搜档网
当前位置:搜档网 › 利用Gamma函数求积分的几种形式

利用Gamma函数求积分的几种形式

利用Gamma函数求积分的几种形式
利用Gamma函数求积分的几种形式

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

几种特殊类型函数的积分

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(11222 4+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数范围内能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ - μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++ ++++++++++ - s rx x S x R s rx x S x R +++++++++ -2 122 2)(μμμ . (2)

神奇的Gamma函数 (上)

神奇的Gamma函数 (上) rickjin 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 Γ(x)=∫∞0t x?1e?t dt 通过分部积分的方法,可以推导出这个函数有如下的递归性质 Γ(x+1)=xΓ(x) 于是很容易证明,Γ(x)函数可以当成是阶乘在实数集上的延拓,具有如下性质 Γ(n)=(n?1)! 学习了Gamma 函数之后,多年以来我一直有两个疑问: ? 1.这个长得这么怪异的一个函数,数学家是如何找到的; ? 2.为何定义Γ函数的时候,不使得这个函数的定义满足Γ(n)=n!而是Γ(n)=(n?1)! 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16,?可以用通项公式n2自然的表达,即便n为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,?,我们可以计算2!,3!, 是否可以计算 2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。 但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题,由此导致了Γ函数的诞生,当时欧拉只有22岁。 事实上首先解决n!的插值计算问题的是丹尼尔.贝努利,他发现,

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

函数极限的十种求法

函数极限的十种求法

设 f (x )=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求: 当a ,b 为何值时,f (x )在x=0处的极限存在? 当a ,b 为何值时,f (x )在x=0处连续? 注:f (x )=xsin 1/x +a, x< 0 b+1, x=0 X^2-1, x>0 解:f(0)=b+1 左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a =a 左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1 f(x)在x =0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0), 所以a =-1=b+1, 所以a =-1,b =-2 7.利用等价无穷小量代换求极限 例 8 求极限30tan sin lim sin x x x x →-. 解 由于()s i n t a n s i n 1c o s c o s x x x x x -=-,而 ()sin ~0x x x →,()2 1cos ~02 x x x -→,()33sin ~0x x x → 故有 2 3300tan sin 112lim lim sin cos 2 x x x x x x x x x →→?-=?=. 注 在利用等价无穷小量代换求极限时,应注意只有对所求极限式中相乘或相除的因式才能用等价无穷小量替代,而对极限式中的相加或相减部分则不能随意替代,如在例题中,若因有()t a n ~0x x x → ,()s i n ~0x x x →,而推出 3300tan sin lim lim 0sin sin x x x x x x x x →→--==, 则得到的式错误的结果. 附 常见等价无穷小量 ()sin ~0x x x →,()tan ~0x x x →,()2 1cos ~02 x x x -→, ()arcsin ~0x x x →,()arctan ~0x x x →,()1~0x e x x -→, ()()ln 1~0x x x +→,()()11~0x x x α α+-?→. 8 利用洛比达法则求极限 洛比达法则一般被用来求00型不定式极限及∞∞ 型不定式极限.用此种方法求极限要求在

求函数解析式,的四种常用方法

求函数解析式的四种常用方法 1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可. 2.换元法:设t =g(x ),解出x ,代入f (g(x )),求f (t)的解析式即可. 3.配凑法:对f (g(x ))的解析式进行配凑变形,使它能用g(x )表示出来,再用x 代替两边所有的“g(x )”即可. 4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. [再练一题] 3.已知函数f (x )是二次函数,且f (0)=1,f (x +1)-f (x )=2x ,则f (x )=________. 【解析】 设f (x )=ax 2+bx +c ,由f (0)=1得c =1. 又f (x +1)=a (x +1)2+b (x +1)+1, ∴f (x +1)-f (x )=2ax +a +b . 由2ax +a +b =2x ,得????? 2a =2a +b =0, 即a =1,b =-1, ∴f (x )=x 2-x +1. 【答案】 x 2-x +1 1.下列表示函数y =f (x ),则f (11)=( ) A .2

C .4 D .5 【解析】 由表可知f (11)=4. 【答案】 C 2.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10 【解析】 法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , 即f (x )的表达式是f (x )=x 2+6x . 法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x . ∴f (x )的表达式是f (x )=x 2+6x , 故选A . 【答案】 A 3.f (x )=|x -1|的图象是( ) 【解析】 ∵f (x )=|x -1|=????? x -1,x ≥1,1-x ,x <1, 当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D. 【答案】 B 4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm )之间的表达式是________.

几种特殊类型函数的积分

几种特殊类型函数的积分 一、有理函数的不定积分 1.化有理函数为简单函数 两个多项式的商所表示的函数)(x R 称为有理函数,即 m m m m m n n n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++= =------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且 0,000≠≠b a . 当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式. 对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一 个真分式之和的形式.例如 1 2)1(112224 +++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题. 设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积: μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= . 其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式) () (x Q x P 总可以分解成如下部分分式之和,即 β ααα)()()()() (1121b x B a x A a x A a x A x Q x P -++-++-+-=- λ ββ) ()(21 112q px x N x M b x B b x B ++++-++-+ -

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

神奇的Gamma函数

神奇的Gamma函数 (上) 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 通过分部积分的方法,可以推导出这个函数有如下的递归性质 于是很容易证明,函数可以当成是阶乘在实数集上的延拓,具有如下性质 学习了Gamma 函数之后,多年以来我一直有两个疑问: 1.这个长得这么怪异的一个函数,数学家是如何找到的;

2.为何定义函数的时候,不使得这个函数的定义满足而 是 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。 1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式 定义从整数集合延拓到实数集合,例如数列可 以用通项公式自然的表达,即便为实数的时候,这个通项 公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线 通过所有的整数点,从而可以把定义在整数集上的公式延拓 到实数集合。一天哥德巴赫开始处理阶乘序列 ,我们可以计算, 是否可以计算 呢?我们把最初的一些的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。

但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题, 由此导致了函数的诞生,当时欧拉只有22岁。 事实上首先解决的插值计算问题的是丹尼尔.贝努利,他发现, 如果都是正整数,如果,有 于是用这个无穷乘积的方式可以把的定义延拓到实数集合。例如, 取, 足够大,基于上式就可以近似计算出 。 欧拉也偶然的发现可以用如下的一个无穷乘积表达

二次函数解析式的8种求法

二次函数解析式的8种求法 二次函数的解析式的求法是数学教学的难点,学不易掌握.他的基本思想方法是待定系数法,根据题目给出的具体条件,设出不同形式的解析式,找出满足解析式的点,求出相应的系数.下面就不同形式的二次函数解析式的求法归纳如下,和大家共勉: 一、定义型: 此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m -1是二次函数,则m = . 解:由m 2+ m ≠0得:m ≠0,且 m ≠- 1 由m 2–2m –1 = 2得m =-1 或m =3 ∴ m = 3 . 二、开放型 此类题目只给出一个条件,只需写出满足此条件的解析式,所以他的答案并不唯一. 例2、(1)经过点A (0,3)的抛物线的解析式是 . 分析:根据给出的条件,点A 在y 轴上,所以这道题只需满足c b a y ++=χχ2中的C =3,且a ≠0即可∴32++=χχy (注:答案不唯一) 三、平移型: 将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 例3、二次函数 253212++=χχy 的图像是由22 1χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.

求极限方法总结

求极限方法总结 为什么第一章如此重要? 各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,区别在于数列极限时发散的,是一般极限的一种 2解决极限的方法如下:我能列出来的全部列出来了你还能有补充么? 1 等价无穷小的转化,只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在 e的X次方-1 或者 1+x的a次方-1等价于Ax 等等。全部熟记 x趋近无穷的时候还原成无穷小 2落笔他法则大题目有时候会有暗示要你使用这个方法 首先他的使用有严格的使用前提 必须是 X趋近而不是N趋近所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷 必须是函数的.导数要存在假如告诉你gx, 没告诉你是否可导,直接用无疑于找死 必须是 0比0 无穷大比无穷大 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷应为无穷大于无穷小成倒数的关系所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 30的0次方 1的无穷次方无穷的0次方

对于指数幂数方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0 3泰勒公式含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母看上去复杂处理很简单 5无穷小于有界函数的处理办法 面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了 6夹逼定理主要对付的是数列极限 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7等比等差数列公式应用对付数列极限 q绝对值符号要小于1 8各项的拆分相加来消掉中间的大多数对付的还是数列极限 可以使用待定系数法来拆分化简函数 9求左右求极限的方式对付数列极限例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10 2 个重要极限的应用。这两个很重要对第一个而言是X趋近0时候的sinx与x 比值。地2个就如果x趋近无穷大无穷小都有对有对应的形式 地2个实际上是用于函数是1的无穷的形式当底数是1 的时候要特别注意可能是用地2 个重要极限 11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的x的x次方快于 x 快于指数函数快于幂数函数快于对数函数画图也能看出速率的快慢当x趋近无穷的时候他们的比值的极限一眼就能看出来了 12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

函数解析式的七种求法(讲解)

函数解析式的七种求法(讲解)

函 数 解 析 式 的 七 种 求 法 一、待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求 )(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或

求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知 221)1(x x x x f +=+ )0(>x ,求 ()f x 的 解析式。 解:2)1()1(2-+=+x x x x f Θ, 21≥+x x 2)(2-=∴x x f )2(≥x

时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x

四、代入法:求已知函数关于某点或者某条直线 的对称函数时,一般用代入法。 例4 已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点 则?????=+'-=+'32 22y y x x ,解得:???-='--='y y x x 64 , Θ点),(y x M '''在)(x g y =上 x x y '+'='∴2 把? ??-='--='y y x x 64代入得: )4()4(62--+--=-x x y 整理得672---=x x y ∴67)(2---=x x x g

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

伽马函数在概率统计中的应用

韩山师范学院 学生毕业论文 ( 2011届) 题目(中文)伽马函数在概率统计中的应用(英文)The Application of the Γ–Function in the Probability 系别:数学与信息技术系 专业:数学与应用数学班级: 20071112 姓名:史泽龙学号: 2007111205 指导教师:屈海东讲师 韩山师范学院教务处制

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要: 本文阐述了Γ函数的定义及其特殊性质, 并就如何利用Γ函数的特定性质解决概率应用中的一些特定问题进行了探讨和分析. 分析说明: 应用Γ函数收敛的性质, 可间接求解概率积分值; 利用Γ函数表示分布的密度;可表征F分布的密度函数. 这些分析及其结论对于函数的具体应用, 对于求解概率论中的一些具体实用问题具有重要的参考价值. 关键词: Γ函数; 收敛性; 概率积分; 密度函数

Abstract: Expounds the definition of Γ function and its special properties, and how to use the specific nature solution Γ function in some specific questions the probability application is discussed and analyzed. Γ function analysis and explanation: application of nature, but indirect convergent solution probability integral value; Use the density of Γ function says distribution; F distribution can be characterized the density function analysis and conclusions. These specific application for function for solving some of the specific practical problems probability has important reference value. Keywords:Gamma function;Convergence; Probability integral;Density function

求函数解析式的几种方法教案

北京梦飞翔教育个性化辅导教案 学生:教师:时间:年月日_____段课时: 教学内容函数解析式的求法 教学重点求函数的解析式 教学难点求函数的解析式 教学计划本次课内容对应教学计划中第次课 1 会求几种常见形式函数的解析式 2 教学目标 3 4 一、教学过程: 【知识梳理】 1.函数的定义2.函数相等 3.分段函数 4.映射的概念 【热身练习】 x y x y 1.如果x, y 在映射f 下的象是, ,则5, 2 在f 下的原象是() 2 2 A.10, 4 B .3, 7 C .6, 4 D .37 , 2 2 2.给出下列对应: ① A R, B 0, , f :x x ; ② A B N ,f: x x 3 ;

③ A x N x 2 , B y Z y 0 , f : 2 2 2 x y x x ; ④ A 0, , B R , f : x y x . 其中是从集合 A 到集合 B 的函数有 .(写出所有正确答案的序号) 3.设映射 f : 2 2 x x x 是集合 A 到 B 的映射,其中 A B R .若实数 k B ,且 k 在 A 中不存在 原象,则 k 的取值范围是 . 4.下列四组函数中,表示同一函数的是( ) A . f x x , 2 g x x B . f x x , g x 3 x 3 C . f x 1, x 2 g x D . f x x 1 x 1 , g x x 1 x 5.下列各图中,可以表示函数 y f x 的只可能是( ) y y y y x O O x O x O x (A ) (B ) (C ) (D ) 6.若函数 f x 2x 3,其定义域 A x N 1 x 5 ,则 f x 的值域是 . 7.设函数 f x 1 2 x 2 x ,则 1 1 1 f 1 f 2 f f 3 f f 4 f . 2 3 4 二、复合函数

函数的极限的求解方法

函数的极限的求解方法 摘 要:本文介绍了计算函数极限的几种方法,讨论如何运用已掌握的知识方法计算极限. 关键词:零因子:初等法:两个重要极限 :等价无穷小: 等价无穷小替换 :函数的连续性 :Hospital L '法 。 引 言 极限思想是许多科学领域的重要思想之一. 因为极限的重要性,从而怎样求极限也显得尤其重要. 对于一些复杂极限,直接按照极限的定义来求就显得非常困难,不仅计算量大,而且不一定能求出结果. 为了解决求极限的问题,有不少学者曾探讨了计算极限的方法 . 本文也介绍了计算极限的几种方法,并对文献结论进行了推广,讨论如何利用我们已有的知识计算极限,并且以实例来阐述方法中蕴涵的数学思想. 函数的极限主要表现在两个方面: 一、自变量x 任意接近于有限值0x ,或讲趋向(于)0x (记0x x →)时,相应的函数值)(x f 的变化情况. 二、当自变量x 的绝对值x 无限增大,或讲趋向无穷大(记∞→x )时,相应的函数值)(x f 的变化情况. 相关知识点 (一)“0x x →”形: 定义1:如果对0>?ε(不论它多么小),总0>?δ,使得对于适合不等式δ<-<00x x 的一切x 所对应的函数值)(x f 满足:ε<-A x f )(,就称常数A 为函数)(x f 当0x x →时的极限,记为 A x f n =∞→)(lim ,或A x f →)( (当0x x →时) 注1:“x 与0x 充分接近”在定义中表现为:0>?δ,有δ<-<00x x , 即),(0δ∧ ∈x U x .显然δ越小,x 与0x 接近就越好,此δ与数列极限中的N 所起的作用是一样的,它也依赖于ε.一般地,ε越小,δ相应地也小一些. 2:定义中00x x -<表示0x x ≠,这说明当0x x →时,)(x f 有无限与)(0x f 在0x 点(是否有)的定义无关(可以无定义,即使有定义,与)(0x f 值也无关).

函数解析式的几种表示形式及五种确定方式

函数解析式的求法 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、(2001上海)设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

相关主题