Safran(赛峰)集团称,该产品是同系列中性能最佳的转塔。特色为采用极高分辨率摄像机,可以昼夜透过烟雾、灰尘、浓雾和盐雾等遮挡物,在更远距离上使目标探测和认清性能最大化;还进行了人机性能和显示器的改进,有助于在高工作载荷条件下做出决策;采用标准接口,保证与飞机座舱内的其它机载系统或无人机地面控制站进行正常通信。 EUROFLIR 410可以容纳多个传感器,从而具备多光谱成像能力。其中的电视传感器工作在0.4μm~0.7 μm光谱波段,采用1920×1080像素探测器芯片,并结合变焦镜头,提供25°~0.33°视场。

【CN109839191A】一种偏振成像方法及其装置、偏振成像系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910253142.1 (22)申请日 2019.03.29 (71)申请人 清华-伯克利深圳学院筹备办公室 地址 518055 广东省深圳市南山区学苑大 道1001号南山智园 (72)发明人 马辉 何宏辉 孟若愚  (74)专利代理机构 北京品源专利代理有限公司 11332 代理人 孟金喆 (51)Int.Cl. G01J 3/447(2006.01) (54)发明名称 一种偏振成像方法及其装置、偏振成像系统 (57)摘要 本发明实施例公开了一种偏振成像方法及 其装置、偏振成像系统,该偏振成像方法通过变 化光阑通光孔的位置,以使经收集透镜后的不同 角度范围和/或不同方向的偏振透射光束透过光 阑的光阑通光孔,以获得标准样品的多个第一偏 振属性和待测样品的多个第二偏振属性,并由标 准样品的多个第一偏振属性与标准样品的标准 属性得到多个偏振属性误差,从而能够在获得待 测样品的不同角度的多个第二偏振属性后,由偏 振属性误差对不同角度的多个第二偏振属性进 行校准,以在降低所获得的多个第二偏振属性的 偏振属性误差的前提下,提高待测样品偏振图像 的分辨率,获得待测样品的各向异性信息,并且 偏振成像方法简单, 成本低。权利要求书2页 说明书10页 附图5页CN 109839191 A 2019.06.04 C N 109839191 A

权 利 要 求 书1/2页CN 109839191 A 1.一种偏振成像方法,其特征在于,包括: 控制经标准样品和收集透镜后的偏振透射光束通过位置变化的光阑通光孔,以获取标准样品的多个第一偏振属性; 根据所述多个第一偏振属性以及所述标准样品的标准偏振属性获取所述标准样品的多个偏振属性误差; 控制经待测样品和收集透镜后的偏振透射光束通过位置变化的光阑通光孔,以获取待测样品的多个第二偏振属性; 根据所述多个第二偏振属性以及所述多个偏振属性误差获取所述待测样品的偏振图像。 2.根据权利要求1所述的方法,其特征在于,所述根据所述多个第二偏振属性以及所述多个偏振属性误差获取所述待测样品的偏振图像包括: 根据所述多个偏振属性误差对应校准所述多个第二偏振属性,获取多个校准偏振属性; 根据所述多个校准偏振属性,获取多个校准偏振图像; 合并所述多个校准偏振图像,以获取所述待测样品的偏振图像。 3.根据权利要求1~2任一项所述方法,其特征在于,所述第一偏振属性、所述第二偏振属性均包括穆勒矩阵。 4.一种偏振成像装置,其特征在于,包括: 第一偏振属性获取单元,用于控制经标准样品和收集透镜后的偏振透射光束通过位置变化的光阑通光孔,以获取标准样品的多个第一偏振属性; 偏振属性误差获取单元,用于根据所述多个第一偏振属性以及所述标准样品的标准偏振属性获取所述标准样品的多个偏振属性误差; 第二偏振属性获取单元,用于控制经待测样品和收集透镜后的偏振透射光束通过位置变化的光阑通光孔,以获取待测样品的多个第二偏振属性; 偏振图像获取单元,用于根据所述多个第二偏振属性以及所述多个偏振属性误差获取所述待测样品的偏振图像。 5.一种偏振成像系统,其特征在于,包括:焦平面滤波装置和权利要求4所述的偏振成像装置; 所述焦平面滤波装置包括沿光路依次设置的光束出射单元、收集透镜、光阑和光束接收单元;待测样品或标准样品放置于所述光束出射单元和所述收集透镜之间; 所述光束出射单元用于提供偏振入射光束,并投射至待测样品或标准样品上; 所述收集透镜用于将透过所述待测样品或所述标准样品的偏振透射光束会聚于所述收集透镜的焦平面上; 所述光阑位于所述收集透镜的焦平面上,所述光阑用于控制会聚于所述焦平面上的预设角度的所述偏振透射光束透过所述焦平面;所述光阑包括光阑通光孔; 所述光束接收单元用于接收透过所述焦平面的所述偏振透射光束。 6.根据权利要求5所述的系统,其特征在于,所述焦平面滤波装置还包括:检偏单元; 所述检偏单元位于所述光束出射单元与所述光束接收单元之间的光路中;所述待测样品或所述标准样品放置于所述光束出射单元和所述检偏单元之间;所述检偏单元用于调制 2

红外偏振成像探测技术综述

第 28 卷 第 2 期 2006 年 2 月
红 外 技 术 Infrared Technology
Vol.28 No.2 Feb. 2006
〈综述与评论〉
红外偏振成像探测技术综述
聂劲松[1],汪 震[2]
(1.电子工程学院 503 室,安徽 合肥 230037;2.中科院安徽光机所,安徽 合肥 230031)
摘要:论文对红外偏振成像技术进行了全面系统的综述,在论述红外偏振特性物理本质的基础上,指 出了红外偏振成像技术比较传统的红外成像技术具有的优势;给出了国内外该技术的研究概况;分析 了国外研究红外偏振成像技术得到的主要结论;最后,指出红外偏振成像技术不仅是红外侦察技术的 一次革命性进步,而且对传统的红外伪装技术提出了严峻的挑战,需要引起我们高度的重视。 关键词:偏振;红外;成像;探测技术 中图分类号:TN219 文献标识码:A 文章编号:1001-8891(2006)02-0063-05
Summarize of Infrared Polarization Imaging Detection Technology
NIE Jing-song[1],WANG Zhen[2]
(1.503 office, Institute of Electronic Engineering, Anhui Hefei, 230037, China; 2.Anhui Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Anhui Hefei, 230031, China)
Abstract:The technology of infrared polarization imaging detect was discussed. The advantages of infrared polarization imaging detect to traditional infrared imaging detect were given, and the main conclusion of overseas on infrared polarization imaging detect was analyzed. In the end, the significance of infrared polarization imaging detection technology and the challenge of this technology to traditional detect technology were pointed out. Key words:polarization;infrared;imaging;detection technology 式显示隐蔽的军事目标。 红外偏振成像技术作为比较传统的红外成像技术 具有以下几点优势: 1) 偏振测量无需准确的辐射量校准就可以达到相 当高的精度,这是由于偏振度是辐射值之比。而在传 统的红外辐射量测量中红外测量系统的定标对于红外 系统的测量准确度至关重要。红外器件的老化,光电 转换设备的老化,电子线路的噪声,甚至环境温度、 湿度的变化都会影响到红外系统。如果红外系统的状 态已经改变,但是系统又没有及时定标,那么所测得 的红外辐射亮度和温度必然不能反映被测物的真实辐 射温度和亮度。 2) 根据调研国外公开发表的文献的数据说明, 目 标和背景差别较大,其中自然环境中地物背景的红外
收稿日期:2005-07-05;修改日期:2005-11-08 作者简介:聂劲松(1970-),男,博士,现在解放军电子工 程学院从事军用光学工程专业教学和科研工作,主 要研究方向是激光技术和光电子技术。
引言
由菲涅耳反射定律可知当非偏振光束从光滑介质 表面反射时,会产生部分偏振光。另外根据基尔霍夫 理论,热辐射也表现出偏振效应。所以地球表面和大 气中的任何目标,在反射和发射电磁辐射的过程中都 会产生由他们自身性质和光学基本定律决定的偏振特 性。不同物体或同一物体的不同状态(例如粗糙度、 含水量、构成材料的理化特征等)会产生不同的偏振 状态,且与波长有密切关系,形成偏振光谱。由于偏 振信息是不同于辐射的另一种表征事物的信息,相同 辐射的被测物体可能有不同的偏振度,使用偏振手段 可以在复杂的辐射背景下检出有用的信号,以成像方
偏振度非常小(<1.5%) ,只有水体体现出较强的偏 振特性, 其偏振度一般在 8%~10%。 而金属材料目标 的红外偏振度相对较大,达到了 2%~7%,因此以金 63

偏振-成像-光谱整理

一、偏振探测原理 在介质中传输的光,与介质发生相互作用后,其偏振状态的斯托克斯参数或琼斯矩阵会发生变化,改变的程度与介质的物理特性(如其介质特性、结构特征、粗糙度、水分含量、观察角、辐照度等条件)密切相关。 利用光(主要为偏振光)来照射被测物质,经被测物与偏振光的相互作用后偏振光的偏振信息将按规律产生相应的变化,通过检测这种偏振信息的变化来实现测量该被测物的属性,是偏振探测的物理基础。 偏振光的检测是偏振光的应用和偏振探测的一个重要问题,偏振光的检测主要包括偏振光的强度、相位、和取向三个参量的定性分析和定量测量,其基本方法是把上述三个参量的测量转化为光强的测量。 二、偏振探测与雷达探测的对比 在目标识别应用上,与主动雷达扫描方式不同,偏振成像设备体积小、功耗低,探测对象是物体主动发射或反射的电磁波中的偏振部分,便于自身隐蔽。 三、偏振探测与传统成像的对比 在传统的图像处理、分析过程中所使用的技术都是基于光的强度特征和波长特征所提供的信息,这使现有的图像处理、分析以及理解算法很复杂,并且只能对图像中目标的轮廓、类别等做一些初步的分析和理解[5];而偏振图像有其自己统一简单的算法[6],其结果在图像

目视效果方面明显。偏振探测的特点(相对于普通成像技术): ①偏振探测有助于辨别具有不同质地的目标; ②偏振图像与光强度图像相比,对比度提高; ③偏振图像对置于在背景之上物体的边缘增强效果明显; ④偏振图像与波段有依赖关系; ⑤偏振度与物体表面粗糙度、观测角等依赖关系较 四、多光谱技术 物质的化学组成或结构的不同,导致它们的能带结构以及转动、振动能级不同,其结果使它们的发射光谱、反射光谱、荧光光谱或拉曼光谱也会不同。因此,可通过探测空间光谱分布来探测物质及其在空间上的分布特性。这种技术称为多光谱技术,它建立在能带理论基础之上,其技术基础是光谱分辨和光谱探测技术。 目前多光谱技术有两种不同的含义[1]:一是利用物体的发光或反射光特性,通过光谱分辨技术获取物体的特征光谱信息,来识别物体;二是利用光与物质的相互作用使光发生某种变化,并探测光的变化来获取物质的有关特征信息。后一种多光谱技术所探测的光的变化可能是光谱的变化,或是光强度、偏振等参量的变化。

声光调制型可见光高光谱成像技术研究

声光调制型可见光高光谱成像技术研究 基于布拉格调制的声光可调谐滤波器(Acousto-optic tunable filter,AOTF)是一种超声波与光波可以在各向异性介质中发生声光相互作用的新型分光元件,因其既可以被看作是分光元件又可以被看作是偏振元件,而且其具有大孔径角、衍射效率高、调谐速度快等突出优点,以至于这种滤波器被广泛应用于高光谱成像技术中。目前,国外对基于声光可调谐滤波器的高光谱成像技术的相关研究较为成熟,而国内对该研究起步较晚,基本上都处于基础理论和探索性实验阶段,虽然已经有实际应用,但其诸如光谱分辨率、衍射效率等关键性能与国外相比较仍有一定差距,还可以进一步提升,所以仍需要大量深入的理论与实验研究。鉴于此,本文以布拉格调制的声光可调谐滤波技术为基础,开展了相关的理论分析和实验研究工作,旨在将声光可调谐滤波技术完美应用于高光谱成像领域中,进而对我 国高光谱成像技术的发展起到积极的促进作用。在理论上,从TeO2 单晶的光学性质和声学性质出发,首先推导了参量互作用基本方程,并以此为依 据得到了声光调制下的耦合波方程的一般形式。 接着根据耦合波方程和动量匹配条件推导出了两种偏振方向相互垂直的入 射光的基本调谐模式,并给出了选取合适入射角和超声切变波的入射方向的依据。最后针对实验需求计算出了两个声光可调谐滤波器的其它性能指标。在此过程中,解决了介质外+1级衍射光与0级透射光的分离、由色差引起的衍射光漂移以及 降低射频驱动功率等关键问题。分析了锥形光束对声光可调谐滤波器内部分离角、外部分离角、光谱带宽以及衍射效率等性能参数的影响,以此为依据给设计前置光学系统提出了严格的要求。 在实验中利用宽带光源对设计的非共线声光可调谐滤波器的入射光波长与 超声驱动频率、入射光极角与超声驱动频率等基本调谐关系以及衍射光光谱带宽、衍射效率、空间分辨率和介质外衍射光漂移量等性能进行了详细的测量,并根据测量结果对设计的声光可调谐滤波器参数进行优化,直到满足高光谱成像要求。基于设计的声光可调谐滤波器搭建了高光谱成像实验系统,首先利用宽带光源研究了波长调谐范围内色差对衍射光漂移量的影响,并给出了图像漂移量与入射光波长的函数关系式,为设计后置光学接收系统提供了可靠依据。接着在 419.48865.07 nm的光谱范围、100200 m的探测距离内

偏振成像及偏振图像融合技术与方法模板

编号 偏振成像与偏振图像融合技术与方法 Technology and Method of Polarization Imaging and Polarization Image Fusion 学生姓名 专业 学号 学院 2014年06月

摘要:偏振成像技术能在杂乱背景下提高目标的识别率,对于人造假目标和伪装具有独特的辨别能力,同时能提高图像的对比度和清晰度。在过去的十几年中,成像偏振技术获得了迅速的发展,应用的范围也在不断地扩大,己经成为信息获取领域中的一个研究热点。本文主要论述了偏振成像技术的发展现状及应用前景,对偏振光的基本理论进行了研究。通过用数学表达式和矩阵对多源图像融合技术进行了详细的理论描述。 关键词:偏振成像图像融合斯托克斯参量琼斯矩阵

Abstract Polarization imaging has the ability to identify false targets and enhance images taken in poor visibility and even restore clear-day visibility of scene. In the past several years, polarization imaging has been developed rapidly, the scope of application in continually expanding, already became in the field of information for a research hotspot. This article mainly discusses the technology development status and the application prospect of polarized light and studies the basic theory of polarized light technology. By using mathematical expression and the matrix of the source image fusion technology detailed description of the theory. Keywords:Polarization Imaging; Polarization Image Fusion; Stokes parameter; Jones matrix

小型可见光双视场光学系统的研制_魏群

第20卷 第4期 2012年4月 光学精密工程  Optics and Precision Engineering Vol.20 No.4   Ap r.2012 收稿日期:2011-02-16;修订日期:2011-04- 19. 基金项目: 总装装备预研基金资助项目(No.51301060207)文章编号 1004-924X(2012)04-0739- 06小型可见光双视场光学系统的研制 魏 群*,艾兴乔,贾宏光 (中国科学院长春光学精密机械与物理研究所,吉林长春130033) 摘要:基于光学设计基本理论,设计了一种体积小,跟踪范围可以达到整个前半球的可见光双视场光学系统。系统由前部集束系统,中间光路转折系统及后部成像系统3部分组成。集束系统采用望远镜式结构,用于改变光束的口径;光路转折系统采用库德光路, 由4片反射镜组成,用于转折光路及扫描;成像系统由长焦成像系统和短焦成像系统组成,分别形成两个视场的像,用于目标识别与跟踪。光学系统焦距分别为60mm和120mm,设计传递函数在58lp/mm处均大于0.5。加工装调后进行了成像试验验证,结果表明,该系统能够同时完成大视场及小视场的图像获取,在可视范围内成像质量满足系统总体要求。 关 键 词:双视场光学系统;可见光镜头;库德光路;光学设计 中图分类号:TH703 文献标识码:A doi:10.3788/OPE.20122004.0739 Development of small-scale and dual-field visible light optical sy stemWEI Qun* ,AI Xing-qiao,JIA Hong -guang(Changchun Institute of Optics,Fine Machanics and Phy sics,Chinese Academy  of Sciences,Changchun130033,China)*Corresponding  author,E-mail:wei.q@hotmail.comAbstract:On the basis of optical design theory,this paper designs a small-scale and dual-field opticalsystem with a half sphere tracking  field.This optical system takes a Code optical path as the main sys-tem and consists of three parts:tele-system at front,ray tuning system in the middle,and imagingsystem in the back.The first part is a telescope compound for adjusting  the diameter of the lightbeam;the middle part is Code optical path made up four mirrors,which is used to turn the direction ofthe light beam;and the last part is an imaging system for long focal and short focal imaging and fortracking and recognizing  targets.The focal lengths of the system are 60mm and 120mm and theirModulation Transfer Functions(MTFs)are all above 0.5at 5.8lp/mm.By imaging tests,this opticalsystem has better imaging quality and can capture the images form the large field and small one at thesame  time.Key  words:dual-field optical system;visible light lens;Code system;optical design

红外成像技术在军事上的应用

红外成像技术的发展及应用 阅读人数:13人页数:7页yangfamingsg 红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线,无法呈现出图像。在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣,对其进行了零星的研究和小规模应用,1943年美国就与RNO合作生产了一款代号M12的机型,其功能和外观已经能看出热成像仪的雏形,这应该算是最找的一款热成像仪,算是热成像仪的鼻祖。 1952年,一款非常重要的材料研-锑化铟被开发出来,这种新的半导体材料促进了红外线热成像仪的进一步发展。不久之后,德州仪器和RNO公司联合开发出了具有实用价值的前视红外线(Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装置控制镜片转动,将光线反射到感光元件上。 随着碲镉汞材料制造工艺的成熟,在军事领域大规模采用热成像仪成为了可能。60年代之后出现了由60或更多的感光元件组成的线性整列,美国的RNO公司将热成像仪的应用拓展至民用领域发展。然而由于最初采用的是非制冷感光元件,制冷部件加上机械扫描机构使得整个系统非常庞大。 等到CCD技术成熟之后,焦平面阵列式热成像仪取代了机械扫描式热成像仪。至80年代半导体制冷技术取代了液氮、压缩机制冷之后开始出现了便携、手持的热成像仪。90年代之后,RNO公司又开发 1/7 出了基于非晶硅的非制冷红外焦平面阵列,进一步降低了热成像仪的生产成本。 红外线,又称红外辐射,是指波长为0.78~1000微米的电磁波。其中波长为2~1000微米的部分称为热红外线。 目标的热图像和目标的可见光图像不同,它不是人眼所能看到的可见光图像,而是表面温度分布图像。红外热成像使人眼不能直接看到表面温度分布,变成可以看到的代表目标表面温度分布的热图像。所有温度在绝对零度(-273)℃以上的物体,都会不停地发出热红外线。红外线(或热辐射)是自然界中存在最为广泛的辐射,它还具有两个重要的特性:(1)物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无需接触的温度测量和热状态分析,从而为工业生产,节约能源,保护环境等方面提供了一个重要的检测手段和诊断工具。(2) 大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口” 。利用这两个窗口,使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。由于这个特点,热红外成像技术在军事上提供了先进的夜视装备,并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在现代战争中发挥了非常重要的作用。 全球红外热像仪市场发展具有广阔的前景并呈现良好的发展趋势。红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像 2/7 的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。 在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域;在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,红外热像仪广泛应用于军民两个领域。在现代战争条件下,红外热像仪已在卫星、导弹、飞机等军事武器上获得了广泛的应用;同时,随着

偏振成像研究综述

偏振成像研究综述 西安工业大学光电工程学院 学生:刘彬彬指导老师:高明 摘要:偏振成像技术是光学领域得一项新技术,国内外十分重视对该技术及其应用的研究。地球表面和大气中的目标在反射、散射、透射及发射电磁辐射的过程中,会产生由它们自身性质决定的特征偏振。由于大气及地物光谱辐射的偏振敏感性,又由于偏振特性与物体的表面状态和固有属性密切相关,加上不同种类的目标具有不同的偏振特性,使得偏振成像逐步发展成地基、航空和卫星观测的新技术手段。在全球气候变迁研究,对地遥感探测和天文研究等领域得到应用。根据不同探测目标,从偏振分析机制和偏振信息获取模式等方面介绍了光学偏振成像技术的研究进展,并结合国内外相关领域偏振成像实验研究结果,描述了偏振成像技术在大气、自然地物、人工目标、医学诊断以及天文学探测领域的应用基础研究情况,最后总结和展望了偏振成像技术的问题和发展趋势。 关键字:偏振成像技术;特征偏振:遥感探测。 1 引言 光波的信息量是非常丰富的。依据光波的电磁理论,光波包含的信息主要有:振幅(对应于光强),波长(频率),相位,偏振态。通常的光辐射成像是获取目标的光谱,辐射强度及空间状态等信息,用于反演目标性质参数。但是,从电磁波的横波性质来看,偏振或称极化也是电磁波的重要特征之一。偏振特性与物质性质密切相关,是遥感需要获取的主要信息参数。在光学波段,无论是可见还是红外谱段,不同目标都具有各自一定的偏振特性。偏振参数能够很好的表征被探测目标的性质特征。因此,人们将光学遥感与偏振测量技术相结合,促进了偏振成像技术的发展。 传统的遥感方法获取的信息主要是电磁强度特征和几何特征,而偏振特性取 决于其表面的固有属性,如其介质特征,结构特征,粗糙度,水分含量等,还与观察角度和辐照条件有关,正是由于偏振测量同非偏振测量(通常为光强测量)相比能获得与物质自身特性相关的偏振信息,所以,通过解析目标的偏振信息可以更加容易的识别目标,同时由于偏振测量所具有的上述优点,它在云和大气气溶胶的探测、地质勘探、海洋开发、农牧业发展和军事等相关领域都具有重要的应用价值。同时,传统偏振成像一般采用被动工作方式,具有隐蔽性好的优点,但成像效果和距离均受到气象条件、目标温度对比度和天空背景照度等因素的限制。激光照明偏振成像技术克服了被动成像的缺点,在远距离暗目标探测和水下探测方面有着重要的应用。相对于被动成像而言,主动成像不依赖目标自身辐射(热成像)和目标对太阳或月亮等次光源的反射(可见光或近红外成像),而是依靠仪器自身(激光雷达)发出激光作为照明光源,由被探测目标反射或散射光子来提取目标的信息。所以激光照明偏振成像技术不受气象条件、目标温度及背景照度

红外成像系统性能参数测试系统

红外成像系统性能参数测试系统 摘要:经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面凝视型系统,目前国外对红外成像系统实验室测试的性能参数多达十六七项。本文对其最主要的信号传递函数(SITF)、噪声等效温差(NETD)和三维噪声模型、调制传递函数(MTF)、最小可分辨温差(MRTD)五个参数进行研究,阐述了它们的定义、物理意义和测量方法。 关键字:红外成像系统性能参数定义测量方法 1 红外成像系统性能参数测试研究的意义 基于光电图像的测量,是以图像的获取及其处理为手段,来确定被测对象的诸如空间、时间、温度、速度以及功能等等有关参数或者特性的一种测量方法。把图像当作检测和传递的手段或载体加以利用,是一种建立在光学成像技术基础上并融入了计算机技术、光电子学数字图像处理技术以及光机电一体化的综合测量技术,其目的在于从图像中提取有用的信号。由于其具有非接触、高灵敏度和高准确度等特点,在信息科学、生命科学、工农业生产和制造业、航空航天、国防军事、科学研究以及人们的日常生活等领域中得到了广泛应用,是当代先进测试技术之一[1]~[3]。 自然界中凡是温度高于绝对零度的物体,就会一直向外辐射能量。通过探测并收集这些辐射能,再现物体的辐射起伏,进而显示出物体的特征信息,这样的成像系统就是红外成像系统。红外成像系统利用景物本身各部分辐射的差异获取被测对象的细节,可以穿透烟、雾、霾以及雪等不利因素以及识别伪装,具有较强的抗干扰和全天时远距离观察目标的能力,这些特点使红外成像系统广泛应用于军事领域。现代军事应用中,要求红外系统不仅具有高灵敏度、大视场、高空间分辨率、高帧频、适装性好的特点,为了适应恶劣的环境条件,还同时要求具有很好的结构稳定性和温度特性等。传统的红外光学系统的结构形式有反射式、折射式和折反式,它们共同的特点是结构简单,这往往不能满足现代军用特殊条件下的高质量的成像要求,需要增加辅助器件,就使得结构变得复杂,更加促使了人们开发新型的结构[4]。 世界各国都以巨额投资竞相开展这一领域的研究工作。经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面(IRFPA)凝视型系统。同时,红外成像系统的性能测试技术也必须适应红外焦平面成像技术的发展,因此,对红外成像系统的性能评估也变

中波红外光谱偏振成像技术及系统研究

中波红外光谱偏振成像技术及系统研究 光谱偏振成像技术是一种将光谱测量技术和偏振成像技术融为一体的新型 光学探测技术,它不仅可以获得被测目标物体的光谱信息,还可以获得被测目标 物体的图像信息和偏振信息,为目标物体的全方位准确识别提供了有力地保障。目前光谱偏振成像技术广泛应用于生物医学诊断、目标探测与识别、空间遥感、环境监测等领域。 为了能够准确理解光谱偏振成像技术的工作原理以及研究新型的光谱偏振 成像系统,本文依托于中波红外微型光谱测量系统、中波红外分孔径同时偏振成像系统对光谱偏振成像技术的光谱测量技术和偏振成像技术进行了研究。在此基础上,构建了中波红外光谱偏振成像系统。 中波红外光谱偏振成像系统是在传统的迈克尔逊系统的基础上,通过引入偏振调制模块和多级阶梯微反射镜,实现了偏振信息的测量和干涉系统的静态化。与传统的傅里叶变换型成像光谱系统相比,此系统除了具有光通量大、多通道的优点外,还具有信息量大的优点。 本论文的主要工作有以下三个部分:一、光谱测量技术研究:提出一种轻型的基于微光学元件的傅里叶变换光谱测量系统,并对系统进行了设计。改进了传统折衍混合单透镜光焦度的分配,得到了可应用于光谱测量系统的单片式准直系统。 基于波像差理论和Sellmeier色散公式,分析了前置准直系统残存的像差以及折衍混合单透镜的衍射面的衍射效率对光谱复原的影响。分析了微光学元件的衍射对光谱复原的影响。 与此同时,分析了微透镜阵列的像面和中继系统的物面的轴向装配误差对光谱复原的影响。最后借助光学分析软件ASAP对空间调制型的傅里叶变换红外光

谱测量系统进行了建模。 二、偏振成像技术研究:结合孔径分割技术和偏振探测技术,提出并设计了一种静态的中波红外分孔径同时偏振成像系统。采用等权重方差的优化方法对系统各通道线偏振片的偏振轴方向以及波片的快轴方向进行了优化,并通过仿真论证了优化方法的正确性。 基于分时偏振成像系统的傅里叶分析法和偏振测量结构的特点,提出一种误差标定和校准的新方法,并对标定理论进行了推导。对中波红外分孔径全偏振成像系统进行了装调、原理样机的集成和校准,并利用校准后的系统进行了偏振成像实验,观察到了明显的偏振现象。 最后对获得的偏振图像进行了图像融合,融合后的图像相较于普通光强图像,图像的细节更加清晰,图像的信息量更大,为目标景物的准确识别提供了有力的保障。三、光谱偏振成像技术研究:提出了一种基于微型静态干涉系统的中波红外傅里变换型线偏振干涉成像系,完成了系统的参数计算。 根据近轴光学理论,采用物镜像方远心和中继系统物方远心的设计方案,使物镜和中继系统很好的匹配,降低了能量损失。当入射光为非偏振光和线偏振光两种极端情况下,对系统的透过率进行了分析,进而对系统获取信息的能力进行评估。 采用邦加球螺旋线的采样方式,分析了旋转偏振的旋转误差,入射光的偏振度、偏振态对偏振信息准确测量的影响,并给出了旋转公差容限,为实际的装配提供指导。

化学发光、荧光、可见光成像系统的技术指标:汇总

中山大学竞争性谈判采购公告 项目编号:中大招(货)[2010]038号 项目名称:中山大学医学院多功能酶标仪采购项目 附件: 多功能酶标仪,1套,要求如下:: 一.主要功能 1. 紫外和可见光吸收光(连续波长); 2. 荧光(FI);3.时间分辨荧光(TRF);4. 荧光偏振(FP);5. 化学发光(延时和瞬时) 二.主要技术参数 全波长吸收光、孔域扫描、荧光、时间分辨荧光、荧光偏振、荧光共振能量转移FRET、发光共振能量转移BRET、化学发光-闪光和辉光、双注射器; 1 吸收光模块:波长范围200-999nm,0-4.0 OD的检测范围; 2 发光模块: 液导光纤,低噪音PMT,动态范围不小于6个数量级;灵敏度≦30 amol of ATP/well (96孔板); 3 荧光模块: 3.1 荧光强度灵敏度≦1 pM fluorescein;3.2 时间分辨荧光灵敏度≦80 fM of Europium;3.3 可作荧光偏振FP,荧光偏振FP精确度3 mP at 1 nM fluorescein;3.4 荧光偏振FP使用二向色镜,光源可选择卤钨灯或高能DPR氙灯;3.5 具有顶部/底部探头:顶部探头位置可调,顶部探头荧光的灵敏度≦0.5fmol/孔;底部探头的灵敏度≦1.9fmol/孔。 4 通量≥384孔板; 5 读板速度:96孔板≦14 s,384孔板≦30 s,1536孔板≦47 s; 6具有光路径长度校正功能。; 7 双注射器:加样体积:5-1000ul,1nl递增,死体积≦40ul,分液速度可调; 8 软件:可以连接主要功能,最近使用的文件,并可直接进入预编好的程序和实验表中挑选,可对连接的仪器进行程序化操作步骤(读板, 分液, 震荡, 静置, 孵育等.),可在一块或多块板上进行多组数据, 多个动力学结果分析; 9有温度孵育(室温+4-50℃)和振板摇床功能; 三.配置 1.吸收光检测 1.1 光源:卤钨灯或高能DPR氙灯; 1.2 波长选择:单色器; 1.3 单色器带宽: 2.4nm; 1.4 连续波长,波长范围:200-999nm,1nm递增可调; 1.5 动态范围:0-4 OD; 1.6 分辨率:0.0001 OD1.7 单色器波长准确性:+/- 2 nm1.8 单色器波长可重复性:+/- 0.2 nm1.9 OD 准确性:< 1% at 2 OD typical,< 3%/ 3.0

红外成像仪的主要分类

首先给大家简单介绍一下红外成像仪的主要分类: 光子感应器式红外成像仪 1. 根据红外成像仪的感应器不同来分类 热感应器式红外成像仪 光子感应器是将接受的辐射能量直接转换成电信号。灵敏度很高,工作稳定,反映迅速。 热感应器是由多个感应单元同时接受辐射并被加热,通过比较热量的变化来给出成像信号,灵敏度比光子感应器式低,工作不如光子感应器稳定,反映速度也不及光子感应器,但是体积小,重量轻,价格便宜。图一所提到的PM545 型就是热感应器式红外成像仪,在其说明书中有介绍。 中波红外线成像仪 2. 根据红外线成像仪所适用的红外波长不同,可分为长波红外线成像仪 以下给出的光谱图(图二),以便大家有一个感性的认识 图二 ?可视光的波长范围一般为0.4 到0.7μm ?近红外线的波长范围一般为0.7 到1μm ?红外短波的波长范围一般为0.9 到2.5μm ?红外中波的波长范围一般为 2 到5μm ?红外长波的波长范围一般为7.5 到13 或14μm 从图一的参数要求spectral band 7.5 to 13μm,我们看出其手册所要求的波长范围是长波红外线成像仪。 那么长波和中波红外线成像仪对红外图像的影响是什么?通过普朗克曲线图三,可以看出

图三 其影响主要在于随着待观察物体的温度升高,该物体所辐射的能量随着波长的减小而增大。 通俗点说也就是在测量接近常温下的物体时,长波红外线成像仪较敏感。在测量超高温的物体时,中波红外线成像仪较敏感。 其次给大家介绍一下红外线成像仪的参数含义: 1. 像素:是图像最基本的单位(Pixel),可以通俗的理解像素就是一个小点,而不同颜色或灰度的点(像素)聚集起来就变成一幅影像。像素越高,意味着你可以更远的距离发现更细微的问题。我公司采购的FLIR T400 型红外成像仪的像素为320X240 。对于低分辨率的成像仪,为了提高影像的清晰度,可以安装长焦镜头。但是,同时其视野也会随之减小。对于给定的距离,同样的视野,像素越高,那么影像越清晰。总之在不考虑经济因素下,像素越高越好。 2. FOV(视野):也就是所能见到的空间范围,用角度来表示。图四中的角度,即可以理解为红外成像仪的水平视野,当然还有垂直视野。图一中所要求的红外成像仪的视野为水平24°垂直18°。同样的像素条件下,视野越小,影像越清晰。

多通道型偏振成像仪的偏振定标

第25卷一第5期2017年5月一一一一一一一一一一一一光学精密工程一O p t i c s a n dP r e c i s i o nE n g i n e e r i n g 一一一一一一V o l .25一N o .5一一M a y 2 017一一收稿日期:2016-06-16;修订日期:2016-09-02.一一基金项目:国家863高技术研究发展计划资助项目(N o .2011A A 12A 103);国家自然科学基金青年基金资助项目(N o .61505199)文章编号一1004-924X (2017)05-1126-09 多通道型偏振成像仪的偏振定标 杨一斌1,2,颜昌翔1,张军强1?,鞠学平1, 2(1.中国科学院长春光学精密机械与物理研究所,吉林长春130033; 2.中国科学院大学,北京100049) 摘要:为了解决多通道型偏振成像仪的偏振定标问题,提出了一种基于积分球无偏光源的偏振定标方法三通过研究偏振光束与光学器件的相互作用,推导出多通道型偏振成像仪的矢量辐射传输模型,确定了需要标定的参数三运用无偏光源标定系统的偏振效应,基于矢量辐射传输模型对中心视场绝对辐射定标系数二光学镜头起偏度和系统低频相对透过率等关键参数进行了标定,通过分析标定结果求解了系统全视场的穆勒矩阵三最后,使用可调偏振度光源验证了仪器典型视场的偏振定标精度三研究结果表明,基于无偏光源的偏振定标方法可以有效提高多通道型偏振成像仪的偏振定标效率;经偏振定标后仪器在目标偏振度低于20%时的偏振测量误差小于1%,满足大气气溶胶测量精度的要求三关一键一词:偏振定标;偏振成像仪;多通道;穆勒矩阵;偏振效应 中图分类号:P 415.34;T P 706一一文献标识码:A一一d o i :10.3788/O P E .20172505.1126P o l a r i m e t r i c c a l i b r a t i o no fm u l t i -c h a n n e l p o l a r i m e t r i c i m a g e r Y A N GB i n 1,2,Y A N C h a n g -x i a n g 1,Z H A N GJ u n -q i a n g 1?,J U X u e -p i n g 1, 2(1.C h a n g c h u n I n s t i t u t e o f O p t i c s ,F i n eM e c h a n i c s a n dP h y s i c s ,C h i n e s eA c a d e m y o f S c i e n c e s ,C h a n g c h u n 130033,C h i n a ;2.U n i v e r s i t y o f C h i n e s eA c a d e m y o f S c i e n c e s ,B e i j i n g 100049,C h i n a )?C o r r e s p o n d i n g a u t h o r ,E -m a i l :z j q 1981_81@163.c o m A b s t r a c t :A p o l a r i m e t r i c c a l i b r a t i o nm e t h o db a s e d o nn o n -p o l a r i z e d l i g h t s o u r c ew a s p r o p o s e d t o s o l v e t h e p r o b l e mo f p o l a r i m e t r i c c a l i b r a t i o n o f t h em u l t i -c h a n n e l p o l a r i m e t r i c i m a g e r .T h r o u g h t h e s t u d y o f t h e i n t e r a c t i o nb e t w e e n p o l a r i z e d b e a ma n d o p t i c s ,t h e v e c t o r r a d i a t i v e t r a n s f e rm o d e l o fm u l t i -c h a n n e l p o l a r i m e t r i c i m a g e rw a s d e d u c e d a n d t h e c a l i b r a t e d p a r a m e t e r sw e r e d e t e r m i n e d .T h ek e yp a r a m e t e r s s u c ha sa b s o l u t er a d i o m e t r i cc a l i b r a t i o nc o e f f i c i e n t so fc e n t e rv i e w i n g f i e l d ,p o l a r i z a t i o nd e g r e eo f o p t i c a l l e n s e s a n d r e l a t i v e t r a n s m i t t a n c ew i t h s y s t e ml o wf r e q u e n c y w e r e c a l i b r a t e d b a s e d o n t h e v e c t o r r a d i a t i v e t r a n s f e rm o d e lb y a p p l i c a t i o no f p o l a r i m e t r i ce f f e c t so f t h es y s t e m w i t hn o n -p o l a r i z e dl i g h t s o u r c e .B y a n a l y z i n g t h ec a l i b r a t i o nr e s u l t ,t h e M u e l l e r m a t r i xo ff u l lf i e l do fv i e w w a ss o l v e d .F u r t h e r m o r e ,t h e a c c u r a c y o f p o l a r i m e t r i c c a l i b r a t i o no n t y p i c a l f i e l do f v i e w w a s v e r i f i e dw i t h a l i g h t s o u r c ew i t hv a r i a b l e p o l a r i z a t i o nd e g r e e s .T h e r e s u l t ss h o wt h a t t h e p o l a r i m e t r i cc a l i b r a t i o n m e t h o d b a s e do nn o n -p o l a r i z e dl i g h ts o u r c ec a ne f f e c t i v e l y i m p r o v et h e p o l a r i z a t i o nc a l i b r a t i o ne f f i c i e n c y o f 万方数据

相关主题